Quick viewing(Text Mode)

Wave Energy Coastal Waves Primer

Wave Energy Coastal Waves Primer

WaveCoastalWavesPrimer

(R. Budd)

NIWAInternalProjectReport: October2004 NIWAProject:IRL05301 WaveEnergyCoastalWavesPrimer MurraySmith CraigStevens RichardGorman

Prepared for

FRSTWaveEnergyProjectGroup

NIWAInternalReport: October2004 NIWAProject:IRL05301 NationalInstituteof&AtmosphericResearchLtd 301EvansBayParade,GretaPoint,Wellington PrivateBag14901,Kilbirnie,Wellington,NewZealand Phone+6443860300,Fax+6443860574 www.niwa.co.nz

 All rights reserved. This publication may not be reproduced or copied in any form without the permissionoftheclient.Suchpermissionistobegivenonlyinaccordancewiththetermsoftheclient's contractwithNIWA.Thiscopyrightextendstoallformsofcopyingandanystorageofmaterialinany kindofinformationretrievalsystem.

Contents

1. Introduction 1

2. LineartheoryKinematics: 1 2.1 Waveclassification 1 2.2 Velocity 2

3. Energy 4

4. Realwaves 5

5. WaveSim 7

6. WaveLoadingonStructures 8

7. Waveenergyabsorption 9

8. Measuringwaves 10

9. ModelingWaves 10

10. WaveResources 12

11. Bibliography/Links 15 11.1 Links 15 11.2 Literature 15

12. BriefGlossary: 17

1. Introduction

Any wave energy technology development requires a solid understanding of wave theoryandpractice.Herewesummarisesomeimportantpointsrelevanttotheproject.

2. LineartheoryKinematics:

2.1 Waveclassification

Itisconvenienttoclassifywavesasdeep,intermediate(transitional)orshallow.We dothissincedeepandshallowwavesexhibitquitedifferentproperties.Thisisshown forexamplea)inthewaythewatermotion(andenergy)isattenuatedwithdepthb) thewaythewavespeeddependsonwaveperiod(or).

Table1:Waveclassification,basedontheratioofdepth(h)to(L),orkhwherethe ,k,is2π/L:

Shallow h/L<1/20 kh<π/10 Intermediate 1/20<h/L<½ π/10<kh<π Deep ½<h/L<∞ π<kh<∞

Table2:Representativevaluesofkeywaveparametersfortypicalcoastalwavesthatweare likely to encounter, propagating in water depths, h. These are period, T, wavelength,L,andphasevelocity,C:

h(m) T(s) L C h/L Classification Young waves, small 10 3s 14m 4.7m/s .71 Deep fetch(harbour) Youngwaves,coastal 5 5s 30m 6.1m/s .17 Intermediate oncoastalshore 3 12s 64m 5.3m/s .05 Shallow Swellonopen 300 12s 225m 18.7m/s 1.3 Deep

Note that ‘young’ waves generated in a shallow harbour can still be categorized as deepwaterwaves,sincetheirshortdonot‘feel’thebottom.

WaveEnergyCoastalWavesPrimer 1

2.2 Velocity

Weneedtoalsodistinguishbetweenthe ofthewave(i.e.thespeedthe waveformpropagates),andtheorbital velocity (i.e.thevelocitythatwaterparticlesor tracerstravel).Indeepwatertheorbitalvelocityideallytracesoutcircularmotion, whileinshallowwaterthisbecomesincreasinglyellipticalwithadecreasingamount ofverticalexcursion.Ideallyforsmallamplitudewaves there is no net transport of water,onlyofenergy.Inreality,forfiniteamplitudewaves,unclosedparticleorbitsdo resultinasmallnetmigration(Stokesdrift).

Figure1:Waveorbitalvelocitiesareellipticalinshallowwater,circularindeepwater.(From Dean&Dalrymple,1984)

TheschematicinFigure1illustratestheshallowwaterellipticalmotionincontrastto deepwater circular motion. For deepwater waves, the velocity (and pressure) is attenuated exponentially with depth. Thus most of the wave energy is confined to surface layers. In contrast for shallow water waves,thehorizontalexcursionisthe sameatalldepthsbeneaththewave,butthetotalverticalexcursionincreaseslinearly fromzeroatthebed,toH(thewaveheight)atthesurface.

