Stellar Parameters for M Dwarfs : the Link to Exoplanets Vasco Neves

Total Page:16

File Type:pdf, Size:1020Kb

Stellar Parameters for M Dwarfs : the Link to Exoplanets Vasco Neves Stellar Parameters for M dwarfs : the link to exoplanets Vasco Neves To cite this version: Vasco Neves. Stellar Parameters for M dwarfs : the link to exoplanets. Astrophysics [astro-ph]. Uni- versité de Grenoble; Universidade do Porto, 2013. English. NNT : 2013GRENY082. tel-01440510 HAL Id: tel-01440510 https://tel.archives-ouvertes.fr/tel-01440510 Submitted on 19 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES préparée dans le cadre d’une cotutelle entre l’Université de Grenoble Alpes et l'Universidade do Porto Spécialité : Astrophysique Arrêté ministériel : le 6 janvier 2005 -7 août 2006 Présentée par Vasco NEVES Thèse dirigée par Nuno SANTOS codirigée par Xavier DELFOSSE et Xavier BONFILS préparée au sein des Institut de Planetologie de L’Université de Grenoble et Centro de Astrofísica da Universidade do Porto dans l'École Doctorale de Physique de Grenoble et Programa Doutoral de Astronomia da Universidade do Porto Étude sur les paramétres stellaires des naines M et leur lien à la formation planétaire Thèse soutenue publiquement le 10 Décembre 2013 à Auditório FC5, Faculdade de Ciências da Universidade do Porto, devant le jury composé de : Dr. José LOPES dos SANTOS Professeur, Faculdade de CIências da Universidade do Porto, Président Dr. Nuno Miguel Cardoso SANTOS Chercheur, Centro de Astrofísca da Universidade do Porto, Membre Dr. Xavier DELFOSSE Astronome, Institut de Planétologie de L’Université de Grenoble, Membre Dr. Xavier BONFILS Astronome, Institut de Planétologie de L’Université de Grenoble, Membre Dr. Ulrike HEITER Chercheur, Department of Physics and Astronomy of the Uppsala University, Membre Dr. Céline REYLÉ Chercheur, Observatoire des Sciences de l’Univers de Franche-Comté, Rapporteur Dr. Damien SÉGRANSAN Chercheur, Observatoire de Genéve, Rapporteur Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP Acknowledgments First of all, I would like to thank my supervisors, Nuno Santos and Xavier Delfosse, for all the support and guidance given throughout all these years, full of challenges and pitfalls, but also with unexpected rewards and good surprises. The completion of this Thesis would not have been possible without the unofficial, but ever present supervision of Xavier Bonfils, during my stay at Grenoble. A sincere and warm acknowledgement of his support is therefore testified here. I could never forget the companionship and support of Enoe in the most difficult moments when every- thing seemed to fall apart. Thank you. I would also like to thank my mates in CAUP for all the good moments and laughter, even in the tensest moments, as well as for giving unexpected insights and new ideas. I will not put here any names, you know who you are! Last but not least, I would like to thank the eternal and unconditional support of my parents. Without it I would surely not be here writing these words! Thank you all! 2 Resumo No momento em que escrevo esta Tese, o numero´ de planetas anunciados ja´ ultrapassou os 900 e os cerca de 2700 candidatos detectados pelo telescopio´ espacial Kepler esperam por confirmac¸ao.˜ Os espectros e as curvas de luz obtidos nos programas de procura de planetas permitem, tambem,´ o estudo em profundidade dos parametrosˆ das estrelas com planetas e abrem a possibilidade de investigar a relac¸ao˜ estrela-planeta. Neste contexto, a determinac¸ao˜ com precisao˜ dos parametrosˆ estelares e´ cr´ıtica na determinac¸ao˜ precisa dos parametrosˆ planetarios,´ nomeadamente, a massa, o raio e a densidade. No caso das anas˜ FGK, os metodos´ de determinac¸ao˜ dos parametrosˆ estelares estao˜ bem estabele- cidos e podem ser usados com confianc¸a no estudo da relac¸ao˜ estrela-planeta, assim como na obtenc¸ao˜ de parametrosˆ planetarios´ precisos. No entanto, nao˜ e´ esse o caso para as anasˆ M, as estrelas mais comuns da nossa Galaxia.