A New Opilioacarid Mite in Baltic Amber

Total Page:16

File Type:pdf, Size:1020Kb

A New Opilioacarid Mite in Baltic Amber European Arachnology 2008 (W. Nentwig, M. Entling & C. Kropf eds.), pp. 59–70. © Natural History Museum, Bern, 2010. ISSN 1660-9972 (Proceedings of the 24th European Congress of Arachnology, Bern, 25–29 August 2008). A new opilioacarid mite in Baltic amber JASON A. DUNLOP 1, CAROLIN SEMPF 2 & JÖRG WUNDERLICH 3 1 Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Hum- boldt University Berlin, Invalidenstrasse 43, D–10115 Berlin, Germany (Corresponding author: [email protected]) 2 Freie Universität Berlin, Institut für Biologie, Chemie & Pharmazie, Evolution und Systematik der Tiere, Königin-Luise-Str. 1–3, D–14195 Berlin, Germany ([email protected]) 3 Oberer Häuselbergweg 24, D–69493 Hirschberg, Germany ([email protected]) Abstract The second fossil opilioacariform mite (Acari: Anactinotrichida: Opilioacarida) is described as ?Opilioacarus aenigmus sp. nov., from Baltic amber (Palaeogene: Eocene). Compared to the previously described amber opilioacarid, the new fossil reveals more of the genital region, as well as an unusual pattern of long setae towards the distal end of the first leg. Unlike the previous species, the new fossil bears only two pairs of eyes and the fourth pair of legs are shorter in relation to the body. This clearly indicates a new fossil taxon. Recent work on the phylogenetic position of the mites – and their constituent subgroups – is briefly reviewed, together with a summary of the fossil record of anactinotrichid mites in general. INTRODUCTION to be described is Paracarus pristinus Dunlop, Opilioacarids (Acari, Anactinotrichida, Opil- Wunderlich & Poinar, 2004 from Eocene Bal- ioacarida) are a rather rare group (ca 20 tic amber. The well-preserved holotype (and species) of mites, sometimes referred to by only known specimen) was assigned to a re- the alternative names Opilioacariformes cent genus with a Central Asian distribution or Notostigmata. In older literature opilio- today. Here, we describe only the second fos- acarids were often treated as ‘primitive’ mites, sil example of an opilioacarid mite (Figs 1–5), largely because they retain a number of ple- a fossil again originating from Baltic amber. siomorphic characters, such as multiple lat- The ventral surface of this new specimen is eral eyes and externally visible opisthosomal particularly well preserved, including some segmentation. They have even on occasions details not observed in Dunlop et al.’s (2004) (e.g. Reuter 1909) been excluded from Acari original study. The new specimen also ex- sensu stricto. Their current placement within presses a prominent group of very long se- the Anactinotrichida mite lineage (Parsiti- tae towards the distal end of the first pair of formes s. l. in some schemes) is now strongly legs. This, and other characters – such as eye supported (see below). Valuable morphologi- number and leg proportions – differ substan- cal accounts of opilioacarids include With tially from the condition seen in P. pristinus (1904), Grandjean (1936), van der Hammen and indicate that the present fossil repre- (1968, 1976, 1977, 1989), Lehtinen (1980), Klom- sents a new taxon, which we tentatively as- pen (2000) and Vázquez & Klompen (2002). sign here to the Recent Mediterranean genus The first, and so far only, fossil opilioacarid Opilioacarus With, 1902. 6 0 European Arachnology 2008 MATERIAL AND METHODS The idiosoma is broadly oval in outline. Dor- The fossil described here derives from the sally there is a subtriangular ‘anterior area’ Wunderlich collection (F1882/BB/AC/CJW) (cf. Klompen 2000), alternatively called the and will eventually be transferred either to prodorsum (sensu van der Hammen 1976, the Senckenberg Museum (Frankfurt am 1989) and perhaps equivalent to the carapace Main) or the Görlitz Museum. It was pho- of other arachnids. Due the emulsion film, tographed using a Leica Systems camera ar- details such as setae are largely equivocal rangement attached to a stereomicroscope, (Fig. 1). However, on the right side two eye which generates a series of images through lenses can be resolved (Fig. 3), suggesting the specimen at different focal planes. The that the animal had two pairs of eyes (see ca 20 individual images per picture were chap. Systematic Palaeontology). The ante- combined into final composites (Figs 1, 2) rior area is delimited posteriorly by a trans- using the software package Auto Montage©. verse disjugal furrow. Behind this, further A Canon Eos Digital Camera attached to a furrows hint at up to four additional, short Nikon compound microscope was used for dorsal segments on the remainder of the close-up work (Fig. 5). The specimen was idiosoma. However, expected details (setae, drawn by CS using a stereomicroscope with lyrifissures, spiracles, etc.) are indistinct due a camera lucida attachment. (Figs 3–4) Mor- to the emulsion film and the fact that much phological terminology was adopted from of the