THE VASCULARIZATION of the RABBIT FEMUR and TIBIOFIBULA by M

Total Page:16

File Type:pdf, Size:1020Kb

THE VASCULARIZATION of the RABBIT FEMUR and TIBIOFIBULA by M [ 61 ] THE VASCULARIZATION OF THE RABBIT FEMUR AND TIBIOFIBULA By M. BROOKES AND R. G. HARRISON Department of Anatomy, University of Liverpool Previous investigations of the vascularization of bone have largely centred on the respective contributions of arterial blood to long bones derived from the periosteal network, the principal nutrient artery and arteries entering a bone at its extremities. The older authors paid much attention to the periosteal network (e.g., Barkow 1868; Langer, 1876), and Testut (1880) gave it primary functional significance. In more recent times this has been disputed. On the basis of injection experiments made as a preliminary to perfusion studies, Drinker, Drinker & Lund (1922) thought fit to neglect it altogether, while Johnson (1927) granted it only subsidiary impor- tance. Their views are supported by Harris (1933), Kistler (1984), Wood-Jones (1946), Marneffe (1951), Watson-Jones (1952) and Laing (1953) who all give the principal nutrient artery a pre-eminent place in the schema of bone vascularization. Gray (1954), Testut & Latarjet (1948), Cunningham (1951) and Ham (1932) allow a free anastomosis between the terminals of this artery and the periosteal system, while only rarely is it stated to be solely of haemopoietic function (Houang, 1934). The arteries entering the extremities of a long bone (Hunter, 1743) are generally given a supporting role in bone nutrition. With the exception of arteries entering the human femoral head and neck, there are few works in which these arteries are the subject of exact anatomical description (Marneffe, 1951; Fracassi, 1954). If great emphasis has been placed on the arterial supply of bone, venous drainage has attracted little attention. Langer (1876) first pointed out that there are more veins leaving bone than entering arterial twigs. Lamas, Amado & da Costa (1946) have remarked upon the large 'venous lakes' existing in the cancellous bone at the extremities of long bone, while Marneffe (1951) describes a central venous channel extending the length of the medulla. In this connexion it is to be recalled that both Rustizky (1872) and Bizzozero (1869) observed a central medullary vein, the former in frogs, the latter in a rabbit tibia. In view of the inadequacy of accounts of bone vascularization, of the rabbit in particular (Krause, 1884), it was decided to undertake an investigation of the blood supply of the rabbit femur and tibiofibula. MATERIALS AND METHODS Twenty-one fully grown rabbits were used, average weight 3 kg. Each was sacri- ficed by intravenous injection of Nembutal into an ear vein, and injected intravas- cularly with varying dilutions of Micropaque (Damancy and Company Ltd.), a 50 % suspension of barium sulphate. After fixation in 10 % formol saline solution, Micropaque is quite hard and does not run. Because of its white colour, the part could easily be dissected with the aid of a binocular microscope to determine every 62 M. Brookes and R. G. Harrison vessel that pierced bone, its source, and site of penetration. Other specimens were injected with thorotrast and fixed in 70 % alcohol. The arterial system of the hind-limb was filled via the abdominal aorta; venous filling was effected through the external iliac, lateral circumflex femoral, and long saphenous veins. A polythene cannula was used for arterial injection, but hypo- dermic needles are more suitable for veins, since they can be used to pierce the venous valves obstructing the retrograde pathway. Following dissection, the individual bones were stripped of all extra-osseous tissue including periosteum (Delkeskamp, 1915; Trueta & Harrison, 1953), to permit clear visualization of intra-osseous vessels alone, and to avoid confusion arising from the superimposition of vessels in soft tissues. This procedure did not remove periosteal arterial twigs from the cortex since, as will be shown later, minute vessels leaving the cortex to enter the periosteum are still demonstrable in profusion. Decalcification for 5 days in a mixture of 5 % formol saline and 5 % nitric acid followed. The bone was then radiographed on Kodaline film, and selected specimens were subjected to microradiography using Kodak maximum resolution plates, and a microfocus radiographic unit incorporating the Ehrenberg and Spear tube. GROSS OBSERVATIONS Femur: arterial supply (Text-figs. 1 and 2) The medial circumflex femoral artery has a branch which passes laterally on the hip joint to terminate as a contribution to the trochanteric anastomosis. From it, anterior cervical arteries descend into the femoral neck. Another branch of the same artery concerned in the nutrition of the femur is the artery of the trochanteric fossa which passes downwards and laterally behind the neck to sink into a foramen in the depths of the fossa. It gives off ascending branches