Wave and Tidal Renewable Northwest Project

Total Page:16

File Type:pdf, Size:1020Kb

Wave and Tidal Renewable Northwest Project Wave and Tidal Renewable Northwest Project experience in the field, WAVE AND TIDAL ENERGY IN THE NORTHWEST “Oregon and Washington adequate R&D funding, have the best wave energy Total Annual U.S. Incident Wave 2,110 terawatt- and proactive public pol- resource in the lower 48 Energy hours icy support, the costs of states … and could eventu- wave and tidal technolo- Technology: Wave Energy Tidal Energy ally generate several thou- gies are expected to fol- Current Levelized ~10-30 ~8-12 sand megawatts from wave low the same rapid de- power.” Cost (2006$) cents/kWh cents/kWh crease in price that wind Future Levelized ~5-6 cents/kWh ~4-6 cents/kWh energy has experienced. plore construction of North Amer- Cost (2006$) ica’s first utility-scale wave energy Potential facility off the coast of Reedsport, Resource Type Variable, Variable, highly Worldwide potential for Oregon. With the support of the predictable predictable wave and tidal power is Oregon Department of Energy, Ore- enormous, however, local kWh = kilowatt-hours. 1 terawatt-hour = 1 billion kWh. gon State University is also seeking Sources: see endnote 1. geography greatly influ- funding to build a national wave en- ences the electricity gen- ergy research facility near Newport, What Is Wave and eration potential of each technology. Oregon. Several tidal power projects Tidal Energy? Wave energy resources are best be- are also being explored in the region. In addition to its abundant solar, wind tween 30º and 60º latitude in both Tacoma Power has secured a prelimi- and geothermal resources, the Pacific hemispheres, and the potential tends nary permit to explore a tidal power Northwest is also uniquely situated to to be the greatest on western coasts. project at the Tacoma Narrows, one capture the renewable energy of the The United States receives 2,100 of the best locations for tidal power in ocean. Special buoys, turbines, and terawatt-hours of incident wave the country, and Snohomish County other technologies can capture the energy along its coastlines each year, Public Utility District has received power of waves and tides and convert and tapping just one quarter of this preliminary permits for seven other it into clean, pollution-free electricity. potential could produce as much potential tidal power sites in the Like other renewable resources, both energy as the entire U.S. hydropower Puget Sound.4 wave and tidal energy are variable in system. Oregon and Washington nature. Waves are produced by have the strongest wave energy re- Wave Energy winds blowing across the surface of source in the lower 48 states and Technologies the ocean. However, because waves could eventually generate several There are three main types of wave travel across the ocean, their arrival thousand megawatts of electricity 2 energy technologies. One type uses time at the wave power facility may using wave resources. Several sites floats, buoys, or pitching devices to be more predictable than wind. In in Washington’s Puget Sound with generate electricity using the rise and contrast, tidal energy, which is driven excellent tidal resources could be de- fall of ocean swells to drive hydraulic by the gravitational pull of the moon veloped, potentially yielding several 3 pumps. A second type uses oscillat- and sun, is predictable centuries in hundred megawatts of tidal power. ing water column (OWC) devices to advance. While no commercial wave or generate electricity at the shore using The technologies needed to gen- tidal projects have yet been devel- the rise and fall of water within a cy- erate electricity from wave and tidal oped in the United States, several lindrical shaft. The rising water energy are at a nascent stage, but the projects are planned for the near fu- drives air out of the top of the shaft, first commercial projects are cur- ture, including projects in the North- powering an air-driven turbine. rently under development, including west. AquaEnergy Group, Ltd is cur- Third, a tapered channel, or over- some in the Pacific Northwest. Like rently designing and permitting a topping device can be located either most emerging energy technologies, one-megawatt demonstration wave on or offshore. They concentrate wave and tidal technologies are cur- power plant at Makah Bay, Washing- waves and drive them into an ele- rently more expensive than traditional ton. Ocean Power Technologies has vated reservoir, where power is then generating resources, but with further received a preliminary permit to ex- generated using hydropower turbines Renewable Northwest Project • 917 SW Oak St., Ste. 303, Portland, OR 97205 • Phone (503) 223-4544, Fax (503) 223-4554 • www.rnp.org • revised 3/07 Wave and Tidal Energy page 2 as the water is released. The vast