Hawaii - West Oahu Peter J

Total Page:16

File Type:pdf, Size:1020Kb

Hawaii - West Oahu Peter J About the authors Kathleen Aki, Graduate Assistant, Sea Grant Extension Service, University of Haw Jacquelin Miller, Associate Environmental Coordinator, Environmental Center, University of H Joseph R Mobley, Jr., PhD, Associate Professor, University of Hawaii - West Oahu Peter J. Rappa, Team Leader, Coastal Resource Extension Agent, Sea Grant Extensio University of Hawaii Michelle Yuen, Student Assistant, Sea Grant Extension Service, University of Haw manuscript and made many helpful suggestions. This paper is funded by a grantlmperative agreement from the National Oceanic andhospheric Administration (NOAA). The views expressed herein are those of the anbra and do not necessarily reflect the views of NOAA or any of its sub-agencies. This is areport of the University of Hawaii pursuant to the National Oceanic and AMospheric Administration Award No. NA36RG0507. Sea Grant year 26 ~ojectno. RIME-6 Hawaiian Islands Humpback Whale National Marine Sanctuary. UNIHI- SEAGRANT-MR-94-06. A SITE CHARACTERIZATION STUDY for the Hawaiian Islands Humpback Whale National Marine Sanctuary Prepared for the National Oceanic and Atmospheric Administration (NOAA) by I I University of Hawaii Sea Grant College Program School of Ocean and Earth Science and Technology I About the authors Kathleen Aki, Graduate Assistant, Sea Grant Extension Service, University of Hawaii Richard Brock, PhD, Associate Researcher and Fisheries Specialist, University of Hawaii Jacquelin Miller, Assoc&ateEnvironmental Coordinator, Environmental Center, University of Hawaii Joseph R. Mobley, Jr., PhD,Associate Professor, University of Hawaii - West Oahu Peter J. Rappa, Team Leader, Coastal Resource Extension Agent, Sea Grant Extension Service, University of Hawaii David Tarnas, West Hawaii Extension Agent, Sea Grant Extension Service, University of Hawaii Michelle Yuen, Student Assistant, Sea Grant Extension Service, University of Hawaii Acknowledgements \\ The authors gratefully acknowledge the Sea Grant Communications Oftice, for providing editorial and production support in completing this publication. Special mahalos to Ms. Kim Des Rochers, editor, and Ms. Diane NaKashima and Ms. Naomi Nakakura, publication specialists, for spending many hours putting this report into final fonn. We also extend our thanks to those .people . who revlevved various parts of the m&uscript and made many helpful suggestions. This paper is funded by a granUcwperative agreement from the National Oceanic and Atmospher~cAdministration (NOAA) The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies Thls is a report of the U~versityof Hawaii pursuant lo the National Oceanic and Atmospheric Admistration Award No. NA36RG0507. Sea Grant year 26 project no RIME-6Hawaiian Islands Humpback Whale National Marine Sanctuary. UNW- SEAGRANT-MR-94-06. A SITE CHARACTERIZATION STUDY for the Hawaiian Islands Humpback Whale National Marine Sanctuary March 1994 Prepared for the National Oceanic and Atmospheric Administration (NOAA) by University of Hawaii Sea Grant College Program School of Ocean and Earth Science and Technology i Table of Contents Chapter 1 Introduction and Report Summary Peter J. Rappa Introduction ....................................................................................................................................... 1 General Summary ............................................................................................................................... 3 Physical Oceanographic CondIbons. ...................................................................................... 3 Nearshore Marine CommumUes ................................................................................................... 4 Cetaceans in Hawcuian.. Waters ..................................................................................................... 5 Other Threatened and Endangered Species .................................................................................. 5 Traditional Uses of the Marine Environment ............................................................................... 5 current and Potential uses ........................................................................................................... 6 Management Issues Related to Activities and Uses in Sanctuary Waters .................................... 7 Chapter 2 Review of the Physical Oceanographic Conditions Within the Designated Sanctuary Jacquelin Miller . Data Sources ...................................................................................................................................... 9 Geology ............................................................................................................................................. 9 Geomorphology/Bathymetry ...................... ...................................................................................... 9 Meteorology and Climatology ......................................................................................................... 10 ChemistryNater Quality ............................................................................................................... 12 oceanography .................................................................................................................................. 14 summary .......................................................................................................................................... 15 Recommendations ............................................... ........................................................................... 