NOBEL MEETING, LINDAU Bloembergen (1981) Pointed Out, Its Field of Applications Is Wide

Total Page:16

File Type:pdf, Size:1020Kb

NOBEL MEETING, LINDAU Bloembergen (1981) Pointed Out, Its Field of Applications Is Wide NOBEL MEETING, LINDAU Bloembergen (1981) pointed out, its field of applications is wide. As for the large machines, Melvin Laureates Come Down to Earth... Schwartz (1988) reported that the veteran Brookhaven synchrotron (AGS), now much rejuvenated, can produce beam intensities a ... to Lake Constance, in effect, where at What with students, professors, active thousand times higher than when commis­ the end of June the island town of Lindau scientists, diplomats, and media representa­ sioned over 30 years ago, and Broohaven’s welcomed the 44th annual reunion of Nobel tives, a capacity audience of about 800 new relativistic heavy-ion collider RHIC laureates. It was the fifteenth time the physi­ enjoyed a great variety of lectures given by should provide measurement accuracies cists met, who in successive years take it In the laureates. On a theoretical level, T.D. Lee never achieved before. How and what to turn with the laureates in chemistry and medi­ (Nobel Prize 1957) affirmed that composite measure was the main concern of Rudolf cine. When, in 1951, Count Bernadotte initia­ elementary particles may sometimes be trea­ Mössbauer (1961) who in numerous experi­ ted these events the Intention was to help ted as elementary particles in their own right. ments over many years has tried to interact those engaged in German and central Euro­ Willis Lamb (1955) attending for the thir­ with the elusive neutrinos to determine their pean academic life and iso­ properties. Awaiting the re­ lated through war, regain sults of his latest searches, contacts with the international he seemed less optimistic scientific community. The than on previous occasion; Nobel laureates, nucleus of our present means may eminent scientists, served as prove to be inadequate for a powerful catalyst in this pro­ finding the missing parame­ cess. Over the years more ters or solving the mystery of and more interest has con­ solar neutrino shortcomings. centrated on the younger Samuel Ting (1976), an early generations at the start of protagonist of earth-bound their academic or industrial experiments involving large- careers. scale collaborations, now They were offered a unique turns his attention to outer opportunity of meeting and space where a search for talking to leaders in their field, antimatter could be carried real people who otherwise out with rather expensive may have remained just text­ equipment, but needing a book references to them. This much smaller experimental year’s record attendance of Ranks of renown: after a lakeside lunch a score or so of Nobel laureates, mostly group. almost 600 students and as­ Ivar Giaever (1973) dealt sistants from German institu­ physicists, listen to a humorous address by one of their number, a tradition at their Lindau reunions. This year’s speaker was Ivar Giaever, standing next to with more mundane matters, tions was boosted by a large Countess Bernadotte who heads the organization of these annual meetings. such as applying scientific contingent of foreign and (Courtesy: Photo-Studio Jacobs, Lindau) discoveries to everyday grant-aided participants from needs. Early in his career he 47 countries all around the had realized that his more globe. Eager for advice they had many occa­ teenth time, speculated on advantages that rigourous approach as a physicist could be of sions, even during the final boat trip to the flo­ might have resulted from an earlier and bet­ benefit in biology and medicine where prag­ wer paradise, Mainau island, of individual ter understanding of quantum mechanics if matism reigned supreme. As the search for chats with the laureates. These, in turn, ben­ Newton had discovered the Schrödinger abnormal cell division, possibly cancerous, in efited from being confronted at first hand with equation in 1660. tissue cultures is usually performed in com­ the problems faced by those about to enter Subrahmanyan Chandrasekhar (1983) lin­ plete ignorance of Maxwell’s equations, he the world of science. ked Newton with Michelangelo in considering developed an invention and set up a small Much needed backing for the annual meet­ human creativity in science and art. Both high-technology enterprise to manufacture ings is provided by local authorities, com­ men were most reluctant to embark on their and market an instrument capable of unam­ merce and industry, and, increasingly, by projects, the Principia and the Sistine Chapel biguous and objective measurements. Now international institutions, such as the Euro­ frescoes, but once persuaded or