Oneoftheotherimportantpropertiesofwaterwavesisthattheyaredispersive,i.e. the speed that they travel depends on their wavelength (or period), unlike non dispersive sound waves. This fact is often overlooked since we are accustomed to viewingshallowwaterwavesbreakingonthewhich,aswewillsee,appearto benondispersive.

Therelationshipbetweenfrequencyandwavelengthisgivenbythegeneral relationship:

ω2=gktanh(kh) …….(1)

WaveEnergyCoastalWavesPrimer 2

whereωistheradianfrequency(ieω=2πf=2π/T),gisgravitationalacceleration (9.81m/s 2),kisthewavenumber(2π/L),hiswaterdepth,Tthewaveperiod,andLthe wavelength.Thistranscendentalequationisusuallysolvediteratively(e.g.Newton method)orusingalookuptable.

The dispersion equation becomes simple for the two extremes of deep and shallow water:

Deepwater: kh→∞,tanh(kh)→1,ω2=gki.e.frequencyindependentofdepth

Shallowwater: kh→0,tanh(kh)→kh,ω2=gk 2h.

Ofimmediateinterestisthephasevelocity,c(speedofcrests)andgroupvelocity,c g (speedofenergypropagation).

Deep: c=ω/k=g/ω cg=∂ω/∂k=c/2

Shallow: c=√gh cg=∂ω/∂k=c.

Wavesslowdownwithdecreasingdepth,andinthe‘shallow’waterextreme,crests travel at the same speed regardless of frequency (or wavelength). This is what we observeonasurfbeach,andcontraststodeepwater where fast (long wavelength) wavesarecontinuallyovertakingandmovingthroughslower(shorter)ones.Notethat thefrequencyisalwaysinvariant(althoughitcanbeDopplershiftedbycurrents);itis thephasevelocityandwavelengththatdecreaseinshallowerwater.

Apracticalconsequenceoftheslowingphasevelocityinshallowwateristhatwave crestsrefracttobecomeparalleltothe.Forawaveapproachingtheshore obliquely, those parts entering shallow water first are slowed, while deeper parts continue to catch up, thus swinging the wave crest around parallel to the depth contoursandshoreline.

The distribution of wave height is often treated as a random Gaussian process. Howeverthisbeliesthefactthatthereisoftenanunderlyinggroupstructure,whichis evidentwhentimespacedataisavailable.Thisstructureisthe‘wavesets’familiarto surfers. The practical implication of this is that the spacetime occurrence of wave breaking in deep water is not random, but structured, and in certain cases (narrow band wave spectra) is predictable. It is wave breaking that provides the strongest impactforcesonstructures. WaveEnergyCoastalWavesPrimer 3

3. Energy

The energy of water waves is equally divided between a) potential energy and b) kineticenergy.Thepotentialenergyrelatestotheraisingofwaterfromthetroughtoa

crest.ThepotentialenergyperunitareaofawatersurfaceraisedbyςisgivenbyE p= ½ρgς 2.ForatheoreticalsinusoidalwaveofamplitudeH/2averagedoverawave periodthisbecomesEp=1/16ρgH 2.

Kineticenergycanbeshowntohaveanequalvalueintegratedoverdepth.Howeverit canbeseeninFigure1thatthedepthdistributionofkineticenergyisquitedifferent betweendeepandshallowwaterwaves.Thetotalaveragepotentialpluskineticenergy (afterintegratingoverdepth)perunitsurfaceareais:

E=1/8ρgH 2

regardlessofdepth,andthetransportedperunitcrestlengthis:

2 P=1/2ρga Cg. Moregenerally,whenenergyisdistributedacrossaspectrum(S)ofwaveperiodsor (f):

P=ρg∫C g(f)S(f)df

(Thismaydependonthedistancesoneisintegratingover).Theratethatenergyis transportedbythewaves,theenergy,F,is:

F=EC g=E(ω/k)½(1+2kh/sinh(2kh)).