16 References ....................................................................................................................................... 16 Chapter 3 Nearshore Marine Csrnrnunities Richard Brock Data .$ol~~ces.................................................................................................................................... 19 Generalizations on the Ecology of Hawaiian Reef Species ............................................................ 19 Shoreline Ecosystems ...................................................................................................................... 20 Subtidai Ecosystems ........................................................................................................................ 22 Disturbance to Hawaiian Shallow Water Ecosystems ..................................................................... 24 Natural Disturbance .................................................................................................................... 24 Anthropogenic Disturbance ........................................................................................................ 25 Sedimentation .................................................................................................................................. 25 Sewage ............................................................................................................................................. 26 I iii Thermal .......................................................................................................................................... 27 Introduced Species ........................................................................................................................... 27 Overfishing ...................................................................................................................................... 29 Site Specific Studies ........................................................................................................................ 29 Recommendations .......................................................................................................................... 30 References .......................................................................................................................................30 Appendix 3.1 ................................................................................................................................... 37 Chapter 4 Cetaceans in Hawaiian Waters Joseph Mobley, J,: Data Sources .....................................................................................................................................47 Protection, Legislation. and Management ....................................................................................... 47 1993 Marine Mamm& Survey ...................................................................................................... 47 Cetacean Species Resident in Hawau .............................................................................................. 48 Bottlenosed Dolphins .................................................................................................................48 False Killer Whales ....................................................................................................................49 Spinner Dolphins ............................................. .......................................................................... 50 Spotted Dolphins ........................................................................................................................ 51 Odontocete Prey Species ............................................................................................................. 51 Predators ....................................................................................................................................
Recommended publications
  • Submerged Shorelines and Shelves in the Hawaiian Islands and a Revision of Some of the Eustatic Emerged Shorelines
    HAROLD T. STEARNS Hawaii Institute of Geophysics, University of Hawaii, 2525 Correa Road, Honolulu, Hawaii 96822 Submerged Shorelines and Shelves in the Hawaiian Islands and a Revision of Some of the Eustatic Emerged Shorelines ABSTRACT IS8°| 00' KAHUKU POINT __ .Type locality of Kawelo low stand The paper presents new C14 and uran.um series dates on Oahu and their bearing on 0 A H U the dating of fluctuations of sea level dm: to glacioeustatism during the Wisconsinan. The — 60- and — 120-ft shorelines are shown to be Wisconsinan. Scuba and sub- mersible diving has made it possible to study the submerged shorelines. Some of the submerged shorelines are notches in vertical cliffs and were not previously found , KAPAPA ISLAND - by detailed soundings. The —350-ft shelf, \J /¡/ Jk .Konoohe -80ft.shore line previously thought to be a drowned wave- • /^^KEKEPA ISLAND cut platform, proved to be a drowned coral v ULUPAU CRATER reef. Shorelines and drowned reefs indicate r^w « stillstands below sea level at 15, 30, 60, 80, •POPOIA ISLAND 120, 150, 185, 205, 240±, 350, 1,200 to aimanalo shore 1,800, and 3,000 to 3,600 ft. Those above line and Bellows —450 ft are thought to be glacioeustatic. \ Field formation \ MANANA ISLANO Those below —450 ft are the result of sub- Ni«^MoKai Ronge sidence. Key words: Quaternary, -60 ft. and Makapuu -120ft dune limestone, geomorphology, geo- shore lines cbronology. Honaumo Bo/ Koko-l5ft. shelf SLACK PT. KOKO HEAD INTRODUCTION •Type locality of Leahi I shore line All submerged shorelines described Figure 1.