ma- flow spins the turbines, which then jority of recently proposed wave en- generate electricity. Tidal turbines ergy projects would use offshore would be deployed in underwater floats, buoys or pitching devices. ‘farms’ in waters 60-120 feet deep The world’s first commercial off- with currents exceeding 5-6 mph. shore wave energy facility will begin Because water is much denser than operating by the end of 2007 off the air, tidal turbines are smaller than Atlantic coast of Portugal. The first wind turbines and can produce more 7 phase of the project, which Scottish electricity in a given area. A pilot- company, Ocean Power Delivery scale tidal turbine facility – the first (OPD) developed, features three in North America – was installed in ‘Pelamis’ wave energy conversion New York’s East River in December devices and generates a combined 2006. The developer, Verdant 2.25 MW of electricity. OPD plans Power, hopes to eventually install a 8 to expand the facility to produce 22.5 10 MW tidal farm at the site. Graphic: Artist’s representation of an MW in 2007.5 Environmental underwater tidal turbine. (Source and copyright: Marine Current Turbines, Ltd.) Tidal Power Impacts Technologies Unlike fossil-fueled power plants, Power Delivery (Nov 2006). Until recently, the common model for wave and tidal energy facilities gen- -Tidal energy levelized costs from North tidal power facilities involved erect- erate electricity without producing American Tidal In-Stream Energy Con- ing a tidal dam, or barrage, with a any pollutant emissions or green- version Technology Feasibility Study, sluice across a narrow bay or estuary. house gases. Since the first wave and EPRI (June 2006), pgs 5-6. As the tide flows in or out, creating tidal energy facilities are currently 2 EPRI op. cit. note 1, p 28. uneven water levels on either side of being deployed, the full environ- 3 “Tides hold promise of electricity.” The the barrage, the sluice is opened and mental impacts of wave and tidal Daily Herald (Everett, WA), 2/11/07. water flows through low-head hydro power remain uncertain but are pro- http://www.heraldnet.com/stories/07/02/1 turbines to generate electricity. For a jected to be small. Concerns include 1/100loc_a1sunpower001.cfm. tidal barrage to be feasible, the differ- impacts on marine ecosystems and 4 “Current Projects”, AquaEnergy Group, ence between high and low tides must fisheries. Environmental impact Ltd. (2006), http://aquaenergygroup.com/ be at least 16 feet. La Rance Station studies are currently underway and projects/index.php, accessed 10/18/06. in France, the world’s first and still several pilot and commercial projects -“Agreement to Develop Wave Park in largest tidal barrage, has a rated ca- are undergoing environmental moni- Oregon”, RenewableEnergyAccess.com, pacity of 260 MW and has operated toring. The East River tidal turbine 2/23/07, http://www.renewableenergyac- since 1966. However, tidal barrages, pilot project includes a $1.5 million cess.com/rea/news/story?id=47546&src= have several environmental draw- sonar system to monitor impacts on rss, accessed 4/2/07. backs, including changes to marine fish populations, for example.9 Care- and shoreline ecosystems, most nota- ful siting should minimize impacts on - The Daily Herald, op. cite. note 3. 5 bly fish populations.6 marine ecosystems, fishing and other “Energy Portugal: Riding the Wave of the Future”, InterPress News Agency, Several other models for tidal coastal economic activities. Wave 9/27/06, http://ipsnews.net/news.asp? facilities have emerged in recent and tidal facilities also have little or idnews=34898, accessed 10/19/06. years, including tidal lagoons, tidal no visual impact, as they are either 6 fences, and underwater tidal tur- submerged or do not rise very far Renewable Energy Fact Sheet, Envi- ronmental and Energy Study Institute, bines, but none are commercially above the waterline. (May 2006). operating. Perhaps the most promis- 7 Depth and current speed requirements ing is the underwater tidal turbine. 1 Wave energy resource figure and from “Background”, Marine Current Several tidal power companies have graphic from: Project Definition Study: Turbines (MCT), (2002), developed tidal turbines, which are Offshore Wave Power Feasibility Dem- http://www.marineturbines.com/backgrou similar in many ways to wind tur- onstration Project, Electric Power Re- nd.htm, accessed 10/17/06. bines. These turbines would be search Institute (EPRI), (Jan 2005), p 12. 8 The Daily Herald, op. cite. note 3. placed offshore or in estuaries in -Wave energy levelized costs from corre- 9 “Energy From the Restless Sea”, New strong tidal currents where the tidal spondence with Des McGinnes of Ocean York Times, 7/3/06. Renewable Northwest Project • 917 SW Oak St., Ste. 303, Portland, OR 97205 • Phone (503) 223-4544, Fax (503) 223-4554 • www.rnp.org • revised 4/07 .
