Chapter 7 Momentum Conservation Overview

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7 Momentum Conservation Overview Chapter 7 Momentum Conservation: Overview 53 Chapter 7 Momentum Conservation Overview We began this course by focusing on the idea of physical systems, energy systems, and transfers of energy between different physical systems. In earlier chapters, we concentrated on applying an approach to understanding our physical universe that emphasized the results of interactions. The question we tried to answer was what happened to a physical system from a time before to a time after the system interacted with other systems. We tried to avoid needing to understand the details of the interaction. We discovered that changes of energy of a physical system is a very useful measure of the interaction, not the only measure, but certainly a very useful measure. We couldn’t completely avoid the details of interactions, however. We saw that force, the agent of interaction, was involved in the amount of energy transferred during an interaction. Specifically, the differential amount of energy transferred as work, dW, is equal to the product of the parallel component of an externally applied force and the distance moved: st dW = F||dx. We wrote a conservation of energy expression (a more general form of the 1 law of thermodynamics that allows for all kinds of energy changes) to express how the energy of a system changes in response to energy inputs in the form of heat or work: dE = dQ + dW. We saw how we could apply this energy formalism to more traditional thermodynamic systems (gases, heat engines) as well as to mechanical systems. We also developed a simple particulate model of matter in earlier chapters that involved modeling the bonds between atoms and molecules as analogous to masses hanging on springs, the masses being in continuous random oscillation. This simple model allowed us to explain and predict many of the thermal properties of matter in its various states. Again, we avoided the details of oscillations and focused only on changes in energies. In this chapter, we continue our focus on the results of interactions. We are still trying to address what happens to a physical system from a time before to a time after the system interacted with other systems. We will analyze two new physical quantities (momentum and angular momentum) that round out our understanding of the results of an interaction. We still cannot completely avoid the details of interactions. We will see that force, the agent of interaction, is also involved when either momentum or angular momentum is transferred during an interaction. x f Instead of calculating an energy transfer called work, W F dx (or, in differential form, = ∫ || xi dW = F||dx), we calculate a momentum transfer called impulse, J = ∫ F dt from t1 to t2 (or, in differential form, dJ = F dt). We will write a conservation of momentum expression, ∆p = J, to express how the momentum of a system changes in response to momentum inputs in the form of impulse. We will see both similarities and differences with energy. One difference is that both momentum and impulse, unlike energy and work, are vector quantities. A physical quantity is a vector if it has both a magnitude and a direction associated with it. We indicate vectors by either making the symbol bold, or using arrows over the symbols. One interesting aspect of forces for us right now is the relationship of forces to the motion of material objects. It is traditional to say that these relationships are governed by Newton's three laws. However, there are many features of forces, some rather subtle, that we need to wrestle a bit with before we can appreciate and use 54 Chapter 7 Momentum Conservation: Overview Newton's Laws to answer interesting questions regarding so much of our everyday experience in the physical world. So initially we avoid the details of the motion during the interaction and focus only on changes in momentum. Then, in Chapter 8: The Relation of Force to Motion, we will explicitly use the time dependence of the impulse to find the detailed time dependence of the motion, rather than just comparing the end result of changes between two points in time. The first model/approach in this chapter, Momentum Conservation, gets us into the meaning of momentum and how changes in momentum are related to forces. We will solidify a lot of learning regarding forces that was introduced in Chapter 6. Then in the second model/approach of this chapter, Angular Momentum Conservation, we explore the fascinating world of rotating objects, from molecules to galaxies. We extend the ideas/constructs of force, impulse, and momentum to their analogous rotational or angular counterparts: torque, angular impulse, and angular momentum. You will have ample opportunity to sharpen your vector manipulation skills that were introduced in Chapter 6. Chapter 7 Momentum Conservation: Linear Momentum Model 55 (Linear) Momentum Conservation Model (Summary on foldout) Overview of the Model As you begin this chapter, listening in lecture and working in class, it must seem, at least at first, that you are being introduced to a lot of new concepts. The representation of the motion of an object and the forces acting on an object are necessary ideas to understand before we can fully understand this new conserved quantity called momentum. One goal of this (and the next) chapter is to understand the effects of forces on motion and we begin to do this in this chapter through a discussion of momentum and transfers of momentum. We introduce two concepts which are completely new: momentum and