associated with the posterior aspects of the lesser trochanter and femoral neck, and the greater trochanter respectively, which thereby receive nutrient twigs. There are no nutrient arteries serving the third trochanter. The posterior subcapital artery arises from the artery of the trochanteric fossa or directly from the medial circumflex femoral, and sinks into a foramen just below the rim of the head. From it posterior cervical arteries descend into the neck. Besides anterior and posterior cervical arteries the neck of the femur is pierced by numerous small vessels derived from the anastomosis in the trochanteric fossa. This anastomosis is formed by branches of the medial and lateral circumflex femoral arteries and a vessel of small calibre which runs on obturator internus, the trochan- teric branch of the internal pudendal artery. The principal nutrient artery of the rabbit femur springs from the root of the lateral circumflex femoral artery. In one specimen it sprang directly from the femoral, distal to the lateral circumflex femoral artery. It passes downwards for 2 cm. before disappearing in the nutrient foramen situated on the medial surface of the shaft just below the lesser trochanter. It has a branch which provides twigs to the periosteum of the lesser trochanter and the substance of pectineus, and continues downwards in close association with the insertions of add. brevis, longus et magnus. It anastomoses below with the A. suprema genu. The vascularization of the rabbit femur and tibiofibula 63 The A. suprema genu divides into articular and muscular branches. The former descends medial to the lower end of the femur. It gives off a superior medial genicu- lar artery which forms a loop running round the periphery of the medial aspect of the inferior extremity of the bone. Anastomotic channels traverse the area enclosed n.i.-- --------- f a. a.a.f. - g.t.a.- I.t. m.c.f.a. t- - a.a.f. p.s.a.- I.c.f.- P -- M.C.f a. -------- p.s.a. --------- p.c.a. c.a.c.f. a.t.f. ~-~~~~|- a.t.f. -- t.i.p.a a.s.g. su.m. i.a. -t-- a.i.a. __. i.m.g.a. Text-fig. 1. Drawing of arterial supply of the Text-fig. 2. Drawing of arterial supply of the rabbit femur; anterior aspect. The following rabbit femur; posterior aspect. key applies to Text-figs. 1 and 2: m.c.f.a. medial circumflex femoral artery a.a.f. artery to acetabular fossa n.i. nutrient to ilium a.b. articular branch p.c.a. posterior cervical arteries a.c.a. anterior cervical arteries pop.a. popliteal artery a.i.a. anterior intercondylar artery p.s.a. posterior subeapital artery a.s.g. arteria suprema genu sap.a. saphenous artery a.t.f. artery to trochanteric fossa s.l.g.a. superior lateral genicular artery an.t.t. anastomosis round third trochanter s.m.g.a. superior medial genicular artery c.a.c.f. circulus arteriosus capitis femoris s.p.a. suprapatellar arteries f.a. femoral artery su.l. lateral supracondylar artery g.t.a. arteries to greater trochanter su.m. medial supracondylar artery i.a. intercondylar artery t.an. trochanteric anastomosis i.m.g.a. inferior medial genicular artery t.i.p.a. trochanteric branchof internalpudendal l.c.f. lateral circumflex femoral artery artery. l.t. ligamentum teres 64 M. Brookes and R. G. Harrison by the loop. From this plexiform arrangement nutrient twigs are given off which are radially disposed in relation to the circle whose centre is the medial epicondyle of the femur. Anteriorly, on the suprapatellar surface of the femur where descending nutrients pierce the anterior surface of the metaphysis, the medial condylar loop joins its fellow from the other side. This lateral condylar loop is formed by the condylar branch of the superior lateral genicular artery, which springs from the femoral about 1 cm. above the condyles, and divides into muscular and condylar branches. The popliteal artery gives origin to medial and lateral supracondylar arteries, which pass outwards supplying fine nutrient twigs to the posterior face of the in- ferior metaphysis, and to the condyles. They join the medial and lateral condylar loops. From the popliteal or anterior tibial artery, a large middle genicular artery arises, which pierces the joint capsule, passes above the point of crossing of the cruciate ligaments, and sinks into a foramen in the anterior wall of the intercondylar notch. Femur: Venous drainage A single vena comitans accompanies each artery. At the surface of the bone at either end, the nutrient venous radicles are more numerous than the arterial, and some occupy their own canals, not sharing the space with an incoming artery. A simple circulus venosus is formed on the superficial surface of each condyle. The femoral intercondylar vein joins the tibial intercondylar veins to drain into the anterior tibial vein. Tibiofibula: arterial supply (Text-figs. 3 and 4) The superior tibial epiphysis is pierced in the prespinal portion of the intercondy- lar ridge by two anterior tibial intercondylar arteries, derived from the articular branch of the A.