Onlargescalesenergywillbelosttobottomfriction,butifthedepthchangesrapidly with respect to this scale, we can treat E as constant. One consequence of the

conservation of energy is that as waves enter shallow water from depth h 1 to h 2,

E1Cg1=E 2Cg2.

SubstitutingforE,thewaveheightmustincreasetocompensateforthedecreaseof groupvelocity:

H2=H 1√(C g1/C g2).

WaveEnergyCoastalWavesPrimer 4

This shoaling equation tellsusforexamplethata10speriodwaveapproachingthe shorefromdeepwaterwillincreaseinamplitudeby11%bythetimeitreaches5m depth,and54%at2mdepth.Refractionisnormallytakenintoaccountaswell.

4. Realwaves

Intherealworld,wavesarenotmonochromaticsinewaves(seeFig.2below),butdue to the complex forcing mechanisms, occur as a continuous wave spectrum. In addition the spectrum of waves has a directional spread so a fully resolved measurement will also specify the direction from which a wave component is travelling.

Figure 2: Water surface velocities towards and away from the observer recorded using microwaveradarfromRVTangaroain2004showingthecomplexstructurein timeandspace.Dataslicesareshownaboveandtotherightofimagepanel.

WaveEnergyCoastalWavesPrimer 5

Figure3:ThewaveexampleabovecomesfromWellingtonHarbour.Thetoppanelshowsa typical water elevation times series. Typically, it is not a simple sinusoid but showsacombinationoffrequencies.Thebottompanelshowstheresultingwave spectrum.

Inordertodefinethewaveparameterssuchasperiodandheight,therearegenerally2 approaches:

(1)fromthetimeseriese.g.theaveragetimebetweenzerocrossings,Tz.

(2) from the spectrum. e.g. the dominant period is obtained from the peak of the spectrum,Tp.Themomentsofthespectrumcanalsobeusedtogivethetheoretical Tz.Thesignificantwaveheight,Hs,iscalculatedfromtheareaunderthespectrum, m0.i.e.Hs=4√(m0).

Thespectruminthelowerpanelshowsanapproximatef 4falloffinwaveenergyfrom thepeak.Inthiscaseof‘young’waves,thepeakfrequencyis0.43Hz(peakperiod 2.3s)andsignificantwaveheight,Hs=0.30m.

WaveEnergyCoastalWavesPrimer 6

Figure4:Openoceanexample,fromtheBayofPlenty,ismoretypicalthantheearlierharbour spectruminthatitshowsmixedandswell;theswellfrequencyis0.08 Hz(period12sec)andthedominantseafrequencyis0.12Hz(period~8sec).

5. WaveSim

ThisMatlabtoolwasdevelopedtodisplaymoviesofreal(andartificial)wavefields. The initial distribution took Waverider data from waveriders deployed at MokohinauIslandandMangawhai.

Figure5:WAVESIM3stillframeshowingwaveorbitsandwatersurfaceelevation.

WaveEnergyCoastalWavesPrimer 7

6. WaveLoadingonStructures

Forces on submerged waveaffected structures are well described elsewhere (e.g. Grosenbaugh,2002)withanemphasisongasplatformsandpipeline/cablescenarios. TheFigurebelowsummarizestherelevantforcesonanidealstructure,includingthose

due to buoyancy, acceleration/inertia and drag (F b, F a, F d). These forces act in responsetothelocalwatermotion(u)whichischaracterizedasafunctionoftime(t)

andspace(x).Implicitinthisistimevariationwheresomeforces(F b)areconstantas

longasthestructureissubmerged,somearerelatedtowatervelocity(F d)andsome

arerelatedtowateracceleration(F a).Theforcesactingontheobject(andtoalesser extentontheline)aretransferredalongthemooringasbothaforce(andifit has any compressive strength a bending moment). To maintain equilibrium, there

must be a restorative force (F r) and bending moment (M r)actingatthebaseofthe mooring.