impulse. However, we are taking great pains to help you see how these concepts play roles very similarly to energy and work. So, yes, you have to memorize that momentum, p, is the product of mass and velocity (p = mv). And you have to be careful to not forget that momentum has vector properties, just as velocity does. But, impulse is not an isolated construct you file away in your brain somewhere. Rather, you should really strive to understand impulse in analogy to work. A transfer of energy as work changes the energy of a physical system. Similarly, a transfer of momentum as an impulse changes the momentum of a system. Energy is conserved. Momentum is also conserved. Of course, there are differences between momentum and energy and between impulse and work. As you work in class, as you study this text, as you work the FNT’s, and as you interact with other students and with instructors as you mentally struggle with this material, try to understand these new concepts in relation to what you already know, rather than as simply some more isolated facts that you memorize. Review and Extension of the “Before and After” Interaction Approach In Chapters 1 and 2 we focused on changes in the energy of a physical system. Energy has meaning for one particle or 1023 particles, for objects as small as the nucleus of an atom and as large as a galaxy. It really is a universal concept that applies to any physical system. It turns out that there are two other concepts that are like energy in that they are universally applicable, are transferred among systems as a result of interactions, and the amount transferred gives very useful information that does not depend on the details of the interaction. These are the concepts of momentum and angular momentum. Integrating “the Agent” of Interactions We have called force the “agent of interactions”. Interactions occur between objects as they exert forces on each other. Objects experience changes in energy when other objects exert forces on them and do work on them. We recall that the amount of energy change caused by a force is the integral of the force over a distance. This integral is called the work done on a system. The only component that contributes to the work, however, is the component of the force that is parallel to the motion. We usually indicated this component with the symbol F||: xf W = ∫ F||(x) dx = Ef - Ei = ∆ E xi 56 Chapter 7 Momentum Conservation: Linear Momentum Model Or, if F is constant, or we define an average force Favg, we can write W =Favg||∆x = Ef - Ei = ∆E In other words, the parallel component of force integrated over the path of the motion is the work, and this work equals the amount of energy transferred to the system due to the application of the force by an object outside the system. A similar integral of the force is equal to the change in momentum of the system. But instead of integrating over distance, we now integrate over time. This integral is called the impulse of the force, F. We represent the impulse with the symbol J. tf J = ∫ F(t) dt = pf - pi = ∆p ti Or, if F is constant, or we define an average force, Favg, then J = Favg ∆t = pf - pi = ∆p Impulse is a vector quantity and causes a change in a vector property of a system: specifically, a change in the linear momentum, ∆p. The change in momentum, is of course, independent of what Galilean reference frame we choose to measure the momenta in. Note on units: Force has SI units of newtons, of course. Impulse must therefore have units of newton seconds, N s. Momentum, the product of mass and velocity, must have SI units of kilogram meter per second, kg m/s. Since these two quantities are equated, these units must be equivalent, as you can show using the relation N = kg m/s2. Linear Momentum The linear momentum of an object is simply the product of the object’s mass and velocity: p = mv Linear momentum incorporates the notion of inertia, expressed as mass, as well as the speed and 1 2 direction of motion.
Recommended publications
  • The First Law of Thermodynamics for Closed Systems A) the Energy
    Chapter 3: The First Law of Thermodynamics for Closed Systems a) The Energy Equation for Closed Systems We consider the First Law of Thermodynamics applied to stationary closed systems as a conservation of energy principle. Thus energy is transferred between the system and the surroundings in the form of heat and work, resulting in a change of internal energy of the system. Internal energy change can be considered as a measure of molecular activity associated with change of phase or temperature of the system and the energy equation is represented as follows: Heat (Q) Energy transferred across the boundary of a system in the form of heat always results from a difference in temperature between the system and its immediate surroundings. We will not consider the mode of heat transfer, whether by conduction, convection or radiation, thus the quantity of heat transferred during any process will either be specified or evaluated as the unknown of the energy equation. By convention, positive heat is that transferred from the surroundings to the system, resulting in an increase in internal energy of the system Work (W) In this course we consider three modes of work transfer across the boundary of a system, as shown in the following diagram: Source URL: http://www.ohio.edu/mechanical/thermo/Intro/Chapt.1_6/Chapter3a.html Saylor URL: http://www.saylor.org/me103#4.1 Attributed to: Israel Urieli www.saylor.org Page 1 of 7 In this course we are primarily concerned with Boundary Work due to compression or expansion of a system in a piston-cylinder device as shown above.
