C Is Xhr Request
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Execution Model for Serverless Functions at the Edge
An Execution Model for Serverless Functions at the Edge Adam Hall Umakishore Ramachandran Georgia Institute of Technology Georgia Institute of Technology Atlanta, Georgia Atlanta, Georgia ach@gatech:edu rama@gatech:edu ABSTRACT 1 INTRODUCTION Serverless computing platforms allow developers to host single- Enabling next generation technologies such as self-driving cars or purpose applications that automatically scale with demand. In con- smart cities via edge computing requires us to reconsider the way trast to traditional long-running applications on dedicated, virtu- we characterize and deploy the services supporting those technolo- alized, or container-based platforms, serverless applications are gies. Edge/fog environments consist of many micro data centers intended to be instantiated when called, execute a single function, spread throughout the edge of the network. This is in stark contrast and shut down when finished. State-of-the-art serverless platforms to the cloud, where we assume the notion of unlimited resources achieve these goals by creating a new container instance to host available in a few centralized data centers. These micro data center a function when it is called and destroying the container when it environments must support large numbers of Internet of Things completes. This design allows for cost and resource savings when (IoT) devices on limited hardware resources, processing the mas- hosting simple applications, such as those supporting IoT devices sive amounts of data those devices generate while providing quick at the edge of the network. However, the use of containers intro- decisions to inform their actions [44]. One solution to supporting duces some overhead which may be unsuitable for applications emerging technologies at the edge lies in serverless computing. -
The Uch Enmek Example(Altai Republic,Siberia)
Faculty of Environmental Sciences Institute for Cartography Master Thesis Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Mussab Mohamed Abuelhassan Abdalla Born on: 7th December 1983 in Khartoum Matriculation number: 4118733 Matriculation year: 2014 to achieve the academic degree Master of Science (M.Sc.) Supervisors Dr.Nikolas Prechtel Dr.Sander Münster Submitted on: 18th September 2017 Faculty of Environmental Sciences Institute for Cartography Task for the preparation of a Master Thesis Name: Mussab Mohamed Abuelhassan Abdalla Matriculation number: 4118733 Matriculation year: 2014 Title: Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Objectives of work Scope/Previous Results:Virtual Globes can attract and inform websites visitors on natural and cultural objects and sceneries.Geo-centered information transfer is suitable for majority of sites and artifacts. Virtual Globes have been tested with an involvement of TUD institutes: e.g. the GEPAM project (Weller,2013), and an archaeological excavation site in the Altai Mountains ("Uch enmek", c.f. Schmid 2012, Schubert 2014).Virtual Globes technology should be flexible in terms of the desired geo-data configuration. Research data should be controlled by the authors. Modes of linking geo-objects to different types of meta-information seems evenly important for a successful deployment. Motivation: For an archaeological conservation site ("Uch Enmek") effort has already been directed into data collection, model development and an initial web-based presentation.The present "Open Web Globe" technology is not developed any further, what calls for a migra- tion into a different web environment. -
HTML5 and the Open Web Platform
HTML5 and the Open Web Platform Stuttgart 28 May 2013 Dave Raggett <[email protected]> The Open Web Platform What is the W3C? ● International community where Members, a full-time staff and the public collaborate to develop Web standards ● Led by Web inventor Tim Berners-Lee and CEO Jeff Jaffe ● Hosted by MIT, ERCIM, Keio and Beihang ● Community Groups open to all at no fee ● Business Groups get more staff support ● Technical Working Groups ● Develop specs into W3C Recommendations ● Participants from W3C Members and invited experts ● W3C Patent process for royalty free specifications 3 Who's involved ● W3C has 377 Members as of 11 May 2013 ● To name just a few ● ACCESS, Adobe, Akamai, Apple, Baidu, BBC, Blackberry (RIM), BT, Canon, Deutsche Telekom, eBay, Facebook, France Telecom, Fujitsu, Google, Hitachi, HP, Huawei, IBM, Intel, LG, Microsoft, Mozilla, NASA, NEC, NTT DoCoMo, Nuance, Opera Software, Oracle, Panasonic, Samsung, Siemens, Sony, Telefonica, Tencent, Vodafone, Yandex, … ● Full list at ● http://www.w3.org/Consortium/Member/List 4 The Open Web Platform 5 Open Web Platform ● Communicate with HTTP, Web Sockets, XML and JSON ● Markup with HTML5 ● Style sheets with CSS ● Rich graphics ● JPEG, PNG, GIF ● Canvas and SVG ● Audio and Video ● Scripting with JavaScript ● Expanding range of APIs ● Designed for the World's languages ● Accessibility with support for assistive technology 6 Hosted and Packaged Apps ● Hosted Web apps can be directly loaded from a website ● Packaged Web apps can be locally installed on a device and run without the need for access to a web server ● Zipped file containing all the necessary resources ● Manifest file with app meta-data – Old work on XML based manifests (Web Widgets) – New work on JSON based manifests ● http://w3c.github.io/manifest/ ● Pointer to app's cache manifest ● List of required features and permissions needed to run correctly ● Runtime and security model for web apps ● Privileged apps must be signed by installation origin's private key 7 HTML5 Markup ● Extensive range of features ● Structural, e.g. -