Recommended publications
  • The Patellar Arterial Supply Via the Infrapatellar Fat Pad (Of Hoffa): a Combined Anatomical and Angiographical Analysis
    Hindawi Publishing Corporation Anatomy Research International Volume 2012, Article ID 713838, 10 pages doi:10.1155/2012/713838 Research Article The Patellar Arterial Supply via the Infrapatellar Fat Pad (of Hoffa): A Combined Anatomical and Angiographical Analysis Gregor Nemschak and Michael L. Pretterklieber Center of Anatomy and Cell Biology, Department of Applied Anatomy, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna, Austria Correspondence should be addressed to Michael L. Pretterklieber, [email protected] Received 3 February 2012; Accepted 21 March 2012 Academic Editor: Konstantinos Natsis Copyright © 2012 G. Nemschak and M. L. Pretterklieber. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Even though the vascular supply of the human patella has been object of numerous studies until now, none of them has described in detail the rich arterial supply provided via the infrapatellar fat pad (of Hoffa). Therefore, we aimed to complete the knowledge about this interesting and clinically relevant topic. Five human patellae taken from voluntary body donators were studied at the Department of Applied Anatomy of the Medical University of Vienna. One was dissected under the operation microscope, a second was made translucent by Sihlers-solution, and three underwent angiography using a 3D X-ray unit. The results revealed that the patella to a considerable amount is supplied by arteries coursing through the surrounding parts of the infrapatellar fat pad. The latter were found to branch off from the medial and lateral superior and inferior genicular arteries.
    [Show full text]
  • Arterial and Venous Adaptations to Short-Term Handgrip Exercise Training
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 Arterial and venous adaptations to short-term handgrip exercise training Mahmoud Awad Alomari Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Kinesiology Commons Recommended Citation Alomari, Mahmoud Awad, "Arterial and venous adaptations to short-term handgrip exercise training" (2003). LSU Doctoral Dissertations. 188. https://digitalcommons.lsu.edu/gradschool_dissertations/188 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ARTERIAL AND VENOUS ADAPTATIONS TO SHORT-TERM HANDGRIP EXERCISE TRAINING A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Kinesiology By Mahmoud Alomari B.S., Yarmouk University, Irbid, Jordan, 1990 M.S. Minnesota State University, Mankato, MN, 1995 December, 2003 © Copyright 2003 Mahmoud A. Alomari All right reserved ii DEDICATION I dedicate all of my work to my parents, the love of my life. They feel as though they took every exam with me and were as anxious as I was for each defense. Their confidence in me never wavered and helped me to accomplish the dream of my life. Their motivation made me a better person and they continue to show me what service to others really is.
    [Show full text]
  • Normal Blood Supply to Equine Radii and Its Response to Various Cerclage Devices
    NORMAL BLOOD SUPPLY TO EQUINE RADII AND ITS RESPONSE TO VARIOUS CERCLAGE DEVICES by KAREN ANN NYROP B.S., Montana State University, 1977 D.V.M., University of Minnesota, 1981 A MASTER'S THESIS Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Surgery and Medicine Kansas State University Manhattan, Kansas 1934 Approved by: H. Rodney Ferguson, jy.V.M, Ph.D. Major Professor /_£ A11EDE Tt.0443 yif TABLE OF CONTENTS Page //17 LIST OF FIGURES Hi ACKNOWLEDGEMENTS i* INTRODUCTION v LITERATURE REVIEW 1 Blood Supply of a Long Bone 1 Microangiography and Related Infusion Techniques 6 Cerclage Devices 9 2 MATERIALS AND METHODS 1 * RESULTS 18 Clinical Observations 18 Radiographic Evaluations 18 Gross Postmortem Evaluations 18 Microangiographic Evaluations 19 DISCUSSION 21 SUMMARY AND CONCLUSIONS 26 FOOTNOTES 28 BIBLIOGRAPHY 29 APPENDIX 32 ii . LIST OF FIGURES Page 1 Circumferential Partial Contact Band 32 2. Circumferential Partial Contact Band , sideview 34 3. Crossection of radius with Circumferential Partial Contact band 36 4. Anterior - posterior Radiograph of the radius of Pony 1 , Group I 38 5. Lateral - medial radiograph of the radius of Pony 1 , Group I 40 6. Microangiograph, Longitudinal section, of Control Pony 3 , Group I 42 7. Microangiograph, Crossectional view, of Control Pony 3 , Group I 44 8. Microangiograph, Crossectional view through a Cerclage Wire of Pony 1 , Group I 46 9. Microangiograph, Crossectional view through a Parham-Martin band of Pony 1 , Group I 48 10. Microangiograph, Longitudinal view with three cerclage devices in position in Pony 2, Group I 50 11.