posterior part of the dorsal idiosoma the literature, principally van der Hammen has collapsed to leave a large hole in the dor- (1976), but also Klompen (2000). The pre- sal surface. cise locality from which the specimen was recovered is not recorded, but much of the Gnathosoma. In ventral view (Figs 2, 4, recently collected Baltic amber originates 5a) the ventral surface (infracapitulum) of from the Kaliningrad area on the coast of the the gnathosoma is quite well preserved and Baltic sea. It is generally dated at Palaeogene partly overlain by the sternapophyses (see (Eocene), with an approximate age of 45–50 below) which cover the expected position of Ma. the subcapitular gutter. Laterally, the dark, sclerotised rutella insert on this infracapitu- MORPHOLOGICAL INTERPRETATION lum. As in modern taxa, the rutella are den- The specimen is a largely complete inclu- tate on their inner (mesal) surface and we sion, preserved at the base of a subtriangu- were able to resolve five teeth in total. We lar piece of translucent, yellow amber with could not identify either With’s organ – ex- maximum dimensions of ca 12 x 6 mm. The pected immediately mesal of each rutellum specimen is best seen in ventral view. A hole – or the adjacent lateral lips and regard these in the posterior dorsal part of the body, to- as equivocal for the fossil. Between the rutel- gether with a thin, white emulsion over the la, the anterior margin of the infracapitulum entire upper body makes interpretation of is slightly recurved and presents a series of the dorsal surface more difficult. Limbs and quite elongate, anteriorly-projecting setae mouthparts are preserved in some detail (Figs 4–5a). In van der Hammen’s termin- (see below) and in general the fossil closely ology these probably comprise circumbuccal resembles living opilioacarid species. All and paralabial setae; whereby the rutella and measurements are in mm. With’s organ are often interpreted as modi- fied paralabial setae. Specific patterns of se- Dorsal surface. The mite body is trad- tae position on the infracapitulum could not itionally divided into a gnathosoma (i.e. the be resolved. The bases of the chelicerae are pedipalps and mouthparts) and the idio- hidden in the ventral view, but as in modern soma comprising the remainder of the body. opilioacarids there are three articles, the dis- Dunlop et al.: Opilioacarid in Baltic amber 61 tal two forming a small chela. The fixed fin- solved in this area, but a distinct pattern is ger is slightly dentate, the free (movable) fin- absent. The pregenital area is bordered pos- ger is smooth. The pedipalps are fairly short teriorly by a small sclerite – segment VII sen- and pediform. The proximal articles are su van der Hammen – which is procurved largely concealed above the gnathosoma, but anteriorly, but has a more or less straight the terminal tarsus can be seen more clear- posterior margin. Further lineations, or sul- ly. It is covered distally with fine setae and ci, within segment VII can also be resolved. bears a pair of very fine claws (the apotele). Segment VII is flanked by the genital ver- rucae, a prominent pair of raised, wart-like Ventral idiosoma. The ventral idiosoma structures bearing three setae. In juvenile reveals more detail. At the anterior end, a pair instars this plate-like structure is absent of slender, elongate sternapophyses project (e.g. van der Hammen 1966, fig. 5B), thus we forwards and underlie the gnathosoma (Figs interpret this fossil as an adult. Determin- 2, 4, 5a). Setal patterns on the sternapophysis ing gender is more difficult. In some extant can be useful taxonomically, but the pres- taxa there are differences in the number of ence of any particular pattern in the fossil is pregenital papilliform setae: typically five difficult to resolve. We found evidence for at or more in males as compared to two in fe- least one lateral seta on each sternapophy- males. These pregenital setae should occur sis; possibly the latero-ventral, antaxial one directly in front of segment VIII (van der sensu van der Hammen (1989). Flanking the Hammen 1966, fig. 5B) and arenot the longer sternapophyses are the sternal verrucae; hairs more widely distributed pregenitally rounded, wart-like valves of uncertain func- as alluded to above. We were not able to ob- tion. Genital structures are detailed below. serve any papilliform pregenital setae in the The post-genital ventral idiosoma preserves fossil. However, we should note Grandjean’s few features of interest; only a couple of iso- (1936) observation that females of Opilioaca- lated setae. A series of eight weakly defined rus segmentatus lack pregenital setae alto- transverse furrows, which do not extend all gether; thus we favour the possibility that the way across the ventral surface, probably this specimen could be a mature female. In- indicate segment boundaries, but patterns ternal features such as a female ovipositor or of lyrifissures (slit sense organs), which can male accessory glands are equivocal.