    [Show full text]
  • Law of Conversation of Energy
    Law of Conservation of Mass: "In any kind of physical or chemical process, mass is neither created nor destroyed - the mass before the process equals the mass after the process." - the total mass of the system does not change, the total mass of the products of a chemical reaction is always the same as the total mass of the original materials. "Physics for scientists and engineers," 4th edition, Vol.1, Raymond A. Serway, Saunders College Publishing, 1996. Ex. 1) When wood burns, mass seems to disappear because some of the products of reaction are gases; if the mass of the original wood is added to the mass of the oxygen that combined with it and if the mass of the resulting ash is added to the mass o the gaseous products, the two sums will turn out exactly equal. 2) Iron increases in weight on rusting because it combines with gases from the air, and the increase in weight is exactly equal to the weight of gas consumed. Out of thousands of reactions that have been tested with accurate chemical balances, no deviation from the law has ever been found. Law of Conversation of Energy: The total energy of a closed system is constant. Matter is neither created nor destroyed – total mass of reactants equals total mass of products You can calculate the change of temp by simply understanding that energy and the mass is conserved - it means that we added the two heat quantities together we can calculate the change of temperature by using the law or measure change of temp and show the conservation of energy E1 + E2 = E3 -> E(universe) = E(System) + E(Surroundings) M1 + M2 = M3 Is T1 + T2 = unknown (No, no law of conservation of temperature, so we have to use the concept of conservation of energy) Total amount of thermal energy in beaker of water in absolute terms as opposed to differential terms (reference point is 0 degrees Kelvin) Knowns: M1, M2, T1, T2 (Kelvin) When add the two together, want to know what T3 and M3 are going to be.
    [Show full text]
  • Chapter 6. Time Evolution in Quantum Mechanics
    6. Time Evolution in Quantum Mechanics 6.1 Time-dependent Schrodinger¨ equation 6.1.1 Solutions to the Schr¨odinger equation 6.1.2 Unitary Evolution 6.2 Evolution of wave-packets 6.3 Evolution of operators and expectation values 6.3.1 Heisenberg Equation 6.3.2 Ehrenfest’s theorem 6.4 Fermi’s Golden Rule Until now we used quantum mechanics to predict properties of atoms and nuclei. Since we were interested mostly in the equilibrium states of nuclei and in their energies, we only needed to look at a time-independent description of quantum-mechanical systems. To describe dynamical processes, such as radiation decays, scattering and nuclear reactions, we need to study how quantum mechanical systems evolve in time. 6.1 Time-dependent Schro¨dinger equation When we first introduced quantum mechanics, we saw that the fourth postulate of QM states that: The evolution of a closed system is unitary (reversible). The evolution is given by the time-dependent Schrodinger¨ equation ∂ ψ iI | ) = ψ ∂t H| ) where is the Hamiltonian of the system (the energy operator) and I is the reduced Planck constant (I = h/H2π with h the Planck constant, allowing conversion from energy to frequency units). We will focus mainly on the Schr¨odinger equation to describe the evolution of a quantum-mechanical system. The statement that the evolution of a closed quantum system is unitary is however more general. It means that the state of a system at a later time t is given by ψ(t) = U(t) ψ(0) , where U(t) is a unitary operator.