    [Show full text]
  • The Deep Femoral Artery and Branching Variations: a Case Report Arteria Profunda Femoris Ve Dallarının Varyasyonu: Olgu Sunumu
    Cumhuriyet Tıp Dergisi Cumhuriyet Tıp Derg 2009; 31: 279-282 Cumhuriyet Medical Journal Cumhuriyet Med J 2009; 31: 279-282 The deep femoral artery and branching variations: a case report Arteria profunda femoris ve dallarının varyasyonu: olgu sunumu Vedat Sabancıoğulları, Mehmet İlkay Koşar, Ekrem Ölçü, Mehmet Çimen Department of Anatomy (Assist. Prof. V. Sabancıoğulları, MD; Assist. Prof. M. İ. Koşar, MD; Prof. M. Çimen, PhD), Cumhuriyet University School of Medicine, TR-58140, Sivas; and Department of Radiology (E. Ölçü, MD, Specialist in Radiology) Afşin State Hospital, TR-46500 Kahramanmaraş Abstract The deep femoral artery is the major branch of the femoral artery. Its branches and branching show various variations. For this reason, an extensive knowledge about the anatomy of the deep femoral artery is indeed important in vascular reconstructive surgery involving the groin. In this investigation, a case with variations of the deep femoral artery origin and branching has been presented. The case was a 45-year old male cadaver and the arterial variation was noted during routine dissection. The right and left origins of the deep femoral artery varied. When the midpoint of the inguinal ligament was taken as a reference, the right artery originated at 5.58 cm and the left artery at 2.22 cm. In the left, the ascending branch and transverse branch of the lateral circumflex femoral artery originated. At a joint root and the descending branch originated directly at the deep femoral artery. Also in the left, it was observed that there were eight perforating arteries. Keywords: Deep femoral artery, anatomic variation, cadaver Özet Arteria profunda femoris, arteria femoralis’in uyluğu besleyen en büyük dalıdır.
    [Show full text]
  • Entry Point Related Outcome in Antegrade Femoral Nailing Experimental and Clinical Studies
    C.M.S. Moein Ansari experimental and clinical studies clinical and experimental Entry Point Related Outcome Outcome Related Point Entry in Antegrade Femoral Nailing Femoral Antegrade in Entry Point Related Outcome in Antegrade Femoral Nailing experimental and clinical studies C.M.S. Ansari Moein Entry Point Related Outcome in Antegrade Femoral Nailing experimental and clinical studies C.M.S. Ansari Moein ENTRY POINT RELATED OUTCOME IN ANTEGRADE FEMORAL NAILING Experimental and clinical studies C.M.S. Ansari Moein The Robert Mathys Foundation, Bettlach, Switzerland and the AO Foundation, Davos, Switzerland financially supported the studies presented in this thesis. Kind contribution for the publication of this thesis by: Erasmus Medical Centre Dept. of Surgery Trauma Research Unit Erasmus MC (TRUE) Parnassia Academy ABN AMRO Bank PsyQ Maatschap Plastische Chirurgie Midden Brabant THP Financial Guidance Post Notariaat Cover illustration by Rob Veen Printing and lay-out by Optima Grafische Communicatie, Rotterdam, The Netherlands ISBN 978-94-6169-867-4 © 2016. Copyright by CMS Ansari Moein Entry Point Related Outcome in Antegrade Femoral Nailing experimental and clinical studies Entreeplaats gerelateerde uitkomst van antegrade mergpen ostheosynthese bij femurfracturen experimentele en klinische studies Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof. Dr. H.A.P. Pols en volgens besluit van het College voor Promoties De openbare verdediging zal plaatsvinden op vrijdag 20 mei 2016 om 13.30 uur door Chloé Mahsima Ansari Moein geboren te Tehran, Iran Promotiecommissie promotoren: Prof. dr. M.H.J. Verhofstad Prof. dr. H.J. Ten Duis overige leden: Prof.
