China's Building Energy Use: a Long-Term Perspective Based on A

Total Page:16

File Type:pdf, Size:1020Kb

China's Building Energy Use: a Long-Term Perspective Based on A PNNL-21073 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 China’s Building Energy Use: A Long-Term Perspective based on a Detailed Assessment J Eom P Kyle LE Clark PL Patel SH Kim January 2012 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper. (9/2003) PNNL-21073 China’s Building Energy Use: A Long-Term Perspective based on a Detailed Assessment J Eom GP Kyle LE Clarke PL Patel SH Kim January 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 ABSTRACT We present here a detailed, service-based model of China’s building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long- term pathways of China’s building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China’s building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China’s building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy. Keywords: China buildings; Building energy modeling; Scenario Analysis; Integrated assessment model; Electrification Contents 1. Introduction ............................................................................................................................. 1 2. Background .............................................................................................................................. 4 2.1 Current Building Energy Use in China ............................................................................ 4 2.2 Projections of Building Energy Consumption in China.................................................. 6 2.3 GCAM Integrated Assessment Model Core Assumptions for Analysis ......................... 7 2.4 Core Assumptions of the GCAM Reference Scenario ..................................................... 8 3 Structure of the Building Model ........................................................................................... 9 3.1 Overview of the Building Model Structure ..................................................................... 9 3.2 Urban and Rural China ................................................................................................... 10 3.3 Building Floorspace ........................................................................................................ 14 3.4 Representing Building Energy Service Demands ......................................................... 18 3.5 Technology Assumptions ............................................................................................... 22 3.6 Other Design Issues ........................................................................................................ 23 3.6.1 Varying Service and Fuel Preferences ................................................................ 23 3.6.2 Traditional Biomass ............................................................................................ 23 3.6.3 District Heating .................................................................................................... 24 4 Results ..................................................................................................................................... 26 4.1 Overview of Scenarios .................................................................................................... 26 4.2 Building Energy Consumption in the Scenarios ........................................................... 28 4.3 Fuel Mix in the Scenarios ............................................................................................... 29 4.4 Evolution of Building Service Demands and Fuel Uses in the Scenarios ................... 33 4.5 CO2 Emissions and Policy Costs ..................................................................................... 35 5 Conclusions and Policy Insights ......................................................................................... 37 References ..................................................................................................................................... 40 Appendix ........................................................................................................................................ 44 1. Introduction It is widely recognized that any attempt to address climate change will ultimately have to include China. The Chinese economy has grown at a remarkable rate of 9-10% per year since 1990s, and expectations are that it will continue to grow rapidly. Energy consumption and associated CO2 emissions have increased dramatically as a result of this growth. China consumed almost three times as much energy in 2006 as it did in 1990. China is now the second largest energy consumer after the U.S. China is 1 now the biggest CO2 emitter in the world [1-2]. Buildings are an important contributor to China’s energy consumption and CO2 emissions. Measures to address energy consumption and associated emissions from the buildings sector will therefore be an important part of any strategy to reduce China’s CO2 emissions. In 2007, China’s buildings sector consumed 31% of China’s total final energy [1]. China is also the second largest building energy user in the world, ranked 1st in residential energy consumption and 3rd in commercial energy consumption [1]. In 2005, China’s buildings sector emitted roughly 0.4 Gton of CO2 for primary fuel uses; indirect electricity emissions included, the emissions amounted to about 1.1 Gton of CO2, or 18% of 2 China’s total fossil and industrial CO2 emissions. As China continues its socioeconomic transformation, energy consumption and associated emissions from the buildings sector will undoubtedly increase. The topic of this paper is this evolution of the Chinese buildings sector through mid-century and beyond, and the potential influence of socioeconomic factors as well as climate and energy policies on this evolution. Understanding the potential nature and magnitude of this evolution is challenging. Indeed, there is indeed tremendous variation even in short-term projections of building energy consumption in China (see, for example, Li [3]). There are many factors that contribute to this uncertainty, including the rate of population and economic growth, the rate of transformation in China from a rural to urban economy, the increase in floorspace associated with economic growth, the nature of the building services (e.g., air conditioning, plug loads) that Chinese will demand in the future, and the technologies that will be available to provide these services. This paper explores the long-term evolution of China’s building sector through the construction and application of a technologically detailed, service-based model of China’s building sector nested in the 1 There is some degree of recognition by the Chinese of their role in climate mitigition. As part of the 2009 Copenhagen Accord, China pledged to reduce its carbon intensity by 40-45% by 2020 relative to 2005. China’s economic planning department has decided to develop a so-called “Low-Carbon Economy”, which would require various measures ranging from expanding non-fossil
Recommended publications
  • Consider Installing a Condensing Economizer, Energy Tips
    ADVANCED MANUFACTURING OFFICE Energy Tips: STEAM Steam Tip Sheet #26A Consider Installing a Condensing Economizer Suggested Actions The key to a successful waste heat recovery project is optimizing the use of the recovered energy. By installing a condensing economizer, companies can im- ■■ Determine your boiler capacity, prove overall heat recovery and steam system efficiency by up to 10%. Many average steam production, boiler applications can benefit from this additional heat recovery, such as district combustion efficiency, stack gas heating systems, wallboard production facilities, greenhouses, food processing temperature, annual hours of plants, pulp and paper mills, textile plants, and hospitals. Condensing economiz- operation, and annual fuel ers require site-specific engineering and design, and a thorough understanding of consumption. the effect they will have on the existing steam system and water chemistry. ■■ Identify in-plant uses for heated Use this tip sheet and its companion, Considerations When Selecting a water, such as boiler makeup Condensing Economizer, to learn about these efficiency improvements. water heating, preheating, or A conventional feedwater economizer reduces steam boiler fuel requirements domestic hot water or process by transferring heat from the flue gas to the boiler feedwater. For natural gas-fired water heating requirements. boilers, the lowest temperature to which flue gas can be cooled is about 250°F ■■ Determine the thermal to prevent condensation and possible stack or stack liner corrosion. requirements that can be met The condensing economizer improves waste heat recovery by cooling the flue through installation of a gas below its dew point, which is about 135°F for products of combustion of condensing economizer.
    [Show full text]
  • District Heating System, Which Is More Efficient Than
    Supported by ECOHEATCOOL Work package 3 Guidelines for assessing the efficiency of district heating and district cooling systems This report is published by Euroheat & Power whose aim is to inform about district heating and cooling as efficient and environmentally benign energy solutions that make use of resources that otherwise would be wasted, delivering reliable and comfortable heating and cooling in return. The present guidelines have been developed with a view to benchmarking individual systems and enabling comparison with alternative heating/cooling options. This report is the report of Ecoheatcool Work Package 3 The project is co-financed by EU Intelligent Energy Europe Programme. The project time schedule is January 2005-December 2006. The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein. Up-to-date information about Euroheat & Power can be found on the internet at www.euroheat.org More information on Ecoheatcool project is available at www.ecoheatcool.org © Ecoheatcool and Euroheat & Power 2005-2006 Euroheat & Power Avenue de Tervuren 300, 1150 Brussels Belgium Tel. +32 (0)2 740 21 10 Fax. +32 (0)2 740 21 19 Produced in the European Union ECOHEATCOOL The ECOHEATCOOL project structure Target area of EU28 + EFTA3 for heating and cooling Information resources: Output: IEA EB & ES Database Heating and cooling Housing statistics
    [Show full text]
  • Technical Challenges and Innovative Solutions for Integrating Solar Thermal Into District Heating