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • American Museum Novitates
    AMERICAN MUSEUM NOVITATES Number 3823, 80 pp. January 16, 2015 Diverse new scale insects (Hemiptera: Coccoidea) in amber from the Cretaceous and Eocene with a phylogenetic framework for fossil Coccoidea ISABELLE M. VEA1, 2 AND DAVID A. GRIMALDI2 ABSTRACT Coccoids are abundant and diverse in most amber deposits around the world, but largely as macropterous males. Based on a study of male coccoids in Lebanese amber (Early Cretaceous), Burmese amber (Albian-Cenomanian), Cambay amber from western India (Early Eocene), and Baltic amber (mid-Eocene), 16 new species, 11 new genera, and three new families are added to the coccoid fossil record: Apticoccidae, n. fam., based on Apticoccus Koteja and Azar, and includ- ing two new species A. fortis, n. sp., and A. longitenuis, n. sp.; the monotypic family Hodgsonicoc- cidae, n. fam., including Hodgsonicoccus patefactus, n. gen., n. sp.; Kozariidae, n. fam., including Kozarius achronus, n. gen., n. sp., and K. perpetuus, n. sp.; the irst occurrence of a Coccidae in Burmese amber, Rosahendersonia prisca, n. gen., n. sp.; the irst fossil record of a Margarodidae sensu stricto, Heteromargarodes hukamsinghi, n. sp.; a peculiar Diaspididae in Indian amber, Nor- markicoccus cambayae, n. gen., n. sp.; a Pityococcidae from Baltic amber, Pityococcus monilifor- malis, n. sp., two Pseudococcidae in Lebanese and Burmese ambers, Williamsicoccus megalops, n. gen., n. sp., and Gilderius eukrinops, n. gen., n. sp.; an Early Cretaceous Weitschatidae, Pseudo- weitschatus audebertis, n. gen., n. sp.; four genera considered incertae sedis, Alacrena peculiaris, n. gen., n. sp., Magnilens glaesaria, n. gen., n. sp., and Pedicellicoccus marginatus, n. gen., n. sp., and Xiphos vani, n.
    [Show full text]
  • The Earliest Record of Fossil Solid-Wood-Borer Larvae—Immature Beetles in 99 Million-Year-Old Myanmar Amber
    Palaeoentomology 004 (4): 390–404 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY Copyright © 2021 Magnolia Press Article ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.4.4.14 http://zoobank.org/urn:lsid:zoobank.org:pub:9F96DA9A-E2F3-466A-A623-0D1D6689D345 The earliest record of fossil solid-wood-borer larvae—immature beetles in 99 million-year-old Myanmar amber CAROLIN HAUG1, 2, *, GIDEON T. HAUG1, ANA ZIPPEL1, SERITA VAN DER WAL1 & JOACHIM T. HAUG1, 2 1Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany 2GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany �[email protected]; https://orcid.org/0000-0001-9208-4229 �[email protected]; https://orcid.org/0000-0002-6963-5982 �[email protected]; https://orcid.org/0000-0002-6509-4445 �[email protected] https://orcid.org/0000-0002-7426-8777 �[email protected]; https://orcid.org/0000-0001-8254-8472 *Corresponding author Abstract different plants, including agriculturally important ones (e.g., Potts et al., 2010; Powney et al., 2019). On the Interactions between animals and plants represent an other hand, many representatives exploit different parts of important driver of evolution. Especially the group Insecta plants, often causing severe damage up to the loss of entire has an enormous impact on plants, e.g., by consuming them. crops (e.g., Metcalf, 1996; Evans et al., 2007; Oliveira et Among beetles, the larvae of different groups (Buprestidae, Cerambycidae, partly Eucnemidae) bore into wood and are al., 2014).