´ Ao contrario´ das suas primas, as estrelas M sao˜ mais pequenas, frias e tenues´ e, assim sendo, mais dif´ıceis de estudar. O grande entrave no estudo das estrelas M esta´ relacionado com a presenc¸a de bilioes˜ de linhas moleculares que deprimem o cont´ınuo espectral, fazendo com que uma analise´ espectral classica´ se torne quase imposs´ıvel. A procura de metodos´ inovadores que possibilitem ultrapassar este obstaculo,´ tendo em vista a obtenc¸ao˜ de parametrosˆ precisos, e´ o objectivo desta Tese. Tendo em conta esse objetivo, foquei os meus esforc¸os em duas linhas principais de pesquisa, baseadas em metodos´ fotometricos´ e metodos´ espectroscopicos.´ O meu trabalho inicial tinha como objetivo o estabelecimento de uma calibrac¸ao˜ fotometrica´ para a metalicidade, mas nao˜ me foi poss´ıvel atingir esse objetivo, pois nao˜ tinha sistemas binarios´ FGK+M suficientes com bons dados fotometricos.´ No entanto, foi poss´ıvel, com os dados dispon´ıveis, comparar as calibrac¸oes˜ fotometricas´ existentes e refinar ligeiramente a melhor delas, como descrito no Cap´ıtulo 3. Apos´ este trabalho passei a concentrar-me em tecnicas´ espectroscopicas´ de obtenc¸ao˜ de parametrosˆ estelares em estrelas M. Tendo em mente esse objetivo, usei espectros HARPS de alta resoluc¸ao˜ para de- senvolver um novo metodo´ de medic¸ao˜ de linhas espectrais independente do cont´ınuo espectral. Seguida- mente, usei este metodo´ no desenvolvimento de uma nova calibrac¸ao˜ de metalicidade e temperatura efectiva em estrelas M na regiao˜ do vis´ıvel, atraves´ da qual consegui atingir uma precisao˜ de 0.08 dex para a [Fe/H] e de 80 K para a temperatura. Este trabalho esta´ descrito no Cap´ıtulo 4. Ao mesmo tempo colaborei na determinac¸ao˜ com precisao˜ dos parametrosˆ da estrela GJ3470 e do seu planeta, onde a minha proficienciaˆ na determinac¸ao˜ de parametrosˆ estelares em anasˆ M teve um papel importante. Os detalhes relacionados com este trabalho de investigac¸ao˜ estao˜ descritos no Cap´ıtulo 5. Palavras-chave. estrelas: parametrosˆ fundamentais – estrelas: tipo tardio – estrelas: baixa massa – estrela: binarias - geral – estrelas: atmosferas – estrelas sistemas planetarios´ – estrelas: individual (GJ 3470) – tecnicas:´ fotometria – tecnicas:´ espectroscopia 3 Resume´ Au moment d’ecrire´ ma These` plus de 900 exoplanetes` et´ e´ annoncees´ et plus de 2700 planetes` detect´ ees´ par le telescope´ spatial Kepler sont en attente d’etreˆ confirmees.´ La haute precision´ des spectres et des courbes de lumiere` obtenue dans les releves´ Doppler et transit, permet l’etude´ detaill´ ee´ des parametres` des etoiles´ hotes,ˆ et ouvre la possibilite´ d’enqueterˆ sur les correlations´ etoile´ planetes.` En outre, la determination´ des parametres` stellaires avec precision´ est un besoin critique pour determiner´ les parametres` planetaires,´ a` savoir, la masse, le rayon et la densite.´ Dans le cas des naines FGK, la determination´ des parametres` stellaires est bien etablie´ et peut etreˆ utilisee´ avec confiance pour etudier´ la relation planete-` etoile´ ainsi que pour obtenir les parametres` planetaires´ avec une grande precision. Cependant, ce n’est pas le cas pour les naines M, les etoiles´ les plus communes de la Galaxie. Par rapport a` leurs cousines plus chaudes, les naines M sont plus petites, plus froides, et plus faiblement lumineuses, et donc plus difficile a` etudier.´ Le plus grand defi´ qui concerne les naines M est lie´ a` la presence´ de milliards de lignes moleculaires´ qui gomme le continuum et rend l’analyse spectrale classique presque impossible. Trouver des fac¸ons nouvelles et novatrices pour surmonter cet obstacle et obtenir une mesure des parametres` stellaires est l’objectif principal de cette These` . Pour l’atteindre, j’ai concentre´ mes recherches sur deux approches methodologiques,´ photometrique´ et spectroscopiques. Mon premier travail avait pour objectif d’etablir´ l’etalonnage´ de metallicit´ e´ pho- tometrique´ precis.