Platform Independent Web Application Modeling and Development with Netsilon Pierre-Alain Muller, Philippe Studer, Frédéric Fondement, Jean Bézivin
Platform independent Web application modeling and development with Netsilon Pierre-Alain Muller, Philippe Studer, Frédéric Fondement, Jean Bézivin To cite this version: Pierre-Alain Muller, Philippe Studer, Frédéric Fondement, Jean Bézivin. Platform independent Web application modeling and development with Netsilon. Software and Systems Modeling, Springer Ver- lag, 2005, 4 (4), pp.424-442. 10.1007/s10270-005-0091-4. inria-00120216 HAL Id: inria-00120216 https://hal.inria.fr/inria-00120216 Submitted on 21 Feb 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Platform Independent Web Application Modeling and Development with Netsilon PIERRE-ALAIN MULLER INRIA Rennes Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes, France pa.muller@ uha.fr PHILIPPE STUDER ESSAIM/MIPS, Université de Haute-Alsace, 12 rue des Frères Lumière, 68093 Mulhouse, France ph.studer@ uha.fr FREDERIC FONDEMENT EPFL / IC / UP-LGL, INJ œ Station 14, CH-1015 Lausanne EPFL, Switzerland frederic.fondement@ epfl.ch JEAN BEZIVIN ATLAS Group, INRIA & LINA, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes, France jean.bezivin@ lina.univ-nantes.fr Abstract. This paper discusses platform independent Web application modeling and development in the context of model-driven engineering. -
Seamless Offloading of Web App Computations from Mobile Device to Edge Clouds Via HTML5 Web Worker Migration
Seamless Offloading of Web App Computations From Mobile Device to Edge Clouds via HTML5 Web Worker Migration Hyuk Jin Jeong Seoul National University SoCC 2019 Virtual Machine & Optimization Laboratory Department of Electrical and Computer Engineering Seoul National University Computation Offloading Mobile clients have limited hardware resources Require computation offloading to servers E.g., cloud gaming or cloud ML services for mobile Traditional cloud servers are located far from clients Suffer from high latency 60~70 ms (RTT from our lab to the closest Google Cloud DC) Latency<50 ms is preferred for time-critical games Cloud data center End device [Kjetil Raaen, NIK 2014] 2 Virtual Machine & Optimization Laboratory Edge Cloud Edge servers are located at the edge of the network Provide ultra low (~a few ms) latency Central Clouds Mobile WiFi APs Small cells Edge Device Cloud Clouds What if a user moves? 3 Virtual Machine & Optimization Laboratory A Major Issue: User Mobility How to seamlessly provide a service when a user moves to a different server? Resume the service at the new server What if execution state (e.g., game data) remains on the previous server? This is a challenging problem Edge computing community has struggled to solve it • VM Handoff [Ha et al. SEC’ 17], Container Migration [Lele Ma et al. SEC’ 17], Serverless Edge Computing [Claudio Cicconetti et al. PerCom’ 19] We propose a new approach for web apps based on app migration techniques 4 Virtual Machine & Optimization Laboratory Outline Motivation Proposed system WebAssembly -
Performance Comparison of XHR Polling, Long Polling, Server Sent Events and Websockets
Thesis no: urn:nbn:se:bth-14497 Performance comparison of XHR polling, Long polling, Server sent events and Websockets Rasmus Appelqvist Oliver Örnmyr Faculty of Computing Blekinge Institute of Technology SE-371 79 Karlskrona Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Bachelor in Software Engineering. Contact Information: Author(s): Rasmus Appelqvist E-mail: [email protected] Oliver Örnmyr E-mail: [email protected] University advisor: Javier Gonzales Huerta PhD Department of Software Engineering Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE-371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 i ABSTRACT Context. Many simultaneous clients that connects to a website where the client receives frequent updates from the server will put stress on the server. Selecting a performance efficient technology for sending updates to the client when building the web sites can allow for lesser server hardware requirements which can result in reduced server hardware costs. Knowledge about the difference between the technologies that can solve the problem of updating a client with information from the server is necessary to decide which technology to use to gain performance. Objectives. This study considers what performance factors that affect XHR polling, Long polling, Server sent events and Websockets to allow web application developers to decide on when to use which technology. This study will also try to find out if the performance difference between the compared technologies are noticeable and which one is the best from a performance perspective. -