Figure6:Dynamicsshowinghydrodynamicsandforcesonasubmergedbody.

Withrespecttowaveenergyconvertermodellingwewillneedtodetermine

(1)thebasicshapeofthestructure

(2)theflexibilityofallmooringelements

(3)thecoefficientsofdragandaddedmassforallelements.

WaveEnergyCoastalWavesPrimer 8

Most of these properties can be derived from the literature, modelling of the combinedresponsewillneedtobeverifiedwithlaboratory/fieldvalidation.

7. Waveenergyabsorption

Consideringwaveenergyfromtheperspectiveofsimplyabsorbingitwecanlooktoa numberofsuccessfulfloatingbreakwaterapproachesthatcanremovearound80%of energythatcouldbeconsideredwindwave(e.g.SeymourandHanes1979).

Figure7:Sketchoffloatingbreakwater http://209.196.135.250/floating_breakwater.htm

ThestructuralsimilaritiesbetweenafloatingbreakwaterandaNZstylemusselfarm areclear.

Figure8:Waveattenuationbyamusselfarm.EnergyTransmissionRatioETRforthewave attenuationscalinganalysisasafunctionoffrequency(xaxis)andinitialwave height(giveninlegend).FromPlewetal.(2005).

WaveEnergyCoastalWavesPrimer 9

8. Measuringwaves

We can classify wave measurements in two categories: a) insitu and b) remote sensing,eachwithadvantagesanddisadvantages.

Table3:Wavemeasurementsummary.

Device Sensor Advantage Disadvantages a) In-situ Waverider Accelerometer Suitableforlongterm Expensiveto (magnetometer) deployments purchaseand maintain Pressuresensors Pressure Robust Limitedtoshallow (e.g.DOBIE) Inexpensive depths Suitableforlongterm deployments WaveStaff Resistanceor Accuratetohigh Limitedtoshallow Capacitance frequencies depths Lessrobust ADV Acoustic Alsomeasurescurrent Moderately expensive($40k) ADP Acoustic 3independentmeasures Moderately ofwaveheight. expensive Measurescurrentprofile Robustatseabed b) Remote sensing Radar Dopplereffect Measuresoverarange Requiressuitable ofdistances site Requiresoperator Satellite Electromagnetic Coversvastareasof Poorspatial backscatteror ocean resolution altimeter Verypoor temporal resolution Nothighly accurate

9. ModelingWaves

Windgeneratedwavescannowbemodeledwellinopenoceandeepwater.Themost common communitydeveloped model is WAM and is typically driven by meteorologicalanalysisdata.ThisisusedinNIWA’swavehindcasts(Seebelow).

Inshallowercoastalwater,theSWANmodelisprovingefficientexceptinparticularly complicated situations e.g. variable bathymetry. Both of these models are spectral modelsinthattheyprovideastatisticalspectrumofwaveenergy.Wavegrowthis WaveEnergyCoastalWavesPrimer 10

modeled as a consequence of the imbalance between: energy advection and the ‘sourceterms’:windinput,dissipationduetobreaking,dissipationbybottomfriction, andnonlinearwavewaveinteractions.

Figure9:NewZealandregionalWAMwavemodelforaparticulartime.Windfieldsinputfrom ECMWFreanalysis.

Figure10:MeanHsderivedfromNIWAwavehindcastaveraging20yearsoftheaboveresults –see(Gormanetal2003).

WaveEnergyCoastalWavesPrimer 11

To model an individual wave, various versions of a Boussinesq model are being developed.Thecurrentchallengeistoincorporatebreakingeffectsinshallowwater, withtheassociatedcurrentgeneration.

For engineering applications, empirical relations are often used to predict wave heights and periods. Both wave height and period grow with fetch (distance over which the windforcing is acting) and duration (over which windforcing has been acting).ThemostcommonreferenceforthistypeofwavepredictionistheUSArmy CorpsShoreProtectionManual.Complicationsoccurwhen:bathymetryisirregular, windfieldisinfluencedbycomplexorography,orcurrentsarestrong.