´ Par manque de binaires FGK+M avec de bonnes donnees´ photometriques´ je ne pouvais pas atteindre cet objectif. Il m’a cependant etait´ possible, avec les donnees´ disponibles, de comparer les etalonnages´ photometriques´ dej´ a` etablies´ et leg´ erement` ameliorer´ le meilleur d’entre eux, comme decrit´ au Chapitre 3. Puis, je me suis concentre´ sur les approches spectroscopiques pour obtenir des parametres` stel- laires plus precis´ pour les naines M. A` cette fin, j’ai utilise´ des spectres HARPS de haute resolution´ et developp´ e´ une methode´ pour mesurer les lignes spectrales sans tenir compte du continuum . En utilisant cette methode,´ je cre´e´ un nouvel etalonnage´ visible avec une precision´ de 0.08 dex pour [Fe/H] et 80 K pour Te f f . Ce travail est dtaill dans le Chapitre 4 . Finalement , j’ai egalement´ participe´ a` l’amelioration´ des parametres` de l’etoile´ GJ3470 et de sa planete,` ou` mon expertise dans les parametres` stellaires de naines M avait un roleˆ important. Les details´ concernant cette enqueteˆ sont present´ es´ dans le Chapitre 5 . Mots-cles.´ etoiles:´ parametres` fondamentaux – etoiles:´ type tardif
Recommended publications
  • Catching up with Barnard's Star. Dave Eagle Within the Constellation Of
    Catching Up with Barnard’s Star. Dave Eagle Within the constellation of Ophiuchus lies Barnard’s Star. It is a fairly faint red dwarf star of magnitude 9.53, six light years from Earth, so is fairly close to us. Its luminosity is 1/2,500th that of the Sun and 16% its mass. The diameter is estimated at about 140,000 miles, so it’s quite a small, faint star and well below naked eye visibility. So why is this star so well known? In 1916 Edward Barnard looked at a photographic plate of the area. When he compared this to a similar plate made in 1894, he noticed that one of the stars had moved between the time of the two plates being taken. Although all the stars in the sky in reality are all moving quite fast, from our remote vantage point on Earth most stars appear to appear virtually static during our lifetime as their apparent motion is extremely small. Barnard’s star, being so close and moving so fast, is one of the stars that bucks this trend. So fast indeed that it will subtend the apparent diameter equivalent to the Moon or Sun in about 176 years. So compared to other stars it is really shifting. The star is travelling at 103 miles per second and is approaching us at about 87 miles per second. In about 8,000 years it will become the closest star to us, at just under 4 light years and will have brightened to magnitude 8.6. Peter van de Camp caused great excitement in the 1960’s when he claimed to have discovered a planet (or more) around the star, due to wobbles superimposed on its movement.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • August 13 2016 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, August 13th 2016 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Public Star Party Follows at the Colleagues, Centennial Observatory Club Officers It's that time of year: The City of Rocks Star Party. Set for Friday, Aug. 5th, and Saturday, Aug. 6th, the event is the gem of the MVAS year. As we've done every Robert Mayer, President year, we will hold solar viewing at the Smoky Mountain Campground, followed by a [email protected] potluck there at the campground. Again, MVAS will provide the main course and 208-312-1203 beverages. Paul McClain, Vice President After the potluck, the party moves over to the corral by the bunkhouse over at [email protected] Castle Rocks, with deep sky viewing beginning sometime after 9 p.m. This is a chance to dig into some of the darkest skies in the west. Gary Leavitt, Secretary [email protected] Some members have already reserved campsites, but for those who are thinking of 208-731-7476 dropping by at the last minute, we have room for you at the bunkhouse, and would love to have to come by. Jim Tubbs, Treasurer / ALCOR [email protected] The following Saturday will be the regular MVAS meeting. Please check E-mail or 208-404-2999 Facebook for updates on our guest speaker that day. David Olsen, Newsletter Editor Until then, clear views, [email protected] Robert Mayer Rick Widmer, Webmaster [email protected] Magic Valley Astronomical Society is a member of the Astronomical League M-51 imaged by Rick Widmer & Ken Thomason Herrett Telescope Shotwell Camera https://herrett.csi.edu/astronomy/observatory/City_of_Rocks_Star_Party_2016.asp Calendars for August Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 New Moon City Rocks City Rocks Lunation 1158 Castle Rocks Castle Rocks Star Party Star Party Almo, ID Almo, ID 7 8 9 10 11 12 13 MVAS General Mtg.