    Solar Energy Systems GmbH Technical challenges and innovative solutions for integrating solar thermal into district heating P. Reiter SOLID Solar Energy Systems GmbH 06.12.2019 Solar Energy Systems GmbH Solar Heat and DH Solar Cooling Solare Process Heat 26 YEARS EXPERIENCE IN LARGE-SCALE SOLAR THERMAL 300 SYSTEMS BUILT IN MORE THAN 20 COUNTRIES OFFICES IN THE USA, SINGAPORE, GERMANY Energy used by sector: heat - mobility - electricity Solar Energy Systems GmbH Renewable Energy in Total Final Energy Consumption, by Sector, 2016; Source: REN21 Global Status Report 2019 Current supply of DH worldwide Solar Energy Systems GmbH Werner (2017), https://doi.org/10.1016/j.energy.2017.04.045 Energy mix of the future Solar Energy Systems GmbH Limited renewable electricity More wind needed to cover Seasonal current electricity demand mismatch Limited availability Recycling reduces energy from waste Industry tries Operation based on to reduce Limited electricity needs => waste heat availability does not match heat profile Differences between basic SDH and BigSolar Solar Energy Systems GmbH Basic solar district heating (SDH) for covering DHW demand Current SDH systems for covering summer DHW demand Solar Energy Systems GmbH AEVG/Fernheizwerk, Graz, AT Collector field test under real conditions! 10 collector types from 7different manufacturers: • HT-flat plate collectors (foil/double glass) Commiss Collector Nominal Solar CO2- ioning surface power yield savings • Vacuum-tube collectors area Heat • Concentrating collector 2007 8,215 m² 5.7 MW ca. 3,000 1,400 t / 2014-18 MWh/a year Differences between basic SDH and BigSolar Solar Energy Systems GmbH Solar district heating including seasonal storage (BigSolar) Scenario 2 The BigSolar concept Solar Energy Systems GmbH CITYCITY Boiler Boiler Potentials with high solar coverage ratios Solar Energy Systems GmbH SDH for DHW in summer BigSolar (incl.
    [Show full text]
  • Submission to the DCCAE's Consultation “Ireland's Draft
    Submission to the DCCAE’s Consultation “Ireland’s Draft National Energy and Climate Plan (NECP) 2021-2030” Submission prepared by the Irish District Energy Association February 2019 www.districtenergy.ie [email protected] Submission to ‘Draft NECP’ Consultation from DCCAE: February 2019 Contents Contents ........................................................................................................................................................ 2 1 Introduction .......................................................................................................................................... 3 2 IrDEA welcomes the support for District Heating in the responses to the Initial NECP Consultation .. 3 3 The Potential for District Heating is much higher than proposed in the NECP .................................... 4 4 District Heating is a key enabler of Renewable Heat ............................................................................ 5 4.1 Excess Heat Should be Considered along with Renewable Heat as it also offsets carbon emitting fuels such as oil and gas ............................................................................................................................ 8 5 The Flexibility of District Heating Should be valued under Energy Security ......................................... 9 6 Increasing Renewable Heat will require stronger signals and/or support ......................................... 12 7 Bioenergy should be prioritised where it adds most value ...............................................................
    [Show full text]
  • A Little About Limits…
    FOREST-Handbook, chapter 03-00 1 District heating – Introduction 03-00: Introduction to small-scale district heating… As a “small” district heating network, one would consider anything with a peak thermal power less than about 5-10 MW, but there is no strict limit. The fundamental idea with district heating is simple enough, as shown by the schematic below: Thus, the system consists basically of three serial circuits, a boiler circuit, a distribution circuit and a customer circuit. In practice, there will be two customer circuits – one for the tap water and one for the comfort heating system water. These will be manifest as two separate coils in the customer heat exchanger but for simplicity only one is included in the schematic. The main components and their roles The boiler-end heat exchanger Looking at the schematic above it is obvious that the district heating system contains two heat exchangers – one at the boiler end and one with the customer. From a purely theoretical point of view, it might seem wise to exclude the boiler-end heat exchanger and to use the boiler circuit water also for the distribution, but this is not recommended for two reasons: 1) The part in the system most exposed to and most vulnerable to leakages is the distribution network, which may well extent for several kilometres across the township. In case of a major leakage – and if the boiler water is also the circulating water – the boiler will be dry and may suffer severe damage. Hence, the heat exchanger protects the boiler. 2) For maximum efficiency in the system as a whole it is important that the return water in the distribution system is as cold as possible – preferably below 50 oC.