even coer­ he needs the skills of an economist! On a pean Union, the European Science Founda­ ced they worked with increasing enthusiasm much larger scale Leo Esaki (1973) of tunnel- tion and the Nobel Foundation, who have and completed their tasks in record time. diode fame cited examples of how the results recognized the lasting value of these Murray Fell-Mann (1969) examined complexi­ of pure research, an almost do-it-yourself valuable encounters. ty and complex adaptive systems, highly application of quantum mechanics in semi­ relevant now when chaos is a respectable conductors, can lead to the establishment object of study. In the 1960s, he had pro­ of a vast high-tech industry. Long experience Leo Esaki’s Rules for posed the quark model, then a mere figment in academic and industrial environments ena­ of theory, and here were J.I. Friedman and bled him to formulate a set of golden rules for Success R.E. Taylor (1990, with H.W. Kendall), who in success (see insert), rather anti-authoritarian - Don’t miss the opportunity for the leap the 1970s had proved its physical reality and surprising when voiced by a Japanese, forward through being trapped by past through electron-positron inelastic scattering, reputed paragons of obedience and confor­ experience or social conventions. reporting on the latest experiments. Another mity, but relished by the younger listeners. - Don’t become too attached to the great “impossibility” of recent times, the manipu­ authority in your field and risk losing sight lation of single electrons in semiconductors, In 1997 it will be 100 years since Alfred of your own potential: the eminent profes­ was shown to be feasible by Klaus von Nobel’s fruitful testament was published, and sor may get the Prize, his subordinates Klitzing (1985). How much smaller than when in 2000 the 50th Lindau reunion takes never do. single-electron devices can one get? place a century of awards will come to a - Discard information your don’t need; just According to Norman Ramsey (1989) the close that began with Roentgen, van’t Hoff retain what is relevant and leave memory measurement of effects predicted by special and von Behring. Perhaps someone in this space free. and general relativity, once considered summer’s Lindau audience will by then al­ - Don’t avoid confrontation to defend you improbable, could be carried out thanks to ready have the inspiration — Esaki Rules or own position: sometimes you may have to improvements in the accuracy and stability of no — that would eventually not only lead to put yourself first. atomic clocks. The science of nonlinear a royal handshake in Stockholm, but also to - Don't lose your childhood spirit of cu­ optics, long pre-dating Einstein, only really an honoured return visit to Lindau. riosity, a vital component of imagination. came into its own with the recent advent of powerful laser light sources and, as Nicolaas Simon Newman, Slough 122 Europhys. News 25 (1994).
Recommended publications
  • Charles Hard Townes (1915–2015)
    ARTICLE-IN-A-BOX Charles Hard Townes (1915–2015) C H Townes shared the Nobel Prize in 1964 for the concept of the laser and the earlier realization of the concept at microwave frequencies, called the maser. He passed away in January of this year, six months short of his hundredth birthday. A cursory look at the archives shows a paper as late as 2011 – ‘The Dust Distribution Immediately Surrounding V Hydrae’, a contribution to infrared astronomy. To get a feel for the range in time and field, his 1936 masters thesis was based on repairing a non-functional van de Graaf accelerator at Duke University in 1936! For his PhD at the California Institute of Technology, he measured the spin of the nucleus of carbon-13 using isotope separation and high resolution spectroscopy. Smythe, his thesis supervisor was writing a comprehensive text on electromagnetism, and Townes solved every problem in it – it must have stood him in good stead in what followed. In 1939, even a star student like him did not get an academic job. The industrial job he took set him on his lifetime course. This was at the legendary Bell Telephone Laboratories, the research wing of AT&T, the company which set up and ran the first – and then the best – telephone system in the world. He was initially given a lot of freedom to work with different research groups. During the Second World War, he worked in a group developing a radar based system for guiding bombs. But his goal was always physics research. After the War, Bell Labs, somewhat reluctantly, let him pursue microwave spectroscopy, on the basis of a technical report he wrote suggesting that molecules might serve as circuit elements at high frequencies which were important for communication.