10. WaveResources

A wave hindcast (Gorman et al. 2003; Gorman 2003) provided a wave climate offshoreofanumberofselectedsitesfrom1977to1997.Thehindcastmodelwas driven by European Centre for Medium Range Weather Forecasting reanalysis windfields,andrunona1.125x1.125degreegridfortheSWPacificandSouthern Ocean region. Directional spectra, saved at grid cells around the coast, have been interpolatedtopointsonthe50misobathandfilteredtoaccountforlimitedfetchto the coastline (Gorman et al. 2003). The hindcast generates 3hourly estimates of significant wave height Hs (~2a) (Fig. 11), the frequency of the peak of the wave spectrumfpaswellasarangeofparametersrelatingtotheenergyflux.TheHsisthe averageofthehighest1/3ofthewaveswhichisequivalenttothesquarerootofthe summed variance of the wave spectrum. It can be expected that the largest wave heightwithineach3hrsampleperiodwillbeabout2Hs.

Figure 11: Raw hindcast data for 4 coastalocean sites spread around New Zealand. This representsaround58,000datapointspersite.

WaveEnergyCoastalWavesPrimer 12

Theanalysisprovidedasuiteoffigurestodemonstratetheresourceavailabilitythese include

 Asitemapshowingtheapproximatelocation

 AdistributionofHsoccurrencestatistics

 Adistributionofpeakperiodoccurrencestatistics

 A distribution of percentage occurrence of total omni directionalwaveenergyfluxoccurrencestatistics

 MonthlyaveragesofHsandpeakHs.The20yearpeakHs givesanindicatorforsurvivalmodelling.

 Eventdurationscatterdiagramshowingthenumberofevents exceedingaparticularHsforagivenperiod.

Figure12:MonthlyaveragesofHsatfoursitesaroundNewZealand.

WaveEnergyCoastalWavesPrimer 13

Figure13:Significantwaveheightoccurrencestatisticsforaparticularsite.

Figure14:EventdurationoccurrencesforasiteforthreevaluesofHs(2,3&4m)wherethe symbolsshowthenumberofeventsexceedingHscontinuouslyforthatduration.

WaveEnergyCoastalWavesPrimer 14

11. Bibliography/Links

11.1 Links

BanksPeninsulaWaveRider

 NIWA http://www.niwa.co.nz/services/waves

 Ecan http://www.ecan.govt.nz/Coast/WaveBuoy/wavebuoy.html

WAM http://www.ecmwf.int/products/data/technical/wam/representations.html

OceanEngineeringUniversityofNewHampshire: http://www.unh.edu/oe/

EuropeanCentreforMediumRangeWeatherForecastshttp://www.ecmwf.int/

SWAN wavemodel http://fluidmechanics.tudelft.nl/swan/default.htm

11.2 Literature BarnettP.S.andE.P.M.Brown(1987).ThepotentialforwavegenerationoffNew Zealand. 8 th Australasian Conference on Coastal and Ocean Engineering, 87/11.IEAust,30Nov–4Dec1987,Launceston,Tasmania. Barstow,S.,andR.Deo(1993).AwaveenergyresourceclimatologyfortheSouth Pacific.Proc.EuropeanWaveEnergySymposium,Edinburgh,Scotland,July '93. Brown, E.P.M. (1988). An estimate of New Zealand’s wave power resource for generation.Proc.1 st SymposiumoftheN.ZOceanWaveSociety, pp1727. Brown, E.P.M. (1990). Wave Power investigations in New Zealand. IPENZ Transactions,1990,pp173183. Brown,E.P.M.(1990).ComparisonofOceanWavePowercalculationmethods.An estimate of New Zealand’s wave power resource for electricity generation. Proc.2 nd SymposiumoftheN.ZOceanWaveSociety,pp4963 Dean,R.G.andR.A.Dalrymple1984,WaveMechanicsforEngineersandScientists, EnglewoodCliffs:PrenticeHall,Inc. Falnes,J.2002OceanWavesandOscillatingSystems,CUP. Gorman, R.M., Bryan, K.R. and Laing, A.K. (2003). Wave hindcast for the New Zealandregiondeepwaterwaveclimate. New Zealand Journal of Marine and Freshwater Research 37(3):589612.