    [Show full text]
  • 1. Define Open, Closed, Or Isolated Systems. If You Use an Open System As a Calorimeter, What Is the State Function You Can Calculate from the Temperature Change
    CH301 Worksheet 13b Answer Key—Internal Energy Lecture 1. Define open, closed, or isolated systems. If you use an open system as a calorimeter, what is the state function you can calculate from the temperature change. If you use a closed system as a calorimeter, what is the state function you can calculate from the temperature? Answer: An open system can exchange both matter and energy with the surroundings. Δ H is measured when an open system is used as a calorimeter. A closed system has a fixed amount of matter, but it can exchange energy with the surroundings. Δ U is measured when a closed system is used as a calorimeter because there is no change in volume and thus no expansion work can be done. An isolated system has no contact with its surroundings. The universe is considered an isolated system but on a less profound scale, your thermos for keeping liquids hot approximates an isolated system. 2. Rank, from greatest to least, the types internal energy found in a chemical system: Answer: The energy that holds the nucleus together is much greater than the energy in chemical bonds (covalent, metallic, network, ionic) which is much greater than IMF (Hydrogen bonding, dipole, London) which depending on temperature are approximate in value to motional energy (vibrational, rotational, translational). 3. Internal energy is a state function. Work and heat (w and q) are not. Explain. Answer: A state function (like U, V, T, S, G) depends only on the current state of the system so if the system is changed from one state to another, the change in a state function is independent of the path.
    [Show full text]
  • First Law of Thermodynamics Control Mass (Closed System)
    First Law of Thermodynamics Reading Problems 3-2 ! 3-7 3-40, 3-54, 3-105 5-1 ! 5-2 5-8, 5-25, 5-29, 5-37, 5-40, 5-42, 5-63, 5-74, 5-84, 5-109 6-1 ! 6-5 6-44, 6-51, 6-60, 6-80, 6-94, 6-124, 6-168, 6-173 Control Mass (Closed System) In this section we will examine the case of a control surface that is closed to mass flow, so that no mass can escape or enter the defined control region. Conservation of Mass Conservation of Mass, which states that mass cannot be created or destroyed, is implicitly satisfied by the definition of a control mass. Conservation of Energy The first law of thermodynamics states “Energy cannot be created or destroyed it can only change forms”. energy entering - energy leaving = change of energy within the system Sign Convention Cengel Approach Heat Transfer: heat transfer to a system is positive and heat transfer from a system is negative. Work Transfer: work done by a system is positive and work done on a system is negative. For instance: moving boundary work is defined as: Z 2 Wb = P dV 1 During a compression process, work is done on the system and the change in volume goes negative, i.e. dV < 0. In this case the boundary work will also be negative. 1 Culham Approach Using my sign convention, the boundary work is defined as: Z 2 Wb = − P dV 1 During a compression process, the change in volume is still negative but because of the negative sign on the right side of the boundary work equation, the bound- ary work directed into the system is considered positive.
    [Show full text]
  • Chapter 9 – Center of Mass and Linear Momentum I
    Chapter 9 – Center of mass and linear momentum I. The center of mass - System of particles / - Solid body II. Newton’s Second law for a system of particles III. Linear Momentum - System of particles / - Conservation IV. Collision and impulse - Single collision / - Series of collisions V. Momentum and kinetic energy in collisions VI. Inelastic collisions in 1D -Completely inelastic collision/ Velocity of COM VII. Elastic collisions in 1D VIII. Collisions in 2D IX. Systems with varying mass X. External forces and internal energy changes I. Center of mass The center of mass of a body or a system of bodies is a point that moves as though all the mass were concentrated there and all external forces were applied there. - System of particles: General: m1x1 m2 x2 m1x1 m2 x2 xcom m1 m2 M M = total mass of the system - The center of mass lies somewhere between the two particles. - Choice of the reference origin is arbitrary Shift of the coordinate system but center of mass is still at the same relative distance from each particle. I. Center of mass - System of particles: m2 xcom d m1 m2 Origin of reference system coincides with m1 3D: 1 n 1 n 1 n xcom mi xi ycom mi yi zcom mi zi M i1 M i1 M i1 1 n rcom miri M i1 - Solid bodies: Continuous distribution of matter. Particles = dm (differential mass elements). 3D: 1 1 1 xcom x dm ycom y dm zcom z dm M M M M = mass of the object M Assumption: Uniform objects uniform density dm dV V 1 1 1 Volume density xcom x dV ycom y dV zcom z dV V V V Linear density: λ = M / L dm = λ dx Surface density: σ = M / A dm = σ dA The center of mass of an object with a point, line or plane of symmetry lies on that point, line or plane.