    [Show full text]
  • The Interstellar Medium --- HW060227
    Introduction to Astronomy HW150312 due in one week 1. (a) Estimate how many kilograms of hydrogen the Sun has consumed over the past 4.56 billion years, and estimate the amount of mass that the Sun has lost as a result. Assume that the Sun’s luminosity has remained the same during the time. (b) In fact, however, the Sun’s luminosity when it first formed was only about 70% of its present value (the “faint young sun paradox”). With this in mind, explain whether your answers are an overestimate or an underestimate. 2. How far away is a star that has a proper motion of 0.08 arcseconds per year and a tangential velocity (proper motion) of 40 km/s? For a star at this distance, what would its tangential velocity have to be in order for it to exhibit the same proper motion as Barnard’s star? 3. The visual binary 70 Ophiuchi has a period of 87.7 years. The parallax of 70 Ophiuchi is 0.2 arcseconds, and the apparent length of the semimajor axis as seen through a telescope is 4.5 arcsec. (a) What is the distance to 70 Ophiuchi in parsecs? (b) What is the actual length of the semimajor axis in AU? (c) What is the sum of the masses of the two stars in solar masses? 4. Search the World Wide Web for information about Gaia, a European Space Agency (ESA) spacecraft meant to extend the work carried out by Hipparcos. What is the status of Gaia? What is the main mission of Gaia? How does it compare to Hipparcos in terms of performance? What other types of research is it supposed to carry out? 5.
    [Show full text]
  • The Detectability of Nightside City Lights on Exoplanets
    Draft version September 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The Detectability of Nightside City Lights on Exoplanets Thomas G. Beatty1 1Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721; [email protected] ABSTRACT Next-generation missions designed to detect biosignatures on exoplanets will also be capable of plac- ing constraints on the presence of technosignatures (evidence for technological life) on these same worlds. Here, I estimate the detectability of nightside city lights on habitable, Earth-like, exoplan- ets around nearby stars using direct-imaging observations from the proposed LUVOIR and HabEx observatories. I use data from the Soumi National Polar-orbiting Partnership satellite to determine the surface flux from city lights at the top of Earth's atmosphere, and the spectra of commercially available high-power lamps to model the spectral energy distribution of the city lights. I consider how the detectability scales with urbanization fraction: from Earth's value of 0.05%, up to the limiting case of an ecumenopolis { or planet-wide city. I then calculate the minimum detectable urbanization fraction using 300 hours of observing time for generic Earth-analogs around stars within 8 pc of the Sun, and for nearby known potentially habitable planets. Though Earth itself would not be detectable by LUVOIR or HabEx, planets around M-dwarfs close to the Sun would show detectable signals from city lights for urbanization levels of 0.4% to 3%, while city lights on planets around nearby Sun-like stars would be detectable at urbanization levels of & 10%. The known planet Proxima b is a particu- larly compelling target for LUVOIR A observations, which would be able to detect city lights twelve times that of Earth in 300 hours, an urbanization level that is expected to occur on Earth around the mid-22nd-century.
    [Show full text]
  • A Absorptivity, 642, 682 Abundance(S), 339, 388, 389, 408
    Index A momentum, 354, 383–385, 443–445, 475, Absorptivity, 642, 682 479, 510, 589, 607, 681, 701, 778 Abundance(s), 339, 388, 389, 408, 410, 484, resolution, 686 485, 491, 509, 541, 560, 561, 616, velocity/velocities, 349, 350, 354, 570, 605 619, 621, 648, 654, 658–661, 665, Apollonius of Myndus, 598 667, 668, 670, 673, 676, 780 Aquinas, T., 598 Acetonitrile (CH3CN), 561, 619 Archaeomagnetic data, 423 Acetylene (C2H2), 559, 560, 562 Ariel (satellite, Uranus I), 523, 527, 532, Adams, J.C., 492, 493, 582 533, 564 Adams-Williamson equation, 494 albedo, 564 Adiabatic Aristotle, 598, 599 convection, 344, 345 Artemis, 648 lapse rate, 348, 368, 369, 375, 385 Asteroid(s) (general) pressure-density relation, 344 albedo(s), 683, 686–688, 696, 700 processes, 345 densities, 639, 689–690 Adoration of Magi, 610, 612 dimension(s), 686–690 Adrastea (satellite, Jupiter XV), 524, 529, 572 double, 689 Airy, G.B., 492 inner solar system plot, 678, 681, 690 Albedo masses, 686–690 bolometric, 338, 477, 636, 642, 687, 780 nomenclature, 648–649, 677–681 bond, 477, 516, 627, 747, 772, 780 orbital properties geometric (visual), 477, 564, 581 families, 681–685 Alfve´n waves, 460 Kirkwood gaps, 582, 678, 695, 697 Aluminum isotopes, 694 outer solar system plot, 588–590, 603 Alvarez, L., 668 radii, 688 Amalthea (satellite, Jupiter V), 355, 529, rotations, 688, 700 537, 572 thermal emissions, 697 Ambipolar diffusion, 402, 703 Asteroid mill, 639, 676, 769 American Meteor Society, 637, 638 Asteroids (individual) Amidogen radical (NH2), (2101) Adonis, 683 Ammonia (NH3), 348, 391, 480, 481, 483, (1221) Amor, 681, 690 485, 512, 558, 560, 619, 625, (3554) Amun, 683 627, 756 (1943) Anteros, 681 Ammonium hydrosulfide (NH4SH), 481, 483 (2061) Anza, 681 Anaxagoras of Clazomenae, 598 (1862) Apollo, 683, 684, 698 Angular (197) Ariete, 689 diameter(s), 493, 686 (2062) Aten, 683 E.F.