    [Show full text]
  • 06 Bolanowski.P65
    Folia Morphol. Vol. 64, No. 3, pp. 168–175 Copyright © 2005 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The occurrence of the third trochanter and its correlation to certain anthropometric parameters of the human femur Wojciech Bolanowski1, Alicja Śmiszkiewicz-Skwarska2, Michał Polguj1, Kazimierz S. Jędrzejewski1 1Department of Normal Anatomy, Medical University, Łódź, Poland 2Department of Anthropology, University of Łódź, Poland [Received 16 May 2005; Accepted 20 June 2005] The purpose of the study was to analyse the occurrence of the third trochanter and its correlation with the morphology of the human femur. The third tro- chanter was found in 38 of 622 (6.2%) human femora taken from 3 excavation sites. 36 of these were included in the study and were compared to the femora without the third trochanter. The bones with the third trochanter were charac- terised by a greater superior sagittal diameter and diaphysis platymetry index as well as a larger greater trochanter. These results suggest that the third trochant- er is not a progressive morphological feature of the skeleton. Rather it is con- nected with an altered gluteal muscle function. Key words: osteometry, human skeleton, third trochanter, femur INTRODUCTION ses studies have revealed significant differences The third trochanter (trochanter tertius, Fig. 1) among ethnic groups as well as between male and of the human femur is a descriptive term for the female skeletons of the same population. A higher prominent structure frequently localised under the incidence of the third trochanter in females has been greater trochanter in the superior part of the gluteal reported in many studies on various human popula- tuberosity.
    [Show full text]
  • Reconstructive
    RECONSTRUCTIVE Angiosomes of the Foot and Ankle and Clinical Implications for Limb Salvage: Reconstruction, Incisions, and Revascularization Christopher E. Attinger, Background: Ian Taylor introduced the angiosome concept, separating the M.D. body into distinct three-dimensional blocks of tissue fed by source arteries. Karen Kim Evans, M.D. Understanding the angiosomes of the foot and ankle and the interaction among Erwin Bulan, M.D. their source arteries is clinically useful in surgery of the foot and ankle, especially Peter Blume, D.P.M. in the presence of peripheral vascular disease. Paul Cooper, M.D. Methods: In 50 cadaver dissections of the lower extremity, arteries were injected Washington, D.C.; New Haven, with methyl methacrylate in different colors and dissected. Preoperatively, each Conn.; and Millburn, N.J. reconstructive patient’s vascular anatomy was routinely analyzed using a Dopp- ler instrument and the results were evaluated. Results: There are six angiosomes of the foot and ankle originating from the three main arteries and their branches to the foot and ankle. The three branches of the posterior tibial artery each supply distinct portions of the plantar foot. The two branches of the peroneal artery supply the anterolateral portion of the ankle and rear foot. The anterior tibial artery supplies the anterior ankle, and its continuation, the dorsalis pedis artery, supplies the dorsum of the foot. Blood flow to the foot and ankle is redundant, because the three major arteries feeding the foot have multiple arterial-arterial connections. By selectively performing a Doppler examination of these connections, it is possible to quickly map the existing vascular tree and the direction of flow.