    [Show full text]
  • Kilauea Point NWR Was Super Nice and Welcoming
    National Wildlife Refuge Visitor Survey 2010/2011: Individual Refuge Results for Kīlauea Point National Wildlife Refuge By Natalie R. Sexton, Alia M. Dietsch, Andrew W. Don Carlos, Lynne Koontz, Adam N. Solomon and Holly M. Miller I absolutely love the Kīlauea Point National Wildlife Refuge. We go there every time we go to Kauai (3 times to date). The views and the birds and whale-watching are spectacular in any kind of weather. I really wouldn't change anything... I want to thank the volunteers and the U.S. Fish and Wildlife [Service] and National Wildlife Refuge System for making this all possible. Places like the Kīlauea Point Refuge are our nation's treasures and it is so critical we nurture and honor them.— Survey comment from visitor to Kīlauea Point National Wildlife Refuge. Nēnē (Hawaiian goose) at Kīlauea Point National Wildlife Refuge. Photo credit: U.S. Fish and Wildlife Service. Contents Acknowledgments ......................................................................................................................................................... iv Introduction .................................................................................................................................................................... 1 Organization of Results .................................................................................................................................................. 1 Methods ........................................................................................................................................................................
    [Show full text]
  • Topographic History of the Maui Nui Complex, Hawai'i, and Its Implications for Biogeography1
    Topographic History ofthe Maui Nui Complex, Hawai'i, and Its Implications for Biogeography 1 Jonathan Paul Price 2,4 and Deborah Elliott-Fisk3 Abstract: The Maui Nui complex of the Hawaiian Islands consists of the islands of Maui, Moloka'i, Lana'i, and Kaho'olawe, which were connected as a single landmass in the past. Aspects of volcanic landform construction, island subsi­ dence, and erosion were modeled to reconstruct the physical history of this complex. This model estimates the timing, duration, and topographic attributes of different island configurations by accounting for volcano growth and subsi­ dence, changes in sea level, and geomorphological processes. The model indi­ cates that Maui Nui was a single landmass that reached its maximum areal extent around 1.2 Ma, when it was larger than the current island of Hawai'i. As subsi­ dence ensued, the island divided during high sea stands of interglacial periods starting around 0.6 Ma; however during lower sea stands of glacial periods, islands reunited. The net effect is that the Maui Nui complex was a single large landmass for more than 75% of its history and included a high proportion of lowland area compared with the contemporary landscape. Because the Hawaiian Archipelago is an isolated system where most of the biota is a result of in situ evolution, landscape history is an important detertninant of biogeographic pat­ terns. Maui Nui's historical landscape contrasts sharply with the current land­ scape but is equally relevant to biogeographical analyses. THE HAWAIIAN ISLANDS present an ideal logic histories that can be reconstructed more setting in which to weigh the relative influ­ easily and accurately than in most regions.
    [Show full text]
  • Hawaiian Volcanoes: from Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012
    AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012 Conveners Michael Poland, USGS – Hawaiian Volcano Observatory, USA Paul Okubo, USGS – Hawaiian Volcano Observatory, USA Ken Hon, University of Hawai'i at Hilo, USA Program Committee Rebecca Carey, University of California, Berkeley, USA Simon Carn, Michigan Technological University, USA Valerie Cayol, Obs. de Physique du Globe de Clermont-Ferrand Helge Gonnermann, Rice University, USA Scott Rowland, SOEST, University of Hawai'i at M noa, USA Financial Support 2 AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Meeting At A Glance Sunday, 19 August 2012 1600h – 1700h Welcome Reception 1700h – 1800h Introduction and Highlights of Kilauea’s Recent Eruption Activity Monday, 20 August 2012 0830h – 0900h Welcome and Logistics 0900h – 0945h Introduction – Hawaiian Volcano Observatory: Its First 100 Years of Advancing Volcanism 0945h – 1215h Magma Origin and Ascent I 1030h – 1045h Coffee Break 1215h – 1330h Lunch on Your Own 1330h – 1430h Magma Origin and Ascent II 1430h – 1445h Coffee Break 1445h – 1600h Magma Origin and Ascent Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Origin and Ascent III 1645h – 1900h Poster Session Tuesday, 21 August 2012 0900h – 1215h Magma Storage and Island Evolution I 1215h – 1330h Lunch on Your Own 1330h – 1445h Magma Storage and Island Evolution II 1445h – 1600h Magma Storage and Island Evolution Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Storage
    [Show full text]
  • Life History, Mating Behavior, and Multiple Paternity in Octopus
    LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career.