    [Show full text]
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • HOPE Meetings Are Held for Excellent Graduate Students and Young Researchers Specially Selected from Countries Around the 9Th Asia-Pacific and Africa Region
    For Overseas Cooperating Institutions Objective HOPE Meetings are held for excellent graduate students and young researchers specially selected from countries around the 9th Asia-Pacific and Africa region. These meetings give an opportunity for the participants to engage in interdisciplinary discussions with Nobel laureates and other distinguished HOPE MEETING scientists pioneering the frontiers of knowledge. They also give the participants, who lodge together over the course of the event, a chance to make friends and form collegial networks with Nobel Laureates with peers from the regions. The title “HOPE Meeting” signifies the promise held for the future roles of young researchers and optimism for creating a bright S&T future within the global community. Date F ebruary 26- ■ Saturday, February 25: Orientation & Registration M arch 2, 2017 ■ Sunday, February 26: Nobel Prize Dialogue Tokyo 2017 Organizer Venue Tokyo , JAPAN Office of the HOPE Meetings, JSPS E-mail [email protected] Tel: +81-3-3263-2414 Fax:+81-3-3234-3700 HOPE MEETINGS with Nobel Laureates Organizing Committee of the HOPE Meetings ■ Chair Makoto Kobayashi <Nobel Laureate in Physics 2008> Honorary Professor Emeritus, High Energy Accelerator Research Organization (KEK) ■ Members Noriko Osumi Mitsuhiko Shionoya Tohoku University The University of Tokyo Takaaki Kajita <Nobel Laureate in Physics 2015> Yousuke Takahama The University of Tokyo Tokushima University Kazuhiro Kosuge Fumio Hanaoka Tohoku University Tsukuba University Program of the HOPE Meeting The program
    [Show full text]
  • Turning Point in the Development of Quantum Mechanics and the Early Years of the Mossbauer Effect*
    Fermi National Accelerator Laboratory FERMILAB-Conf-76/87-THY October 1976 A TURNING POINT IN THE DEVELOPMENT OF QUANTUM MECHANICS AND THE EARLY YEARS OF THE MOSSBAUER EFFECT* Harry J. Lipkin' Weizmann Institute of Science, Rehovot, Israel Argonne National Laboratory, Argonne, Illinois 60^39 Fermi National Accelerator Laboratory"; Batavia, Illinois 60S10 It is interesting to hear about the exciting early days recalled by Professors Wigner and Wick. I learned quantum theory at a later period, which might be called a turning point in its development, when the general attitude toward quantum mechanics and the study of physics was very different from what it is today. As an undergraduate student in electrical engineering in 19^0 in the United States I found a certain disagreement between the faculty and the students about the "relevance'- of the curriculum. Students thought a k-year course in electrical engineering should include more electronics than a one-semester 3-hour course. But the establishment emphasized the study of power machinery and power transmission because 95'/° of their graduates would eventually get jobs in power. Electronics, they said, was fun for students who were radio hams but useless on the job market. Students at that time did not have today's attitudes and did not stage massive demonstrations and protests against the curriculum. Instead a few of us who wished to learn more interesting things satisfied all the requirements of the engineering school and spent as much extra time as possible listening to fascinating courses in the physics building. There we had the opportunity to listen to two recently-arrived Europeans, Bruno Rossi and Hans Bethe.