    [Show full text]
  • A Study of Popliteal Artery and Its Variations with Clinical Applications
    Dissertation on A STUDY OF POPLITEAL ARTERY AND ITS VARIATIONS WITH CLINICAL APPLICATIONS. Submitted in partial fulfillment for M.D. DEGREE EXAMINATION BRANCH- XXIII, ANATOMY Upgraded Institute of Anatomy Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai - 600 003 THE TAMILNADU Dr.M.G.R. MEDICAL UNIVERSITY CHENNAI – 600 032 TAMILNADU MAY-2018 CERTIFICATE This is to certify that this dissertation entitled “A STUDY OF POPLITEAL ARTERY AND ITS VARIATIONS WITH CLINICAL APPLICATIONS” is a bonafide record of the research work done by Dr.N.BAMA, Post graduate student in the Institute of Anatomy, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai- 03, in partial fulfillment of the regulations laid down by The Tamil Nadu Dr.M.G.R. Medical University for the award of M.D. Degree Branch XXIII- Anatomy, under my guidance and supervision during the academic year from 2015-2018. Dr. Sudha Seshayyan,M.B.B.S., M.S., Dr. B. Chezhian, M.B.B.S., M.S., Director & Professor, Associate Professor, Institute of Anatomy, Institute of Anatomy, Madras Medical College, Madras Medical College, Chennai– 600 003. Chennai– 600 003. The Dean, Madras Medical College & Rajiv Gandhi Govt. General Hospital, Chennai Chennai – 600003. ACKNOWLEDGEMENT I wish to express exquisite thankfulness and gratitude to my most respected teachers, guides Dr. B. Chezhian, Associate Professor Dr.Sudha Seshayyan, Director and Professor, Institute ofAnatomy, Madras Medical College, Chennai – 3, for their invaluable guidance, persistent support and quest for perfection which has made this dissertation take its present shape. I am thankful to Dr. R. Narayana Babu, M.D., DCH, Dean, Madras Medical College, Chennai – 3 for permitting me to avail the facilities in this college for performing this study.
    [Show full text]
  • Femoral Artery, Profunda Femoris Artery, Lateral Circumflex Femoral Artery, Medial Circumflex Artery, Femoral Triangle
    Basic Sciences of Medicine 2016, 5(1): 5-7 DOI: 10.5923/j.medicine.20160501.02 Anomalous Configuration of Medial and Lateral Circumflex Femoral Arteries Rajani Singh Department of Anatomy AIIMS Rishikesh, Rishikesh, India Abstract Normally profunda femoris artery arises from femoral artery below the inguinal ligament. Profunda femoris artery gives rise to lateral circumflex artery laterally and medial circumflex artery medially. But abnormal configuration of profunda femoris artery and its branches was observed in two cases in present study during dissection of lower limbs for teaching purpose in the department of Anatomy AIIMS Rishikesh, India. In one case, femoral artery trifurcated into medial circumflex, lateral circumflex and profunda femoris arteries. This finding is rare. In another case, common trunk arose from femoral artery which descended for 2.5 cm and gave medial circumflex artery. This common trunk descended further for 1 cm and bifurcated into lateral circumflex and profunda femoris arteries. This finding is new and unique and hence the case is reported. Knowledge of these variations will be of utmost importance to surgeons carrying out surgical procedures around the femoral triangle, to radiologists to avoid misinterpretation of radiographs and to anatomists for new and rare variants. Keywords Femoral artery, Profunda femoris artery, Lateral circumflex femoral artery, Medial circumflex artery, Femoral triangle 1. Introduction 2. Case Report Femoral artery (FA) is continuation of external iliac artery. Femoral triangles of two female cadavers embalmed in Profunda femoris artery (PFA) originates from posterolateral 10% formalin were dissected for teaching undergraduate aspect of femoral artery about 3.5 cm below the inguinal medical students in the department of anatomy AIIMS ligament (IL) in femoral triangle [1].