    [Show full text]
  • 25 Using Community Group Monitoring Data to Measure The
    25 Using Community Group Monitoring Data To Measure The Effectiveness Of Restoration Actions For Australia's Woodland Birds Michelle Gibson1, Jessica Walsh1,2, Nicki Taws5, Martine Maron1 1Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia, 2School of Biological Sciences, Monash University, Clayton, Melbourne, 3800, Victoria, Australia, 3Greening Australia, Aranda, Canberra, 2614 Australian Capital Territory, Australia, 4BirdLife Australia, Carlton, Melbourne, 3053, Victoria, Australia, 5Greening Australia, PO Box 538 Jamison Centre, Macquarie, Australian Capital Territory 2614, Australia Before conservation actions are implemented, they should be evaluated for their effectiveness to ensure the best possible outcomes. However, many conservation actions are not implemented under an experimental framework, making it difficult to measure their effectiveness. Ecological monitoring datasets provide useful opportunities for measuring the effect of conservation actions and a baseline upon which adaptive management can be built. We measure the effect of conservation actions on Australian woodland ecosystems using two community group-led bird monitoring datasets. Australia’s temperate woodlands have been largely cleared for agricultural production and their bird communities are in decline. To reverse these declines, a suite of conservation actions has been implemented by government and non- government agencies, and private landholders. We analysed the response of total woodland bird abundance, species richness, and community condition, to two widely-used actions — grazing exclusion and replanting. We recorded 139 species from 134 sites and 1,389 surveys over a 20-year period. Grazing exclusion and replanting combined had strong positive effects on all three bird community metrics over time relative to control sites, where no actions had occurred.
    [Show full text]
  • THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution
    VOLCANISM IN HAWAII Chapter 1 - .-............,. THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution By David A. Clague and G. Brent Dalrymple ABSTRACT chain, the near-fixity of the hot spot, the chemistry and timing of The Hawaiian-Emperor volcanic chain stretches nearly the eruptions from individual volcanoes, and the detailed geom­ 6,000 km across the North Pacific Ocean and consists of at least etry of volcanism. None of the geophysical hypotheses pro­ t 07 individual volcanoes with a total volume of about 1 million posed to date are fully satisfactory. However, the existence of km3• The chain is age progressive with still-active volcanoes at the Hawaiian ewell suggests that hot spots are indeed hot. In the southeast end and 80-75-Ma volcanoes at the northwest addition, both geophysical and geochemical hypotheses suggest end. The bend between the Hawaiian and .Emperor Chains that primitive undegassed mantle material ascends beneath reflects a major change in Pacific plate motion at 43.1 ± 1.4 Ma Hawaii. Petrologic models suggest that this primitive material and probably was caused by collision of the Indian subcontinent reacts with the ocean lithosphere to produce the compositional into Eurasia and the resulting reorganization of oceanic spread­ range of Hawaiian lava. ing centers and initiation of subduction zones in the western Pacific. The volcanoes of the chain were erupted onto the floor of the Pacific Ocean without regard for the age or preexisting INTRODUCTION structure of the ocean crust. Hawaiian volcanoes erupt lava of distinct chemical com­ The Hawaiian Islands; the seamounts, hanks, and islands of positions during four major stages in their evolution and the Hawaiian Ridge; and the chain of Emperor Seamounts form an growth.