    [Show full text]
  • Laser Spectroscopy to Resolve Hyperfine Structure of Rubidium
    Laser spectroscopy to resolve hyperfine structure of rubidium Hannah Saddler, Adam Egbert, and Will Weigand (Dated: 12 November 2015) This experiment had two main goals: to create an absorption spectrum for rubidium using the technique of absorption spectroscopy and to resolve the hyperfine structures for the two rubidium isotopes using saturation absorption spectroscopy. The absorption spectrum was used to determine the frequency difference between the ground state and first excited state for both isotopes. The calculated frequency difference was 6950 MHz ± 90 MHz for rubidium 87 and 3060 MHz ± 60 MHz for rubidium 85. Both values agree with the literature values. The hyperfine structure for rubidium 87 was able to be resolved using this experimental setup. The energy differences were determined to be 260 MHz ± 10 MHz and 150 MHz ± 10 Mhz MHz. The hyperfine structure for rubidium 85 was unable to be resolved using this experimental setup. Additionally the theory of doppler broadening was used to make measurements of the full width half maximum. These values were used to calculate a temperature of 310K ± 40 K which makes sense because the experiments were performed at room temperature. I. INTRODUCTION in the theory section and how they were manipulated and used to derive the results from the recorded data. Addi- tionally there is an explanation of experimental error and The era of modern spectroscopy began with the in- uncertainty associated the results. Section V is a conclu- vention of the laser. The word laser was originally an sion that ties the results of the experiment we performed acronym that stood for light amplification by stimulated to the usefulness of the technique of laser spectroscopy.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Laser Spectroscopy Experiments
    Hyperfine Spectrum of Rubidium: laser spectroscopy experiments Physics 480W (Dated: Sp19 Paper #4) I. OBJECTIVES FOR THESE EXPERIMENTS We wish to use the technique of absorption spec- troscopy to probe and detect the energy level structure of atomic Rubidium, Rb I, whose ground state is split by a tiny amount on account of nuclear magnetism. In effect, the spectroscopy we do today tells us about nuclear prop- erties and so combines atomic and nuclear physics. The main result of this experiment, the 4th of the semester, is to 1. measure the hyperfine splitting for each isotope, and compare with accepted values, with the fol- lowing details in mind: (a) what is the hyperfine splitting of the ground 2 state, S1=2 term? Do we need saturation- absorption techniques for this? (b) what are the hyperfine splittings of the ex- 2 cited state, P3=2 term, that can be reached with a nominal wavelength of 780nm from the ground state? Here we need saturation- absorption techniques to perform sub-Doppler FIG. 1. Note the four 'blobs'. Why are there four? Which spectroscopy, certainly. Help the reader un- 85 are associated with Rb37, and so on. If all goes swimm- derstand what is entailed in the technique, ingly, we'll get an absorption spectrum that looks much line both experimentally and theoretically. You the figure below the setup. The etalon data will be needed to will need to explain what `saturation' means. make the abscissa something proportional to frequency. The The saturation intensity is an important fig- accepted value of the gap between the 2 outermost dips is ure of merit.
    [Show full text]
  • Science Fiction Review 29 Geis 1979-01
    JANUARY-FEBRUARY 1979 NUMBER 29 SCIENCE FICTION REVIEW $1.50 NOISE LEVEL By John Brunner Interviews: JOHN BRUNNER MICHAEL MOORCOCK HANK STINE Orson Scott Card - Charles Platt - Darrell Schweitzer Elton Elliott - Bill Warren SCIENCE FICTION REVIEW Formerly THE ALIEN CRITIC RO. Bex 11408 COVER BY STEPHEN FABIAN January, 1979 — Vol .8, No.l Based on a forthcoming novel, SIVA, Portland, OR WHOLE NUMBER 29 by Leigh Richmond 97211 ALIEN TOUTS......................................3 RICHARD E. GEIS, editor & piblisher SUBSCRIPTION INFORMATION INTERVIEW WITH JOHN BRUWER............. 8 PUBLISHED BI-MONTHLY CONDUCTED BY IAN COVELL PAGE 63 JAN., MARCH, MAY, JULY, SEPT., NOV. NOISE LEVEL......................................... 15 SINGLE COPY ---- $1.50 A COLUMN BY JOHN BRUNNER REVIEWS-------------------------------------------- INTERVIEW WITH MICHAEL MOORCOCK.. .18 PHOfC: (503) 282-0381 CONDUCTED BY IAN COVELL "seasoning" asimov's (sept-oct)...27 "swanilda 's song" analog (oct)....27 THE REVIEW OF SHORT FICTION........... 27 "LITTLE GOETHE F&SF (NOV)........28 BY ORSON SCOTT CARD MARCHERS OF VALHALLA..............................97 "the wind from a burning WOMAN ...28 SKULL-FACE....................................................97 "hunter's moon" analog (nov).....28 SON OF THE WHITE WOLF........................... 97 OCCASIONALLY TENTIONING "TUNNELS OF THE MINDS GALILEO 10.28 SWORDS OF SHAHRAZAR................................97 SCIENCE FICTION................................ 31 "the incredible living man BY DARRELL SCHWEITZER BLACK CANAAN........................................