    [Show full text]
  • (Neuroptera) from the Upper Cenomanian Nizhnyaya Agapa Amber, Northern Siberia
    Cretaceous Research 93 (2019) 107e113 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication New Coniopterygidae (Neuroptera) from the upper Cenomanian Nizhnyaya Agapa amber, northern Siberia * Vladimir N. Makarkin a, Evgeny E. Perkovsky b, a Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia b Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel'nitskogo 15, Kiev, 01601, Ukraine article info abstract Article history: Libanoconis siberica sp. nov. and two specimens of uncertain affinities (Neuroptera: Coniopterygidae) are Received 28 April 2018 described from the Upper Cretaceous (upper Cenomanian) Nizhnyaya Agapa amber, northern Siberia. Received in revised form The new species is distinguished from L. fadiacra (Whalley, 1980) by the position of the crossvein 3r-m 9 August 2018 being at a right angle to both RP1 and the anterior trace of M in both wings. The validity of the genus Accepted in revised form 11 September Libanoconis is discussed. It easily differs from all other Aleuropteryginae by a set of plesiomorphic 2018 Available online 15 September 2018 character states. The climatic conditions at high latitudes in the late Cenomanian were favourable enough for this tropical genus, hitherto known from the Gondwanan Lebanese amber. Therefore, the Keywords: record of a species of Libanoconis in northern Siberia is highly likely. © Neuroptera 2018 Elsevier Ltd. All rights reserved. Coniopterygidae Aleuropteryginae Cenomanian Nizhnyaya Agapa amber 1. Introduction 2. Material and methods The small-sized neuropteran family Coniopterygidae comprises This study is based on three specimens originally embedded in ca.
    [Show full text]
  • A New Genus of the Family Sejidae (Acari: Mesostigmata) Based on Sejus Krantzi and S
    Systematic & Applied Acarology Special Publications (2004) 20, 1–4 ISSN 1461-0183 A new genus of the family Sejidae (Acari: Mesostigmata) based on Sejus krantzi and S. manualkrantzi Hirschmann, 1991 MARIAM LEKVEISHVILI1 & GERALD W. KRANTZ2 1Acarology Laboratory, Museum of Biological Diversity, Ohio State University, 1315 Kinnear Rd., Columbus, OH 43212- 1192, USA e-mail: [email protected] 2 Department of Zoology, Oregon State University, Cordley 3029, Corvallis, OR 97331-2914, USA e-mail: [email protected] Abstract Sejus manualkrantzi (Acari: Mesostigmata: Sejidae) is synonymized with S. krantzi and is assigned to a new genus, Adenosejus. Key words: Sejus, Adenosejus, krantzi, manualkrantzi In a recent revisionary work, Hirschmann (1991) synonymized the sejine genera Epicroseius (Berlese 1905), Zuluacarus (Trägårdh 1906) and Willmannia (Trägårdh 1906) under the genus Sejus Koch, 1836, described or redescribed 26 species of the newly constituted genus (Hirschmann et al. 1991), and assigned the resulting 44 recognized species to ten species groups (Hirschmann, 1991). Among the new species were S. krantzi and S. manualkrantzi, both described solely based on illustrations taken from "A Manual of Acarology" (Krantz, 1978). These illustrations, referred to in the Manual as "Sejus sp. (Oregon, USA)", were intended only to provide a typical habitus for the family Sejidae, and include drawings of the dorsum of the female (Fig. 12-1) and male (Fig. 12-2), types of dorsal setae (Fig. 12-3), the venter of the female (Fig. 12-4) and the epigynal shield (Fig. 12-5) (page 170). There was no accompanying species description. As a result of studying the drawings of the venter and dorsum of the female, Hirschmann found characters that "were not matching".