    [Show full text]
  • 70 Ophiuchi – Realm of Orange Suns
    STAR OF THE MONTH 70 Ophiuchi – Realm of Orange Suns by Steven C. Raine here is darkness of a perfect night sky all around be a separate constellation by the Arabians, judging by a except for an orange glow coming from twin spheres 13th century globe “now resting in the Borgian museum at T of light like sun-sized mandarins. The effect is Villetri.” (Motz & Nathanson, 1991.) almost like streetlights hidden in the dark and blurred to The nearness to our Sun is however only a small part of roundness by thick fog. Yet from here stars are visible this star’s renown, for 70 Ophiuchi is best known as a binary everywhere and not the stars of home although surprisingly star system. As you can see from Figure 2, the two stars similar. A clue to the location is the way the stars nearest orbit their shared centre of gravity—the barycentre—in 88 our own Sun have shifted, Sirius, Procyon and Alpha years. An orbital period which Dole notes is “almost identi- Centauri the most notably displaced and altered in radiance. cal with … Alpha Centauri A and Alpha Centauri B.” The Towards Orion is an unfamiliar star of third magnitude primary star 70 Ophiuchi A is a K1 type main sequence which happens to be a G2 type star—the Sun of humanity star with an absolute magnitude of +5.8 and the secondary (Dole, 1964). This is the environs near 70 Ophiuchi, a binary star 70 Ophiuchi B is another orange dwarf but somewhat star located amongst the closest of our celestial neighbours fainter with an absolute magnitude of +7.3 and a spectral a meagre 16.5 light years away.
    [Show full text]
  • Analysis of 70 Ophiuchi AB Including Seismic Constraints
    A&A 482, 631–638 (2008) Astronomy DOI: 10.1051/0004-6361:20078624 & c ESO 2008 Astrophysics Analysis of 70 Ophiuchi AB including seismic constraints P. Eggenberger1 , A. Miglio1, F. Carrier2, J. Fernandes3, and N. C. Santos4 1 Institut d’Astrophysique et de Géophysique de l’Université de Liège, 17 allée du 6 Août, 4000 Liège, Belgium e-mail: [eggenberger;miglio]@astro.ulg.ac.be 2 Institute of Astronomy, University of Leuven, Celestijnenlaan 200 B, 3001 Leuven, Belgium e-mail: [email protected] 3 Observatório Astronómico da Universidade de Coimbra e Departamento de Matemática, FCTUC, Portugal e-mail: [email protected] 4 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] Received 6 September 2007 / Accepted 4 February 2008 ABSTRACT Context. The analysis of solar-like oscillations for stars belonging to a binary system provides a unique opportunity to probe the internal stellar structure and to test our knowledge of stellar physics. Such oscillations have been recently observed and characterized for the A component of the 70 Ophiuchi system. Aims. We determined the global parameters of 70 Ophiuchi AB using the new asteroseismic measurements now available for 70 Oph A and tested the input physics introduced in stellar evolution codes. Methods. Three different stellar evolution codes and two different calibration methods were used to perform a comprehensive analysis of the 70 Ophiuchi system. Results. A model of 70 Ophiuchi AB that correctly reproduces all observational constraints available for both stars is determined. An age of 6.2±1.0 Gyr is found with an initial helium mass fraction Yi = 0.266±0.015 and an initial metallicity (Z/X)i = 0.0300±0.0025 when atomic diffusion is included and a solar value of the mixing-length parameter assumed.