The Viability of the Web Browser As a Computer Music Platform
Lonce Wyse and Srikumar Subramanian The Viability of the Web Communications and New Media Department National University of Singapore Blk AS6, #03-41 Browser as a Computer 11 Computing Drive Singapore 117416 Music Platform [email protected] [email protected] Abstract: The computer music community has historically pushed the boundaries of technologies for music-making, using and developing cutting-edge computing, communication, and interfaces in a wide variety of creative practices to meet exacting standards of quality. Several separate systems and protocols have been developed to serve this community, such as Max/MSP and Pd for synthesis and teaching, JackTrip for networked audio, MIDI/OSC for communication, as well as Max/MSP and TouchOSC for interface design, to name a few. With the still-nascent Web Audio API standard and related technologies, we are now, more than ever, seeing an increase in these capabilities and their integration in a single ubiquitous platform: the Web browser. In this article, we examine the suitability of the Web browser as a computer music platform in critical aspects of audio synthesis, timing, I/O, and communication. We focus on the new Web Audio API and situate it in the context of associated technologies to understand how well they together can be expected to meet the musical, computational, and development needs of the computer music community. We identify timing and extensibility as two key areas that still need work in order to meet those needs. To date, despite the work of a few intrepid musical Why would musicians care about working in explorers, the Web browser platform has not been the browser, a platform not specifically designed widely considered as a viable platform for the de- for computer music? Max/MSP is an example of a velopment of computer music. -
Release Information Manual Version 8.3.0
Release Information Manual Version 8.3.0 Table of Contents Preface ...................................................................................................................... 1 About the TerraLens® Platform ...................................................................................... 1 In This Manual ........................................................................................................... 2 Intended Audience ..................................................................................................... 2 1 Product Components ................................................................................................ 3 2 Supported Platforms ................................................................................................ 4 Operating Systems, Compilers, and Programming Languages .................................................. 4 Graphics Hardware and Drivers ...................................................................................... 6 3 New Features ......................................................................................................... 7 TerraLens 8.3.0 ......................................................................................................... 7 DEM GeoTIFFs ......................................................................................................... 7 WMTS MapServer ..................................................................................................... 7 WMTS MapSource.................................................................................................... -
Document Object Model
Document Object Model Copyright © 1999 - 2020 Ellis Horowitz DOM 1 What is DOM • The Document Object Model (DOM) is a programming interface for XML documents. – It defines the way an XML document can be accessed and manipulated – this includes HTML documents • The XML DOM is designed to be used with any programming language and any operating system. • The DOM represents an XML file as a tree – The documentElement is the top-level of the tree. This element has one or many childNodes that represent the branches of the tree. Copyright © 1999 - 2020 Ellis Horowitz DOM 2 Version History • DOM Level 1 concentrates on HTML and XML document models. It contains functionality for document navigation and manipulation. See: – http://www.w3.org/DOM/ • DOM Level 2 adds a stylesheet object model to DOM Level 1, defines functionality for manipulating the style information attached to a document, and defines an event model and provides support for XML namespaces. The DOM Level 2 specification is a set of 6 released W3C Recommendations, see: – https://www.w3.org/DOM/DOMTR#dom2 • DOM Level 3 consists of 3 different specifications (Recommendations) – DOM Level 3 Core, Load and Save, Validation, http://www.w3.org/TR/DOM-Level-3/ • DOM Level 4 (aka DOM4) consists of 1 specification (Recommendation) – W3C DOM4, http://www.w3.org/TR/domcore/ • Consolidates previous specifications, and moves some to HTML5 • See All DOM Technical Reports at: – https://www.w3.org/DOM/DOMTR • Now DOM specification is DOM Living Standard (WHATWG), see: – https://dom.spec.whatwg.org -