    [Show full text]
  • Volume 36, No 1 Summer 2017
    Newsletter of the Biological Survey of Canada Vol. 36(1) Summer 2017 The Newsletter of the BSC is published twice a year by the Biological Survey of Canada, an incorporated not-for-profit In this issue group devoted to promoting biodiversity science in Canada. From the editor’s desk......2 Information on Student Corner: Membership ....................3 The Application of President’s Report ...........4 Soil Mesostigmata as Bioindicators and a Summer Update ...............6 Description of Common BSC on facebook & twit- Groups Found in the ter....................................5 Boreal Forest in Northern Alberta..........................9 BSC Student Corner ..........8 Soil Mesostigmata..........9 Matthew Meehan, MSc student, University of Alberta, Department of Biological Sciences Bioblitz 2017..................13 Book announcements: BSC BioBlitz 2017 - A Handbook to the Bioblitzing the Cypress Ticks of Canada (Ixo- Hills dida: Ixodidae, Argasi- Contact: Cory Sheffield.........13 dae)..............................15 -The Biological Survey of Canada: A Personal History..........................16 BSC Symposium 2017 Canadian Journal of Canada 150: Canada’s Insect Diversity in Arthropod Identification: Expected and Unexpected Places recent papers..................17 Contact: Cory Sheffield .....................................14 Wild Species 2015 Report available ........................17 Book Announcements: Handbook to the Ticks of Canada..................15 Check out the BSC The Biological Survey of Canada: A personal Website: Publications
    [Show full text]
  • Current Views on Chelicerate Phylogeny —A Tribute to Peter Weygoldt
    Current views on chelicerate phylogeny —A tribute to Peter Weygoldt The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Giribet, Gonzalo. 2018. “Current Views on Chelicerate phylogeny— A Tribute to Peter Weygoldt.” Zoologischer Anzeiger 273 (March): 7– 13. doi:10.1016/j.jcz.2018.01.004. Published Version doi:10.1016/j.jcz.2018.01.004 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37308630 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP 1 Current views on chelicerate phylogeny—a tribute to Peter Weygoldt 2 3 Gonzalo Giribet 4 5 Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard 6 University, 26 Oxford Street, CamBridge, MA 02138, USA 7 8 Keywords: Arachnida, Chelicerata, Arthropoda, evolution, systematics, phylogeny 9 10 11 ABSTRACT 12 13 Peter Weygoldt pioneered studies of arachnid phylogeny by providing the first synapomorphy 14 scheme to underpin inter-ordinal relationships. Since this seminal worK, arachnid relationships 15 have been evaluated using morphological characters of extant and fossil taxa as well as multiple 16 generations of molecular sequence data. While nearly all datasets agree on the monophyly of 17 Tetrapulmonata, and modern analyses of molecules and novel morphological and genomic data 18 support Arachnopulmonata (a sister group relationship of Scorpiones to Tetrapulmonata), the 19 relationships of the apulmonate arachnid orders remain largely unresolved.
    [Show full text]
  • Volume: 1 Issue: 2 Year: 2019
    Volume: 1 Issue: 2 Year: 2019 Designed by Müjdat TÖS Acarological Studies Vol 1 (2) CONTENTS Editorial Acarological Studies: A new forum for the publication of acarological works ................................................................... 51-52 Salih DOĞAN Review An overview of the XV International Congress of Acarology (XV ICA 2018) ........................................................................ 53-58 Sebahat K. OZMAN-SULLIVAN, Gregory T. SULLIVAN Articles Alternative control agents of the dried fruit mite, Carpoglyphus lactis (L.) (Acari: Carpoglyphidae) on dried apricots ......................................................................................................................................................................................................................... 59-64 Vefa TURGU, Nabi Alper KUMRAL A species being worthy of its name: Intraspecific variations on the gnathosomal characters in topotypic heter- omorphic males of Cheylostigmaeus variatus (Acari: Stigmaeidae) ........................................................................................ 65-70 Salih DOĞAN, Sibel DOĞAN, Qing-Hai FAN Seasonal distribution and damage potential of Raoiella indica (Hirst) (Acari: Tenuipalpidae) on areca palms of Kerala, India ............................................................................................................................................................................................................... 71-83 Prabheena PRABHAKARAN, Ramani NERAVATHU Feeding impact of Cisaberoptus
    [Show full text]
  • Acari Scientific Classification Kingdom
    Acari - Wikipedia https://en.wikipedia.org/wiki/Acari From Wikipedia, the free encyclopedia Acari (or Acarina) are a taxon of arachnids that contains mites and ticks. The diversity of the Acari is extraordinary and its fossil history Acari goes back to at least the early Devonian period.[1] As a result, Temporal range: acarologists (the people who study mites and ticks) have proposed a Early Devonian–Recent complex set of taxonomic ranks to classify mites. In most modern treatments, the Acari is considered a subclass of Arachnida and is PreЄ Є O S D C P T J K Pg N composed of two or three superorders or orders: Acariformes (or Actinotrichida), Parasitiformes (or Anactinotrichida), and Opilioacariformes; the latter is often considered a subgroup within the Parasitiformes. The monophyly of the Acari is open to debate, and the relationships of the acarines to other arachnids is not at all clear.[2] In older treatments, the subgroups of the Acarina were placed at order rank, but as their own subdivisions have become better-understood, it is more usual to treat them at superorder rank. Most acarines are minute to small (e.g., 0.08–1.00 millimetre or 0.003–0.039 inches), but the largest Acari (some ticks and red velvet mites) may reach lengths of 10–20 millimetres (0.4–0.8 in). Over 50,000 species have been described (as of 1999) and it is estimated that a million or more species may exist. The study of mites and ticks is called acarology (from Greek ἀκαρί/ἄκαρι, akari, a type of mite; and -λογία, -logia),[3] and the leading scientific journals for acarology include Acarologia, Experimental and Applied Acarology and the Peacock mite (Tuckerella sp.), International Journal of Acarology.