WaveEnergyCoastalWavesPrimer 15

Gorman,R.M.andLaing,A.K.(2001).BringingwavehindcaststotheNewZealand coast. Journal of Coastal Research Special Issue 34:3037. Gorman, R.M. (2003) The treatment of discontinuities in computing the nonlinear energytransferforfinitedepthgravitywavespectra. Journal of Atmospheric and Oceanographic Technology, 20, 206216. Grosenbaugh, M., S. Anderson, R. Trask, J. Gobat, W. Paul, B. Butman and R. Weller, “Design and performance of a horizontal mooring for upperocean research,” J. Atmos. Oceanic Technol. , 19 ,pp.13761389,2002. Hornstra,M.W.(1983).WavePower–aNewZealandstudy.M.E.Thesis,Deptof Mech.Eng.,UniversityofAuckland.232pp. Komen, G.J., et al. , 1994. Dynamics and modelling of ocean waves. Cambridge, UniversityPress Laing, A.K. 1993. Estimates of wave height data for New Zealand from numerical modelling. New Zealand Journal of Marine and Freshwater Research 27: 157175. Pickrill, R.A., and J.S.Mitchell, (1979). Ocean wave characteristics around New Zealand.NewZealandjournalofmarineandfreshwaterresearch,13(4):504 520. Plew.D.;Stevens.C.;Spigel,R.;Hartstein,D.2005. Hydrodynamic implications of largeoffshoremusselfarms.. IEEE Journal of Oceanic Engineering, Special Issue on Open Ocean Aquaculture Engineering 30:95108. Reid,S.J.andB.Collen(1983).Analysisofwaveandwindreportsfromshipsinthe TasmanSeaandNewZealandwaters.N.ZMetService,Misc.Pub182. Seymour R.J. and D. M. Hanes, 1979 Performance analysis of tethered float breakwaters, J. Waterway, Port, Coastal & Ocean Eng., 105 ,pp.265280. Smith, M.J.; Stevens, C.L.; Gorman, R.M.; McGregor, J.A.; Neilson, C.G. (2001) Windwavedevelopmentacrossalargeshallowintertidalestuary:acasestudy of Manukau Harbour, New Zealand. NZ Journal of Freshwater and Marine Research, 35 :9851000. Stevens,C.L.;Hurd, C.L.;Smith,M.J. ( 2001). Watermotionrelativetosubtidalkelp fronds ,Limnology and , 46(3) : 668678. WAMDIgroup,1988.TheWAMmodelathirdgenerationoceanwaveprediction model.J.Phys.Oceanogr. 18 ,pp.17751810

WaveEnergyCoastalWavesPrimer 16

12. BriefGlossary:

ECMWFEuropeanCentreforMediumRangeWeatherForecasts

Frequency(f) –numberofcrests(ortroughs)passingafixedpointpersecond.The inverseofwaveperiod.

Period(T) –timeintervalbetweentwosuccessivecrestspassingafixedpoint

Phasevelocity(c) speedthatthewaveformtravels(L/T).

Significantwaveheight(Hs)–themostcommonlyusedmeasureofwaveheight.It represents the height of approximately the highest third of waves. Hs = 4.0√(mo). Notethatinarealseainathreehourperiodyouwouldexpecttoseeawave2Hsin height.

Swell waveswhosesourceregionisverydistant.Asaresulttheyhavelongperiods (e.g.812sec)

Wavelength(L) –thedistancebetweensuccessivecrests

Windwaves –generatedbythelocalwind(e.g.5speriod)

Youngwaves waveswhicharegeneratedwheneithera)waveshavenothadtimeto developtothepointwherethephasevelocityapproachesthewindspeedorb)waves havenothadthedistanceoverwhichtodeveloptothepointwherethephasevelocity approachesthewindspeed

WaveEnergyCoastalWavesPrimer 17