Recommended publications
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • Innovation Outlook: Ocean Energy Technologies, International Renewable Energy Agency, Abu Dhabi
    INNOVATION OUTLOOK OCEAN ENERGY TECHNOLOGIES A contribution to the Small Island Developing States Lighthouses Initiative 2.0 Copyright © IRENA 2020 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-287-1 For further information or to provide feedback, please contact IRENA at: [email protected] This report is available for download from: www.irena.org/Publications Citation: IRENA (2020), Innovation outlook: Ocean energy technologies, International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) serves as the principal platform for international co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge, and a driver of action on the ground to advance the transformation of the global energy system. An intergovernmental organisation established in 2011, IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. Acknowledgements IRENA appreciates the technical review provided by: Jan Steinkohl (EC), Davide Magagna (EU JRC), Jonathan Colby (IECRE), David Hanlon, Antoinette Price (International Electrotechnical Commission), Peter Scheijgrond (MET- support BV), Rémi Gruet, Donagh Cagney, Rémi Collombet (Ocean Energy Europe), Marlène Moutel (Sabella) and Paul Komor.
    [Show full text]
  • Tidal Turbine Array Optimization Based on the Discrete Particle
    China Ocean Eng., 2018, Vol. 32, No. 3, P. 358–364 DOI: https://doi.org/10.1007/s13344-018-0037-6, ISSN 0890-5487 http://www.chinaoceanengin.cn/ E-mail: [email protected] Tidal Turbine Array Optimization Based on the Discrete Particle Swarm Algorithm WU Guo-weia, WU Hea, *, WANG Xiao-yonga, ZHOU Qing-weia, LIU Xiao-manb aNational Ocean Technology Center, Tianjin 300112, China bSatellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China Received May 18, 2017; revised February 11, 2018; accepted March 23, 2018 ©2018 Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature Abstract In consideration of the resource wasted by unreasonable layout scheme of tidal current turbines, which would influence the ratio of cost and power output, particle swarm optimization algorithm is introduced and improved in the paper. In order to solve the problem of optimal array of tidal turbines, the discrete particle swarm optimization (DPSO) algorithm has been performed by re-defining the updating strategies of particles’ velocity and position. This paper analyzes the optimization problem of micrositing of tidal current turbines by adjusting each turbine’s position, where the maximum value of total electric power is obtained at the maximum speed in the flood tide and ebb tide. Firstly, the best installed turbine number is generated by maximizing the output energy in the given tidal farm by the Farm/Flux and empirical method. Secondly, considering the wake effect, the reasonable distance between turbines, and the tidal velocities influencing factors in the tidal farm, Jensen wake model and elliptic distribution model are selected for the turbines’ total generating capacity calculation at the maximum speed in the flood tide and ebb tide.
    [Show full text]
  • Denmark Paper May 1 .Yalda Saadat
    Helmholtz Resonance Mode for Wave Energy Extraction Yalda Sadaat#1, Nelson Fernandez#2, Alexei Samimi#3, Mohammad Reza Alam*4, Mostafa Shakeri*5, Reza Ghorbani#6 #Department of Mechanical Engineering, University of Hawai’i at Manoa H300, 2540 Dole st., Honolulu, HI, 96822, USA 1 [email protected] 2 [email protected] 3 [email protected] [email protected] *Department of Mechanical Engineering, University of California at Berkeley 6111 Etcheverry Hall, University of California at Berkeley, Berkeley, California, 94720, USA [email protected] [email protected] A. Abstract B. Introduction This study examines the novel concept of extracting wave The extraction of energy from ocean waves possesses immense energy at Helmholtz resonance. The device includes a basin with potential, and with the growing global energy crisis and the need to develop alternative, reliable and environmentally non-detrimental horizontal cross-sectional area A0 that is connected to the sea by a channel of width B and length L, where the maximum water sources of electricity, it’s crucial that we learn to exploit it. depth is H. The geometry of the device causes an oscillating fluid within the channel with the Helmholtz frequency of Beginning in early 19th century France, the idea of harvesting 2 σH =gHB/A0L while the strait's length L, as well as the basin's the ocean’s energy has grown to become a great frontier of the 1/2 length scale A0 , are much smaller than the incoming wave's energy industry. Myriad methods of extraction have arisen, notable wavelength. In this article, we examined the relation of above among them Scotland’s Pelamis Wave Energy Converter [1], Oyster th th frequency to the device’s geometry in both 1/25 and 1/7 [2], Sweden’s Lysekil Project [3], Duck wave energy converter [4], scaled models at wave tank.