    [Show full text]
  • Major Qualifying Project
    The Search for Exoplanets A Major Qualifying Project Submitted by: Christian J. Iamartino To the faculty of: Worcester Polytechnic Institute In partial fulfillment of the requirements for the degree of: Bachelor of Science For the department of: PHYSICS Advised by: P.K. Aravind September 25, 2014 1 Table of Contents 1. Abstract ..................................................................................................................................................... 4 2. Motivation ................................................................................................................................................. 5 3. Project Objectives ..................................................................................................................................... 6 4. Introduction ............................................................................................................................................... 7 4.1 What are Exoplanets? ......................................................................................................................... 7 4.2 Why Search for Them? ....................................................................................................................... 8 4.3 A Brief History of Exoplanets, From Antiquity to Modern Times ..................................................... 9 4.3.1 Origins of the Planetary Sciences ................................................................................................ 9 4.3.2 The Emergence and Development of
    [Show full text]
  • A Corner of Ophiuchus for Binoculars by John Flannery, SDAS
    A corner of Ophiuchus for binoculars by John Flannery, SDAS PPEARING OVER the southeastern horizon as tinguish from foreground stars randomly scattered we slip into Summer is Ophiuchus, the across the field. “SerpentA Bearer”. The pattern is becoming well placed Keeping Cr 350 at the west (right) edge of the at the moment for observers that wish to plumb the 20x60s will enable the double star S694 to fall within constellation for the rich array of deep sky objects to be the same field of view at the eastern edge. Remember found within its boundaries. that while my binoculars have a 3° field, lower power A large dim constellation that abuts the Milky instruments will have a wider field of view. S694 is a Way, it has 13 stars above fourth magnitude with pair of almost equal magnitude suns (+6.9 and +7.1 Rasalhague, or Alpha Ophiuchi, a second magnitude respectively) with a separation of 82 arcseconds. The sun marking the head of Æsculapius, the mythological two were easily split with both appearing dusky-grey in figure whom the constellation represents. Eight de- tint – probably because of the hazy sky at the time. grees roughly to the south of this star is Beta (+2.7), Next up is a non-existant object, or rather, a now- or Cheleb, marking the start point for our tour. defunct constellation. From a dark site you may spy a Just north of cream-coloured Beta is the loose open downward pointing triangular-shaped group of stars cluster IC 4665. My 20x60mm binoculars showed nu- with the naked eye about 8° east of Beta.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Scorpio (Astrology) - Wikipedia, the Free Encyclopedia
    بُ ْر ُج العَ ْق َرب http://www.arabdict.com/en/english-arabic/Scorpio מַ זַל עַקְרָ ב http://www.morfix.co.il/scorpio بُرج ع ْقرب ْ َ َ https://translate.google.com/#auto/fa/scorpio Scorpio (astrology) - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Scorpio_(astrology) Scorpio (astrology) From Wikipedia, the free encyclopedia Scorpio ( ♏♏♏) (Greek: Σκορπιός , Skorpios ; Latin: Scorpius ) is the eighth astrological sign in the Zodiac. It spans the 210–240th degree of the zodiac, between 207.25 and 234.75 degree of celestial longitude. Under the tropic zodiac, the sun transits this area on average between October 23 and November 22, and under the sidereal zodiac, the sun currently transits the constellation of Scorpius from approximately November 16 to December 15. Depending on which zodiac system one uses, an individual born under the influence of Scorpio may be called a Scorpio or a Scorpion .[1] The symbol of the scorpion is based on Scorpius, a giant scorpion sent by Gaia to kill Orion.[2] The Libra-Scorpio Cusp is said to last from October 23 to October 28. References A symbolic representation of Scorpio. 1. Oxford Dictionaries. "Scorpio" (http://oxforddictionaries.com/definition/english /Scorpio?q=Scorpio). Definition. Retrieved 15 March 2013. 2. http://www.theoi.com/Ther/Skorpios.html External links The dictionary definition of Scorpio at Wiktionary Media related to Scorpio at Wikimedia Commons Retrieved from "http://en.wikipedia.org/w/index.php?title=Scorpio_(astrology)&oldid=664977346" Categories: Astrological signs Astrology Mythical arthropods Fictional scorpions This page was last modified on 1 June 2015, at 05:56.
    [Show full text]