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]
  • From Mid-Cretaceous Burmese Amber
    HISTORICAL BIOLOGY https://doi.org/10.1080/08912963.2018.1528446 ARTICLE New subfamily of ambrosia beetles (Coleoptera: Platypodidae) from mid-Cretaceous Burmese amber George O. Poinar Jr.a, Fernando E. Vega b and Andrei A. Legalovc,d aDepartment of Integrative Biology, Oregon State University, Corvallis, OR, USA; bSustainable Perennial Crops Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA; cInstitute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; dAltai State University, Barnaul, Russia ABSTRACT ARTICLE HISTORY An ambrosia beetle described as Palaeotylus femoralis n. gen et sp. belonging to a new subfamily Received 27 August 2018 (Palaeotylinae n. subfam.: Coleoptera: Platypodidae) is described from Cretaceous Burmese amber. It Accepted 22 September 2018 ff di ers from other subfamilies by the loose antennal club, 6-articled funicle, coarsely faceted eyes, tibiae KEYWORDS with teeth at apex, bilobed meso- and meta-tarsomeres 2 and 3 and tarsomere 1 shorter than Curculionoidea; tarsomeres 2–4 combined. This is the first described Platypodidae from Burmese amber and the oldest Platypodidae; new taxa; documented ambrosia beetle that demonstrates glandular sac mycangia containing yeast-like propa- Myanmar; Cretaceous gules and hyphal fragments. Introduction develop on fungi growing in wood tunnels (Jordal 2015; Kirkendall et al. 2015). While members of the Platypodidae Mesozoic Curculionoidea are well represented in Middle- are considered to be the most ancient of fungus cultivating Upper Jurassic impression fossils (Legalov 2010, 2011, 2012, insects (Jordal 2015), no Cretaceous representatives have been 2013, 2015; Gratshev and Legalov 2011, 2014) as well as in described that show a close association with a symbiotic fun- Cretaceous amber from the Middle Neocomian–Lower gus.
    [Show full text]
  • (Neuroptera: Psychopsidae) with Notes on the Late Cretaceous Psychopsoids
    Zootaxa 4524 (5): 581–594 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4524.5.5 http://zoobank.org/urn:lsid:zoobank.org:pub:297DB9B9-F1F8-46C0-8E43-95EBA0906B9F Re-description of Grammapsychops lebedevi Martynova, 1954 (Neuroptera: Psychopsidae) with notes on the Late Cretaceous psychopsoids VLADIMIR N. MAKARKIN Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia. E-mail: [email protected]. Abstract Grammapsychops lebedevi Martynova, 1954 from the Late Cretaceous (Cenomanian) of Siberia is re-described based on the holotype. The species is represented by a hind wing as its CuA is definitely concave, although the costal space is strongly dilated. This genus together with three other Cretaceous genera (i.e., Embaneura G. Zalessky, 1953, Kagapsy- chops Fujiyama, 1978, and probably Pulchroptilonia Martins-Neto, 1997) form the Grammapsychops genus-group. The hind wing of Grammapsychops may theoretically be associated with forewings of Kagapsychops or other closely related genera with similar forewing venation. The Late Cretaceous psychopsoids are critically reviewed. All known psychopsoid taxa from this interval are considered as belonging to Psychopsidae. Key words: Psychopsidae, Osmylopsychopidae, Cretaceous Introduction The psychopsoids (i.e., the superfamily Psychopsoidea) comprise numerous taxa of Neuroptera with broad and multi-veined wings, among which are the largest species in the order. One hundred and forty-four fossil species of 80 psychopsoid genera have been described from the Middle Triassic to late Eocene/early Oligocene (pers.
    [Show full text]