    [Show full text]
  • Lecture 10: Tidal Power
    Lecture 10: Tidal Power Chris Garrett 1 Introduction The maintenance and extension of our current standard of living will require the utilization of new energy sources. The current demand for oil cannot be sustained forever, and as scientists we should always try to keep such needs in mind. Oceanographers may be able to help meet society's demand for natural resources in some way. Some suggestions include the oceans in a supportive manner. It may be possible, for example, to use tidal currents to cool nuclear plants, and a detailed knowledge of deep ocean flow structure could allow for the safe dispersion of nuclear waste. But we could also look to the ocean as a renewable energy resource. A significant amount of oceanic energy is transported to the coasts by surface waves, but about 100 km of coastline would need to be developed to produce 1000 MW, the average output of a large coal-fired or nuclear power plant. Strong offshore winds could also be used, and wind turbines have had some limited success in this area. Another option is to take advantage of the tides. Winds and solar radiation provide the dominant energy inputs to the ocean, but the tides also provide a moderately strong and coherent forcing that we may be able to effectively exploit in some way. In this section, we first consider some of the ways to extract potential energy from the tides, using barrages across estuaries or tidal locks in shoreline basins. We then provide a more detailed analysis of tidal fences, where turbines are placed in a channel with strong tidal currents, and we consider whether such a system could be a reasonable power source.
    [Show full text]
  • (Hydropower) Technology in South African Narrow-Reef Hard-Rock Mines
    The Southern African Institute of Mining and Metallurgy Platinum 2012 P. Fraser THE USE OF HIGH-PRESSURE, WATER-HYDRAULIC (HYDROPOWER) TECHNOLOGY IN SOUTH AFRICAN NARROW-REEF HARD-ROCK MINES P. Fraser Hydro Power Equipment (Pty) Ltd Abstract This paper examines the new water-hydraulic (hydropowered) drill rigs that have been developed and proven in the last decade primarily in tabular, shallow-dipping, narrow-reef hard-rock South African mines. These include drill rigs for flat-end tunnel development, narrow inclined raises and winzes, large inclines and declines and longhole-based developments such as ore passes and vent raises. The hydropower technology rigs offer advantages both in safety and performance over traditional compressed-air-powered, hand-held development, and are generally more cost-effective than imported oil electro-hydraulic drill rigs. Furthermore, hydropowered rigs are inherently energy-efficient. The benefits of hydropower are discussed and a ‘comprehensive development model’ is presented which demonstrates that ore-bodies can be accessed in significantly shorter times. ‘Localized’ half level hydropower systems are introduced and a range of ancillary equipment available is listed. Introduction According to Neville Nicolau, CEO of Anglo Platinum, ’Safety is our moral licence to operate’ and, ’if we don’t get our safety right, then you must expect society to take away our licence to operate, and then we would be responsible for closing mines and destroying work 1. While the long-term trend in the Fatal Injury Frequency Rate (FIFR) is downward, fatalities are not acceptable to any of the stakeholders in the mining industry or investor community. Safety is therefore a non-negotiable imperative.
    [Show full text]
  • The Contribution of Hydropower Reservoirs to Flood Control in the Austrian Alps
    Ilydrology in Mountainous Regions. II - Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 194,1990. The contribution of hydropower reservoirs to flood control in the Austrian Alps W. PIRCHER Tiroler Wasserkraftwerke Aktiengesellschaft (TIWAG) Landhausplatz 2, A-6o2o Innsbruck, Austria ABSTRACT A considerable improvement to flood control is a significant - and free - additional utility accruing to the general public from the construction of hydropower storage reservoirs. By way of illustration, the author presents a comparative study on the basis of a number of flood events in valleys influenced by storage power plants. INTRODUCTION Austria has approximately thirty major storage reservoirs built by hy­ dropower companies and operated on a seasonal basis. Since they tend to be located at high altitudes, total stored energy from a combined active storage of 1.3oo hm^ is over 3.5oo GWh for winter and peak power generation, and this forms the backbone of electricity generation in Austria. Taking into account also the smaller reservoirs for daily and weekly storage, approximately 31% of the country's present annual total hydroelectric generation of 34.ooo GWh is controlled by reservoir sto­ rage, with the high degree of control and flexibility this offers. The primary goal in the construction of all storage power schemes in Austria, and the only source of subsequent earnings for the hydro- power companies, is of course electricity generation, but such schemes also involve a whole series of additional utilities that accrue to the general public free of charge. As a rule, significant improvements in flood control are the most important of these spin-offs, although be­ nefits to the local infrastructure and tourism as well as a markable increase of flow during the winter period are not to be underestimated, either.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • A Case Study in the Dudh Koshi Basin of Nepal