    [Show full text]
  • Femoral Injecting Guide
    FEMORAL INJECTING A GUIDE TO INJECTING IN THE GROIN USING THE FEMORAL VEIN (This is a restricted document NOT meant for general distribution) AUGUST 2006 1 INTRODUCTION INTRODUCTION This resource has been produced by some older intravenous drug users (IDU’s) who, having compromised the usual injecting sites, now inject into the femoral vein. We recognize that many IDU’s continue to use as they grow older, but unfortunately, easily accessible injecting sites often become unusable and viable sites become more dif- ficult to locate. Usually, as a last resort, committed IDU’s will try to locate one of the larger, deeper veins, especially when injecting large volumes such as methadone. ManyUnfortunately, of us have some had noof usalternat had noive alternative but to ‘hit butand to miss’ ‘hit andas we miss’ attempted as we attemptedto find veins to find that weveins couldn’t that we see, couldn’t but knew see, werebut knew there. were This there. was often This painful,was often frustrating, painful, frustrating, costly and, costly in someand, cases,in some resulted cases, inresulted permanent in permanent injuries such injuries as the such example as the exampleshown under shown the under the heading “A True Story” on pageheading 7. “A True Story” on page 7. CONTENTS CONTENTS 1) Introduction, Introduction, Contents contents, disclaimer 9) Rotating Injecting 9) Rotating Sites Injecting Sites 2) TheFemoral Femoral Injecting: Vein—Where Getting is Startedit? 10) Blood Clots 10) Blood Clots 3) FemoralThe Femoral Injecting: Vein— Getting Where
    [Show full text]
  • Epiphyseal Closure of Femur, Tibia and Fibula of the Paca
    Journal of Veterinary Science & Animal Husbandry Volume 5 | Issue 4 ISSN: 2348-9790 Research Article Open Access Epiphyseal Closure of Femur, Tibia and Fibula of the Paca (Cuniculus Paca, Linnaeus, 1766) Lippi ICC, Oliveira RGS, Smargiassi NF, Machado MRF, Sasahara THC, Rocha TASS and Oliveira FS* Department of Animal Morphology and Physiology, São Paulo State University (UNESP), Jaboticabal, SP, Brazil *Corresponding author: Oliveira FS, Department of Animal Morphology and Physiology, São Paulo State University (UNESP), Via de Acesso Paulo Donato Castelane – 14884-900 - Jaboticabal, SP, Brazil, E-mail: [email protected] Citation: Lippi ICC, Oliveira RGS, Smargiassi NF, Machado MRF, Sasahara THC, et al. (2017) Epiphyseal Closure of Femur, Tibia and Fibula of the Paca (Cuniculus Paca, Linnaeus, 1766). J Vet Sci Ani Husb 5(4): 403. doi: 10.15744/2348-9790.5.403 Received Date: October 29, 2017 Accepted Date: December 27, 2017 Published Date: December 29, 2017 Abstract After capybara, paca (Cuniculus paca) is the largest rodent in the neotropical region and the body weight varies from 5 to 10 kg, and may reach up to 14 kg. They are animals that reach sexual maturity at around 10 months of age. The aim of this research is to examine, through radiography, the femur, tibia and fibula of the paca. The animals were anaesthetized for radiographic exams. At 6 months of age, the growth line of the femoral proximal epiphysis ceases to perform its functions. At 12 months of age, there is the closure of the line growth of distal femoral epiphysis. At the paca’s tibia, at 12 months old, there was the closure of the growth of the proximal epiphysis.
    [Show full text]
  • Skeletal System
    Skeletal System Overview • The skeletal system composed of bones, cartilages, joints, and ligaments, accounts for about 20% of the body mass (i.e., about 30 pounds in a 160-pound person). o Bones make up most of the skeleton o Cartilages occur only in isolated areas, such as the nose, parts of ribs, and the joints o Ligaments connect bones and reinforce joints, allowing required movements while restricting motions in other directions. o Joints are the junctions between bones which provide for the mobility of the skeleton Skeletal Cartilages • Human skeleton initially made up of cartilages and fibrous membranes; most are soon replaced with bone • In adults, the few areas where cartilage remains are mainly where flexible skeletal tissue is needed. • Cartilage tissue consists mainly of water—approximately 80%; high water content allows cartilage to be resilient (i.e., spring back to its original shape after being compressed). • Cartilage contains no nerves or blood vessels. • Perichondrium (“around the cartilage”) is dense irregular connective tissue; surrounds the cartilage and acts like a girdle to resist outward expansion when cartilage is compressed. o Perichondrium contains the blood vessels from which nutrients diffuse through the matrix to reach the cartilage cells. This mode of nutrient delivery limits cartilage thickness. • Three types of Cartilage Tissue in body o All three have cells called chondrocytes encased in small cavities (called lacunae) within an extracellular matrix containing a jellylike ground substance and fibers. o Skeletal cartilages contain representatives from all three types. Hyaline cartilages • Looks like frosted glass • Most abundant skeletal cartilages • Their chondrocytes appear spherical • Only fiber type in their matrix is fine collagen (undetectable microscopically) • Skeletal hyaline cartilages include: o Articular Cartilages —cover ends of most bones at movable joints o Costal cartilages —connect ribs to sternum o Respiratory cartilages —form skeleton of the larynx (voicebox) and reinforce other respiratory passages.
    [Show full text]