    [Show full text]
  • Ivar Giaever Pseudoscience
    Name______________________________________________________ PGS___________ YouTube Skepticism Is Global Warming Pseudoscience? Video: v=SXxHfb66ZgM – Nobel Laureate in Physics; "Global Warming is Pseudoscience" [33m] 1. The speaker, Ivar Giaever, identifies himself as a/n A. meteorologist familiar with everyday weather patterns. B. climatologist familiar with long-term climate trends. C. atmospheric scientist specializing in temperature data. D. physicist who doesn’t think much about global warming. 2. What is his research background regarding global warming? A. a 50-year career in climate science B. an extensive review of published literature in climate science journals C. a day or so on Google 3. In this speech at a conference to a large audience, Giaever claims that global warming is a new religion because you cannot ______________________________ about it. 4. Giaever says science comes in many forms. Select all the forms he identifies. __real science __pathological science __fraudulent science __sociopathic science __junk science __pseudoscience 5. Which accepted definition of “pseudoscience” does Giaever present on his slide? A. “a collection of beliefs or practices mistakenly regarded as being based on scientific method.” B. “a system of theories, assumptions, and methods erroneously regarded as scientific.” C. Both of these dictionary definitions are presented. D. Neither of these—he makes up his own definition. 6. At this point in the speech, what is Giaever’s answer to his own question, “Is global warming pseudoscience?” A. yes B. no C. maybe D. you be the judge 7. Giaever begins his argument by questioning the validity of the Nobel prize for A. chemistry B. economics C. peace D. physics 8. He continues by rejecting the validity of historical _?_ data.
    [Show full text]
  • University of Tokyo Yasuyuki Matsuda, Assoc
    Introduction to the University of Tokyo Yasuyuki Matsuda, Assoc. Prof. (Deputy Director, International Admission Office, UTokyo) What is your dream university? University is where… you gain professional knowledge and skills you explore the academic world with leading researchers you make life-long friends you immerse in new social/cultural environment with safe and comfortable living environment affordable living expenses UTokyo can offer all of them! Introduction to the University of Tokyo (18th November 2014) UTokyo can be your dream university Why Japan? Why Tokyo? Why UTokyo? What PEAK can offer to you? Introduction to the University of Tokyo (18th November 2014) Introduction of the city of Tokyo Introduction to the University of Tokyo (18th November 2014) Tokyo is… one of the largest cities in the world, with diverse cultural activities. Name of the city Population (million) Tokyo* 37.83 Delhi 24.95 Shanghai 22.99 Mexico City 20.84 Sao Paulo 20.83 Mumbai 20.74 Osaka 20.12 Beijing 19.52 New York 18.59 Sources: the U.S. Census Bureau and Times Atlas of the World Introduction to the University of Tokyo (18th November 2014) Tokyo is… one of the global financial hubs as well. Name of the stock Market Capitalization exchange (USD bn) New York Stock Exchange 18,779 NASDAQ 6,683 Tokyo Stock Exchange 4,485 Euronext 3,504 London Stock Exchange 3,396 Hong Kong Stock Exchange 3,146 Shanghai Stock Exchange 2,869 Toronto Stock Exchange 2,204 Sources: the world federation of exchanges monthly report Sep. 2014 Introduction to the University
    [Show full text]
  • Brief Newsletter from World Scientific February 2017