    [Show full text]
  • Humpback Whale Tagging in Hawaii
    Submitted in support of the U.S. Navy’s 2019 Annual Marine Species Monitoring Report for the Pacific Humpback Whale Tagging in Support of Marine Mammal Monitoring Across Multiple Navy Training Areas in the Pacific Ocean: Preliminary Summary of Field Tagging Effort in Hawaii in March 2019 Prepared for: Commander, U.S. Pacific Fleet, and Commander, Naval Sea Systems Command Submitted to: Naval Facilities Engineering Command, Southwest under Cooperative Ecosystem Studies Unit, Department of the Navy Cooperative Agreement No. N62473‐19‐2‐0002 Prepared by: Bruce R. Mate, Daniel M. Palacios, C. Scott Baker, Barbara A. Lagerquist, Ladd M. Irvine, Tomas M. Follett, Debbie Steel, and Craig E. Hayslip Oregon State University, Marine Mammal Institute Hatfield Marine Science Center 2030 SE Marine Science Drive Newport, OR 97365 15 August 2019 Submitted in support of the U.S. Navy’s 2019 Annual Marine Species Monitoring Report for the Pacific Suggested Citation: Mate, B.R., D.M. Palacios, C.S. Baker, B.A. Lagerquist, L.M. Irvine, T.M. Follett, D. Steel, and C.E. Hayslip. 2019. Humpback Whale Tagging in Support of Marine Mammal Monitoring Across Multiple Navy Training Areas in the Pacific Ocean: Preliminary Summary of Field Tagging Effort in Hawaii in March 2019. Prepared for Commander, U.S. Pacific Fleet, and Commander, Naval Sea Systems Command. Submitted to Naval Facilities Engineering Command, Southwest, under Cooperative Ecosystem Studies Unit, Department of the Navy Cooperative Agreement No. N62473‐19‐2‐0002. Oregon State University, Newport, Oregon, 15 August 2019. 14 pp. ii Submitted in support of the U.S. Navy’s 2019 Annual Marine Species Monitoring Report for the Pacific Form Approved REPORT DOCUMENTATION PAGE OMB No.
    [Show full text]
  • Opihi Cellana Talcosa (Ko`Ele)
    Aquaculture of the giant opihi Cellana talcosa (ko`ele). Development of an artificial diet. Harry Ako with technical assistance of Nhan Hua Department of Molecular Biosciences and Bioengineering (MBBE), College of Agricultural Sciences and Human Resources University of Hawaii, Manoa Introduction and Background Honolulu Advertiser, Wed, June 1, 2005 •Scientists fear that the largest and most prized species of the hardy 'opihi a uniquely Hawaiian delicacy may be essentially extinct on O'ahu, and the population of other limpets statewide is also on the decline. •“Pupu” in Hawaiian means “snail” and in modern times it is used to mean hors d’oeuvres. Opihi were the most favored pupu traditionally. Opihi • High value potential aquacultured product in Hawaii, $150/gallon with shell on. A century ago, 'opihi pickers were selling 140,000 pounds of the limpets annually. In recent years the number has been less than 10 percent of that, around 13,000 pounds. • They dubbed ‘opihi “the fish of death” because so many people were swept away while prying it off the rocks. www.nature.org Three main species of opihi in Hawaii • Cellana sandwicensis - opihi alinalina – yellow foot – most common – preferred • Cellana exarata - opihi makaiauli – black foot – not preferred • Cellana talcosa - opihi ko`ele – giant opihi – grows fast –lives in calm, deep water – we targeted this http://www2.hawaii.edu/~cbird/Opihi/frames.htm Other views Cellana exarata (opihi makaiauli) Cellana sandwicensis (opihi alinalina) Cellana talcosa (opihi ko`ele) Outline of this talk • To talk story about optimization of capture and holding strategies. Problem: 75% mortality in early days of holding and transferring.