    [Show full text]
  • Discipline in Thermodynamics
    energies Perspective Discipline in Thermodynamics Adrian Bejan Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300, USA; [email protected] Received: 24 April 2020; Accepted: 11 May 2020; Published: 15 May 2020 Abstract: Thermodynamics is a discipline, with unambiguous concepts, words, laws and usefulness. Today it is in danger of becoming a Tower of Babel. Its key words are being pasted brazenly on new concepts, to promote them with no respect for their proper meaning. In this brief Perspective, I outline a few steps to correct our difficult situation. Keywords: thermodynamics; discipline; misunderstandings; disorder; entropy; second law; false science; false publishing 1. Our Difficult Situation Thermodynamics used to be brief, simple and unambiguous. Today, thermodynamics is in a difficult situation because of the confusion and gibberish that permeate through scientific publications, popular science, journalism, and public conversations. Thermodynamics, entropy, and similar names are pasted brazenly on new concepts in order to promote them, without respect for their proper meaning. Thermodynamics is a discipline, a body of knowledge with unambiguous concepts, words, rules and promise. Recently, I made attempts to clarify our difficult situation [1–4], so here are the main ideas: The thermodynamics that in the 1850s joined science serves now as a pillar for the broadest tent, which is physics. From Carnot, Rankine, Clausius, and William Thomson (Lord Kelvin) came not one but two laws: the law of energy conservation (the first law) and the law of irreversibility (the second law). The success of the new science has been truly monumental, from steam engines and power plants of all kinds, to electric power in every outlet, refrigeration, air conditioning, transportation, and fast communication today.
    [Show full text]
  • Chemical Engineering Thermodynamics
    CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY | 1 TABLE OF CONTENTS Symbol Dictionary ........................................................................................................................ 3 1. Measured Thermodynamic Properties and Other Basic Concepts .................................. 5 1.1 Preliminary Concepts – The Language of Thermodynamics ........................................................ 5 1.2 Measured Thermodynamic Properties .......................................................................................... 5 1.2.1 Volume .................................................................................................................................................... 5 1.2.2 Temperature ............................................................................................................................................. 5 1.2.3 Pressure .................................................................................................................................................... 6 1.3 Equilibrium ................................................................................................................................... 7 1.3.1 Fundamental Definitions .......................................................................................................................... 7 1.3.2 Independent and Dependent Thermodynamic Properties ........................................................................ 7 1.3.3 Phases .....................................................................................................................................................
    [Show full text]
  • Chapter 5 the Laws of Thermodynamics: Entropy, Free
    Chapter 5 The laws of thermodynamics: entropy, free energy, information and complexity M.W. Collins1, J.A. Stasiek2 & J. Mikielewicz3 1School of Engineering and Design, Brunel University, Uxbridge, Middlesex, UK. 2Faculty of Mechanical Engineering, Gdansk University of Technology, Narutowicza, Gdansk, Poland. 3The Szewalski Institute of Fluid–Flow Machinery, Polish Academy of Sciences, Fiszera, Gdansk, Poland. Abstract The laws of thermodynamics have a universality of relevance; they encompass widely diverse fields of study that include biology. Moreover the concept of information-based entropy connects energy with complexity. The latter is of considerable current interest in science in general. In the companion chapter in Volume 1 of this series the laws of thermodynamics are introduced, and applied to parallel considerations of energy in engineering and biology. Here the second law and entropy are addressed more fully, focusing on the above issues. The thermodynamic property free energy/exergy is fully explained in the context of examples in science, engineering and biology. Free energy, expressing the amount of energy which is usefully available to an organism, is seen to be a key concept in biology. It appears throughout the chapter. A careful study is also made of the information-oriented ‘Shannon entropy’ concept. It is seen that Shannon information may be more correctly interpreted as ‘complexity’rather than ‘entropy’. We find that Darwinian evolution is now being viewed as part of a general thermodynamics-based cosmic process. The history of the universe since the Big Bang, the evolution of the biosphere in general and of biological species in particular are all subject to the operation of the second law of thermodynamics.