    water Article Hydropower Potential of Run of River Schemes in the Himalayas under Climate Change: A Case Study in the Dudh Koshi Basin of Nepal Daniele Bocchiola 1,2,* , Mattia Manara 1 and Riccardo Mereu 3 1 Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, L. da Vinci 32, 20133 Milano, Italy; [email protected] 2 EVK2CNR Committee of Italy, S. Bernardino 145, 24122 Bergamo, Italy 3 Department of Energy Engineering (DENG), Politecnico di Milano, Campus-Bovisa, Lambruschini, 4a, 20156 Milano, Italy; [email protected] * Correspondence: [email protected] Received: 20 July 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: In spite of the very large hydropower potential given from the melting snow and ice of Himalayas, Nepal’s population has little hydropower production. The high use of fossil fuels and biomasses results in measurable air pollution, even in the mountain areas. Hydropower planning and implementation, in the face of the changing climate, is therefore paramount important. We focus here on Nepal, and particularly on the Dudh Koshi river basin, with a population of ca. 170,000 people, within an area with large potential for hydropower production. Our main objectives are to (i) preliminarily design a local hydropower grid based on a distributed run of river ROR scheme, and (ii) verify the resilience of the grid against modified hydrology under perspective climate change, until the end of the century. To do so, we set up and tune the Poli-Hydro semi-distributed glacio-hydrological model, mimicking the complex hydrology of the area. We then modify a state of the art algorithm to develop and exploit a heuristic, resource-demand based model, called Poli-ROR.
    [Show full text]
  • Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics
    energies Article Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics Vasileios Kitsikoudis 1,*, Pierre Archambeau 1 , Benjamin Dewals 1, Estanislao Pujades 2, Philippe Orban 3, Alain Dassargues 3 , Michel Pirotton 1 and Sebastien Erpicum 1 1 Hydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.A.); [email protected] (B.D.); [email protected] (M.P.); [email protected] (S.E.) 2 Department of Computational Hydrosystems, UFZ—Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; [email protected] 3 Hydrogeology and Environmental Geology, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.O.); [email protected] (A.D.) * Correspondence: [email protected] or [email protected]; Tel.: +32-478-112388 Received: 22 April 2020; Accepted: 6 July 2020; Published: 8 July 2020 Abstract: The intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Underground pumped storage hydropower (UPSH) has recently gained popularity as a viable alternative and may utilize abandoned mines for the construction of the lower reservoir in the underground. Such underground mines may have complex geometries and the injection/pumping of large volumes of water with high discharge could lead to uneven water level distribution over the underground reservoir subparts. This can temporarily influence the head difference between the upper and lower reservoirs of the UPSH, thus affecting the efficiency of the plant or inducing structural stability problems.
    [Show full text]
  • Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
    U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world.
    [Show full text]
  • Waves and Structures
    WAVES AND STRUCTURES By Dr M C Deo Professor of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai 400 076 Contact: [email protected]; (+91) 22 2572 2377 (Please refer as follows, if you use any part of this book: Deo M C (2013): Waves and Structures, http://www.civil.iitb.ac.in/~mcdeo/waves.html) (Suggestions to improve/modify contents are welcome) 1 Content Chapter 1: Introduction 4 Chapter 2: Wave Theories 18 Chapter 3: Random Waves 47 Chapter 4: Wave Propagation 80 Chapter 5: Numerical Modeling of Waves 110 Chapter 6: Design Water Depth 115 Chapter 7: Wave Forces on Shore-Based Structures 132 Chapter 8: Wave Force On Small Diameter Members 150 Chapter 9: Maximum Wave Force on the Entire Structure 173 Chapter 10: Wave Forces on Large Diameter Members 187 Chapter 11: Spectral and Statistical Analysis of Wave Forces 209 Chapter 12: Wave Run Up 221 Chapter 13: Pipeline Hydrodynamics 234 Chapter 14: Statics of Floating Bodies 241 Chapter 15: Vibrations 268 Chapter 16: Motions of Freely Floating Bodies 283 Chapter 17: Motion Response of Compliant Structures 315 2 Notations 338 References 342 3 CHAPTER 1 INTRODUCTION 1.1 Introduction The knowledge of magnitude and behavior of ocean waves at site is an essential prerequisite for almost all activities in the ocean including planning, design, construction and operation related to harbor, coastal and structures. The waves of major concern to a harbor engineer are generated by the action of wind. The wind creates a disturbance in the sea which is restored to its calm equilibrium position by the action of gravity and hence resulting waves are called wind generated gravity waves.
    [Show full text]