The Web Platform
Security II - The Web Platform Stefano Calzavara Universit`aCa' Foscari Venezia February 6, 2020 1/18 Stefano Calzavara Universit`aCa' Foscari Venezia Security II - The Web Platform Web Applications A web application is a client-server distributed application (normally) operated via a web browser: e-commerce sites: Alibaba, Amazon, Ebay mail services: Gmail, Outlook, Yahoo! social networks: Facebook, Instagram, Twitter Fantastic tools which have become more and more popular over the years, yet extremely hard to protect! 2/18 Stefano Calzavara Universit`aCa' Foscari Venezia Security II - The Web Platform Statistics Trivia: how many web vulnerabilities in this plot? 3/18 Stefano Calzavara Universit`aCa' Foscari Venezia Security II - The Web Platform The HTTP Protocol The HTTP protocol is the workhorse protocol of the Web: simple request-response protocol in the client-server model plaintext: no confidentiality and integrity guarantees by default stateless: each HTTP request is handled as an independent event 4/18 Stefano Calzavara Universit`aCa' Foscari Venezia Security II - The Web Platform Domain Names On the Web, the server is typically identified by a string known as fully qualified domain name (FQDN). Terminology The string www.wikipedia.org is a FQDN and: www is a hostname wikipedia.org is a domain name wikipedia is a sub-domain of the top-level domain org 5/18 Stefano Calzavara Universit`aCa' Foscari Venezia Security II - The Web Platform Domain Name System (DNS) The DNS system is used to resolve a FQDN into an IP address. There exists a many-to-many mapping between FQDNs and IP addresses. Sometimes, the term hostname is abused and used interchangeably with FQDN in this context. -
Geolocation in the Browser from Google Gears to Geolocation Sensors
Geolocation in the Browser From Google Gears to Geolocation Sensors Thomas Steiner Anssi Kostiainen Marijn Kruisselbrink Google LLC Intel Corporation Google LLC 20354 Hamburg, Germany 02160 Espoo, Finland San Francisco, CA 94105, USA [email protected] [email protected] [email protected] ABSTRACT 1 HISTORY OF BROWSER GEOLOCATION Geolocation is arguably one of the most powerful capabilities of Geolocation has been available to developers implicitly through smartphones and a lot of attention has been paid to native applica- the mapping of Internet Protocol (ip) addresses or address blocks tions that make use of it. The discontinued Google Gears plugin was to known locations. There are numerous paid subscription and one of the rst approaches to access exact location data on the Web free geolocation databases with varying claims of accuracy that as well, apart from server-side coarse location lookups based on In- range from country level to state or city level, sometimes including ternet Protocol (ip) addresses; and the plugin led directly to the now zip/post code level. A popular free way to obtain ip-based location widely implemented Geolocation api. The World Wide Web Con- data was through Google’s ajax api Loader library [2], which pro- sortium (w3c) Geolocation api specication denes a standard for vided an approximate, region-level estimate of a user’s location accessing location services in the browser via JavaScript. For a long through its google.loader.ClientLocation property. This api time, developers have also demanded more advanced features like did not require users to install any client-side software. Implicit background geolocation tracking and geofencing. -
Audio Oriented UI Components for the Web Platform Victor Saiz, Benjamin Matuszewski, Samuel Goldszmidt
Audio oriented UI components for the web platform Victor Saiz, Benjamin Matuszewski, Samuel Goldszmidt To cite this version: Victor Saiz, Benjamin Matuszewski, Samuel Goldszmidt. Audio oriented UI components for the web platform. WAC, Jan 2015, Paris, France. hal-01256945 HAL Id: hal-01256945 https://hal.archives-ouvertes.fr/hal-01256945 Submitted on 15 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Audio oriented UI components for the web platform Victor Saiz, Benjamin Matuszewski, Samuel Goldszmidt IRCAM – Centre Pompidou, STMS lab IRCAM-CNRS-UPMC 1, Place Igor Stravinsky 75004 Paris {firstname.lastname}@ircam.fr ABSTRACT media APIs yet, from knobs to waveform visualisers, spec- trograms, breakpoint functions, timelines etc. These new This paper presents a set of web-native tools for visualis- media elements presents new interaction and editing chal- ing and interacting with time-based objects. These visu- lenges specially for media streams like audio buffers. alisations are rendered as part of the document using web standard technologies, allowing for an easy integration and After widespread adoption (2008 to 2013 [14]), these new interaction with the elements on the same document with- APIs are made available in millions of browsers.