    [Show full text]
  • District Energy Enters the 21St Century
    TECHNICAL FEATURE This article was published in ASHRAE Journal, July 2015. Copyright 2015 ASHRAE. Posted at www.www.burnsmcd.com .org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. District Energy Enters The 21st Century BY STEVE TREDINNICK, P.E., MEMBER ASHRAE; DAVID WADE, P.E., LIFE MEMBER ASHRAE; GARY PHETTEPLACE, PH.D., P.E., MEMBER ASHRAE The concept of district energy is undergoing a resurgence in some parts of the United States and the world. Its roots in the U.S. date back to the 19th century and through the years many technological advancements and synergies have developed that help district energy efficiency. This article explores district energy and how ASHRAE has supported the industry over the years. District Energy’s Roots along with systems serving groups of institutional build- District energy systems supply heating and cooling ings, were initiated and prospered in the early decades to groups of buildings in the form of steam, hot water of the 1900s and by 1949 there were over 300 commercial or chilled water using a network of piping from one or systems in operation throughout the United States. Of more central energy plants. The concept has been used course, systems in the major cities of Europe also gained in the United States for more than 140 years with the favor in Paris, Copenhagen and Brussels. In many cases first recognized commercial district energy operation district steam systems were designed to accept waste originating in Lockport, N.Y.
    [Show full text]
  • Integration of Micro-Cogeneration Units and Electric Storages Into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage
    energies Article Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage Antonio Rosato * , Antonio Ciervo, Giovanni Ciampi , Michelangelo Scorpio and Sergio Sibilio Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy; [email protected] (A.C.); [email protected] (G.C.); [email protected] (M.S.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +39-081-501-0845 Received: 31 July 2020; Accepted: 9 October 2020; Published: 19 October 2020 Abstract: A micro-scale district heating network based on the operation of solar thermal collectors coupled to a long-term borehole thermal storage is modeled, simulated and investigated over a period of five years. The plant is devoted to covering the domestic hot water and space heating demands of a district composed of six typical residential buildings located in Naples (southern Italy). Three alternative natural gas-fueled back-up auxiliary systems (condensing boiler and two different technologies of micro-cogeneration) aiming at balancing the solar energy intermittency are investigated. The utilization of electric storages in combination with the cogeneration systems is also considered with the aim of improving the self-consumption of cogenerated electric energy; heat recovery from the distribution circuit is also evaluated to pre-heat the mains water for domestic hot water production. The performances of the proposed plant schemes are contrasted with those of a typical Italian decentralized heating plant (based on the utilization of natural gas-fueled non-condensing boilers).
    [Show full text]
  • Danish Emission Inventory for Particulate Matter (PM)
    National Environmental Research Institute Ministry of the Environment ■ Denmark Danish emission inventory for particulate matter (PM) ResearchNotes from NERI No. 189 [Blank page] National Environmental Research Institute Ministry of the Environment ■ Denmark Danish emission inventory for particulate matter (PM) Research Notes from NERI No. 189 2003 Malene Nielsen Morten Winther Jytte Boll Illerup Mette Hjort Mikkelsen Data sheet Title: Danish emission inventory for particulate matter (PM) Authors: Malene Nielsen, Morten Winther, Jytte Boll Illerup og Mette Hjort Mikkelsen. Department: Department of Policy Analysis Serial title and no.: Research Notes from NERI No. 189 Publisher: National Environmental Research Institute © Ministry of the Environment URL: http://www.dmu.dk Date of publication: November 2003 Referee: Hanne Bach; Christian Lange Fogh. Financial support: Danish Environmental Protection Agency. Please cite as: Nielsen, M., Winther, M., Illerup, J.B. & Mikkelsen, M.H. 2003: Danish emission in ­ ventory for particulate matter (PM). National Environmental Research Institute, Denmark. 126 p. - Research Notes from NERI No. 189. http://research-notes.dmu.dk Reproduction is permitted, provided the source is explicitly acknowledged. Abstract: The first Danish emission inventory that was reported in 2002 was a provisional estimate based on data presently available. This report documents methodology, emission factors and references used for an improved Danish emission inventory for particulate matter. Further results of the improved emission inventory for the year 2000 are shown. The particulate matter emission inventory includes TSP, PM10 and PM25. The report covers emission inventories for transport and stationary combus ­ tion. An appendix covering emissions from agriculture is also included. For the transport sector, both exhaust and non-exhaust emission such as tyre and break wear and road abrasion are included.
    [Show full text]
  • District Cooling Concepts Applied in China.”