    Brief Newsletter from World Scientific February 2017 Exclusive Interview with 2003 Nobel Laureate One of the Top Condensed Matter Theorists and World Scientific Author Anthony Leggett Sir Professor Anthony James Leggett is a distinguished physicist who was awarded the Nobel Prize in Physics in 2003 for his pioneering contributions to the theory of superconductors and superfluids. He is currently a professor at the University of Illinois at Urbana-Champaign. Prof Leggett gave a presentation at the 2016 APS March Meeting in Baltimore, USA on “Reflections on the past, present and future of condensed matter physics”. In a phone interview, he shared with us some of his thoughts and further musings on the future of condensed matter physics. Paradigm Shift and Our Quest for the Unknown Chad Hollingsworth Your talk at the APS March Meeting 2016 mentioned developments That probably depends on your current tenure status! Certainly, if that you classified as “paradigm shifts”. Are there any recent you have a secure, tenured job (as I have been fortunate enough to discoveries that you would classify as paradigm shifts? have for the last few decades), then I think most certainly it’s better Well, if we go slightly outside the area of condensed matter physics to explore the unknown. But, of course, I appreciate that in the current as it has been conventionally defined, then, undoubtedly, any employment situation, people who have not got a tenured job need revolution which overthrew the view of quantum mechanics as a to think about their future. This may well be a rather strong pressure complete account of the world would, I think, certainly qualify as a to basically explore the known further.
    [Show full text]
  • KITCHEN CHEMISTRY Bijeta Roynath & Prasanta Kumar Sahoo
    Test Your Knowledge KITCHEN CHEMISTRY Bijeta Roynath & Prasanta Kumar Sahoo 1. The common cooking fuel, Liquefied Petroleum Gas 10. Which of the following could be produced by the gas (LPG), is a mixture of two hydrocarbons. These are: stove? (a) Methane and Butane (b) Propane and Butane (a) Nitrogen Oxides (b) Sulphur dioxides (c) Oxygen and Hydrogen (d) Hexane and Propane (c) Carbon monoxide (d) Dihydrogen oxide 2. Hydrocarbons in LPG are colourless and odourless. 11. Which of the following chemical is found in dish- Therefore, a strong smelling agent added to LPG washing detergent? cylinders to detect leakage is: (a) Carbon monoxide (b) Chlorine (a) Ethyl mercaptan (b) Nitrous oxide (c) Sulphur dioxide (d) Lithium (c) Hydrogen sulfide (d) Chloroform 12. Proteins help build our body and carbohydrates 3. Chemical irritant produced during chopping an provide energy to the body. The protein and onion (Allium cepa) which makes our eye weepy is: carbohydrate found in milk are: (a) Allinase (b) Sulfoxide (a) Albumin and maltose (b) Pepsin and sucrose (c) Syn-propanethial-S-oxide (d) Allyl mercaptan (c) Collagen and fructose (d) Casein and lactose 4. The powerful anti-inflammatory and antioxidant 13. Salt readily absorbs water from the surroundings. properties of haldi or turmeric (Curcuma longa) are Sprinkling salt on salad releases water from it after due to presence of: few seconds. The process is: (a) Curcumin (b) Gingerol (a) Osmosis (b) Adsorption (c) Cymene (d) Capsaicin (c) Dehydration (d) Oxidation 5. The active ingredient in chilli peppers (Capsicum) 14. Washing hands before eating prevents illness which produces heat and burning sensation in the by killing germs.
    [Show full text]