    [Show full text]
  • 2010 WSN Short Program
    SCHEDULE OF EVENTS THURSDAY, NOVEMBER 11, 2010 1800 WSN STUDENT WORKSHOP (Salon ABC) BECOMING A BETTER BIOLOGICAL BLOGGER: USING THE WEB TO COMMUNICATE SCIENCE TO THE PUBLIC Speakers include: Carol Blanchette, Marine Science Institute, University of California Santa Barbara Miriam Goldstein, Scripps Institution of Oceanography, UCSD Kristen Marhaver, CARMABI, Scripps Institution of Oceanography, UCSD 2030 WSN STUDENT MIXER Point Loma Sports Grill and Pub (2750 Dewey Rd, San Diego, CA) Open to all graduate and undergraduate students; no ticket required. See the student desk for directions. FRIDAY, NOVEMBER 12, 2010 0855-1200 STUDENT SYMPOSIUM (Salon ABC) HUMAN IMPACTS ON COASTAL ECOSYSTEMS 1200-1300 LUNCH 1300-1745 CONTRIBUTED PAPERS 1830-2030 WSN POSTER SESSION (Salon ABC) 1930-2230 ATTITUDE ADJUSTMENT HOUR (AAH) (Salon ABC) SATURDAY, NOVEMBER 13, 2010 0800-1115 PRESIDENTIAL SYMPOSIUM (Salon ABC) CREATIVITY, CONTROVERSY, AND ECOLOGICAL CANON: A SYMPOSIUM HONORING PETER F. SALE 1115 AWARDING OF LIFETIME ACHIEVEMENT AWARD (by Phil Levin) 1130 AWARDING OF NATURALIST OF THE YEAR (by Phil Levin) 1135 WSN NATURALIST OF THE YEAR (Shara Fisler) 1200-1300 LUNCH 1300-1800 CONTRIBUTED PAPERS 1800-1900 ANNUAL BUSINESS MEETING (Roosevelt Room) 1900-2100 PRESIDENTIAL BANQUET (Salon ABC) 2100-0100 WSN AUCTION followed by DANCE (Salon ABC) SUNDAY, NOVEMBER 14, 2010 0830-1230 CONTRIBUTED PAPERS 1230-1330 LUNCH 1330-1445 CONTRIBUTED PAPERS 1 FRIDAY, NOVEMBER 12, 2010 STUDENT SYMPOSIUM (0855-1200) SALON ABC HUMAN IMPACTS ON COASTAL ECOSYSTEMS 0855 INTRODUCTION
    [Show full text]
  • Section 3.4 Invertebrates
    Hawaii-Southern California Training and Testing Final EIS/OEIS October 2018 Final Environmental Impact Statement/Overseas Environmental Impact Statement Hawaii-Southern California Training and Testing TABLE OF CONTENTS 3.4 Invertebrates .......................................................................................................... 3.4-1 3.4.1 Introduction ........................................................................................................ 3.4-3 3.4.2 Affected Environment ......................................................................................... 3.4-3 3.4.2.1 General Background ........................................................................... 3.4-3 3.4.2.2 Endangered Species Act-Listed Species ............................................ 3.4-15 3.4.2.3 Species Not Listed Under the Endangered Species Act .................... 3.4-20 3.4.3 Environmental Consequences .......................................................................... 3.4-29 3.4.3.1 Acoustic Stressors ............................................................................. 3.4-30 3.4.3.2 Explosive Stressors ............................................................................ 3.4-51 3.4.3.3 Energy Stressors ................................................................................ 3.4-59 3.4.3.4 Physical Disturbance and Strike Stressors ........................................ 3.4-64 3.4.3.5 Entanglement Stressors .................................................................... 3.4-85 3.4.3.6
    [Show full text]
  • Aspects of Community Ecology on Wave-Exposed
    ASPECTS OF COMMUNITY ECOLOGY ON WAVE-EXPOSED ROCKY HAWAI‘IAN COASTS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) DECEMBER 2006 By Christopher Everett Bird Dissertation Committee: Celia M. Smith, Chairperson Kent W. Bridges David C. Duffy Leonard A. Freed E. Alison Kay Halina M. Zaleski We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Botany (Ecology, Evolution and Conservation Biology). DISSERTATION COMMITTEE ________________________________ Chairperson ________________________________ ________________________________ ________________________________ ________________________________ ________________________________ ii Copyright 2006 Christopher Everett Bird All Rights Reserved iii DEDICATION This one goes out to my mom Betsy Bird; my dad George Bird; my grandmother Ethel Bird; my sisters and their families Gwendolyn, Scott, Alex, Mitchell, and Nicholas Bottomley, Evelyn, Mike, Andrew, and Ian Kirner; my best friend John Swistak; my boyz in NL1; my girlz in tha 808; and all the rest of my friends. You are the people who stood by my side, no matter what. Thank you for the good times, the support, and the love. I owe it all to you. iv ACKNOWLEDGMENTS I would like to thank the University of Hawaii Sea Grant College (this is publication XD- 02-02), University of Hawaii Ecology, Evolution and Conservation Biology Program, National Parks Service, and Northwestern Hawaiian Islands National Monument for funding the research presented in this dissertation. This dissertation would not have happened without the inspiration of a few special people.
    [Show full text]