    [Show full text]
  • Schrödinger's Equation
    Schr¨odinger'sequation Postulates of quantum mechanics de Broglie postulated that entities like electron are particles in the classical sense in that they carry energy and momentum in localized form; and at the same time they are wave-like, i.e. not completely point object, in that they undergo interference. de Broglie's wave-particle duality leads to associating electron and likes with the wave function (x; t) such that j (x; t)j2 gives the probability of finding them at (x; t). A minimum uncertainty wave packet is an example of wave function asssociated with a particle localized over the region x ± ∆x and having momenta spread over k ± ∆k. This wave function describes particle having a constant momentum range k ± ∆k i.e. free particle { particle in absence of any force or potential. But if the particle is acted on by a force, its momentum is going to change and, therefore, free particle wave function is going to change too. The wave function of a particle (x; t) subjected to some force, specified by potential V (x; t), is obtained by solving Schr¨odingerequation, @ (x; t) 2 @2 (x; t) i = − ~ + V (x; t) (x; t): (1) ~ @t 2m @x2 Above is the 1-dimensional Schr¨odingerequation (for 3-dimension replace @2=@x2 by r2 and x by ~x). The Schr¨odingerequation (1) is a postulate of quantum mechanics. We can arrive at Schr¨odinger equation from a few reasonable assumptions, 1. the quantum mechanical wave equation must be consistent with de Broglie hypothesis p = ~k and E = ~!, 2.
    [Show full text]
  • Energy Balances on Closed Systems Energy Balances on Open Systems
    Energy Balances on Closed Systems A system is closed if mass does not cross the system boundary during the period of time covered by energy balance. Energy balance for a closed system written between two instants of time is ∆U + ∆E k + ∆E p = Q − W ∆U is change internal energy, ∆Ek is change in kinetic energy and ∆E p is change in potential energy, Q is heat transferred to the system and W is work done by the system. We take heat lost to surroundings as –ve and heat transferred to the system as +ve. If the system is adiabatic, there is neither gain by the system not heat loss and Q is zero. If there are no moving parts, then W is zero. Energy Balances on Open Systems A system is open if mass crosses the system boundary. For such a system, work must be done on the fluid mass to push it into the system and work is done by the fluid mass exiting the system. These two constitute the flow work and should be included in the energy balance. Work could also be done by the fluid mass on moving parts of the system (example: steam driving a turbine). This is called shaft work. The net rate of work done by an open system on its surroundings includes the works discussed • • • above: W = W s + W fl • • Ws is the shaft work and W fl is the flow work. To understand shaft work, consider a single-inlet and single-outlet system into which fluid enters • 2 3 2 at Pin (N/m ) at a volumetric flow rate of V in (m /s) and leaves the unit at Pout (N/m ) at a • 3 volumetric flow rate of V out (m /s).
    [Show full text]
  • Overview of Energy and Thermodynamics
    Overview of Energy and Thermodynamics In physics, energy is an indirectly observed quantity that is often understood as the ability of a physical system to do work on other physical systems. However, this must be understood as an overly simplified definition, as the laws of thermodynamics demonstrate that not all energy can perform work. Depending on the boundaries of the physical system in question, energy as understood in the above definition may sometimes be better described by concepts such as exergy, emergy and thermodynamic free energy. In the words of Richard Feynman, "It is important to realize that in physics today, we have no knowledge what energy is.” However, it is clear that energy is an indispensable requisite for performing work, and the concept has great importance in natural science. Work = Force x distance The main concept we are trying to understand is what energy is and how energy moves within a system. A system can be a place or an imaginary space. Physicists consider open and closed systems. An open system will allow energy and matter in and out of the system. An isolated system will let no energy or matter in and out. Biologists call a system an ecosystem. An ecosystem is a community of living organisms (plants, animals and microbes) in conjunction with the nonliving components of their environment (things like air, water and mineral soil), interacting as a system. These components are regarded as linked by how energy flows through the system…energy can be in the form of sunlight or food. They are open systems.
    [Show full text]