    “District Cooling Concepts applied in China.” Bernt Andersson District Cooling 2016 a Climate Solution Dubai, November 2016 [email protected] District Cooling Very limited development of District Cooling systems, first systems developed early 2000; Standard approach for cooling is split units for apartments and building or block level chilled water plants; Indoor design temperature is +26 C (77 F) For District Cooling systems a combination of compression chillers, absorption chillers and Ice Thermal Energy Storage are common; Almost all District Cooling plants with Ice Thermal Energy Storage have dual duty, single evaporator chillers and large heat exchangers between the glycol circuit and chilled water circuit for day time operation as well as heat exchangers between the Ice Thermal Energy Storage and the chilled water circuit; In almost all cases where both District Heating and District Cooling are developed the pipe network is two pipe system that are used for heat supply in winter and cooling supply in the summer; [email protected] Mean Monthly Temperature Climate Zones Coldest Hottest Severe Cold ≤ -10 °C ≤ 25 °C Cold -10–0 °C 18–28 °C Temperate 0–13 °C 18–25 °C Hot Summer and Cold Winter 0–10 °C 25–30 °C Hot Summer and Warm Winter > 10 °C 25–29 °C Source: Berkely Labs [email protected] Compression Chillers with Ice Thermal Energy Storage Concepts Best Practice Dual duty chillers with two evaporators where the chilled water evaporator is connected in series with the directly connected Thermal
    [Show full text]
  • Guidance for District Heating Feasibility
    Guidance for District Heating Feasibility This Guidance document is designed to provide a structure for undertaking feasibility work when implementing Stockport’s Core Strategy Policy SD-4: District Heating (Network Development Areas). Five case studies are available for locations in the Borough and can be downloaded free: www.stockport.gov.uk/planningsustainabledevelopment - see Related Documents on the right of the page. The first section summarises the Guidance steps providing a checklist of activity for undertaking district heating feasibility work. The main body of the Guidance provides the detailed processes required to inform district heating feasibility. There is a final section which deals with considerations for specific types of sites. 1. Summary of Guidance Steps The table below presents a summary of the more comprehensive guidance notes relating to early stage district heating feasibility advice available in this Guidance document. The table shows a checklist of opportunities that should be explored when initially assessing the feasibility and viability of district heating for a development site. This work draws on the guidance document produced by the Town & Country Planning Association: Community Energy - Urban Planning for a Low Carbon Future. A summary checklist of district heating feasibility implementation is provided below. Step Consideration Yes/No Consider the range of drivers for developing district heating on the site, and prioritise 1 drivers according to influence on development proposals Define a set of objectives
    [Show full text]
  • Biomass Heating
    PRODUCTION SITES = suitable = not recomended = also suitable for wet Germany working conditions (W), Jeremias GmbH with soot fire resistance (G) Opfenrieder Str. 11-14 D-91717 Wassertrüdingen phone: +49 (0) 9832 6868-50 e-mail: [email protected] www.jeremias.de JEREMIAS SYSTEM BIOMASS SOLUTIONS Poland CHIMNEY SYSTEMS Jeremias Sp. z o.o. ul. Kokoszki 6 PL-62200 Gniezno phone: +48 61 428 46 20 e-mail: [email protected] Jeremias Chimney systems fuel compatibility* www.jeremias.pl DW DW DW DW DW EW EW EW EW EW Spain Fuel type FERRO FU VISION ECO MAMMUT SILVER PELLETS FU FLEX MAMMUT SILVER Jeremias España S. A. P.I. Zubieta 3 ES-48340 Amorebieta / Bizkaia – España Woodchips phone: +34 946301010 e-mail: [email protected] www.jeremias.com.es Logs Russia Pellets OOO Jeremias Rus 141076 Moskauer Area, City Korolew Street Kaliningradskaja, House 12, Building A126 Cereals phone: +7 (495) 664 2378 e-mail: [email protected] www.jeremias.ru Corn Czech Republic Jeremias CZ s.r.o Elephant grass Školni 22/6 CZ-434 01 Most Rudolice phone: +420 476 701238 Coal e-mail: [email protected] www.jeremias.cz Please take this information as general reference. There are country specific installation rules for Biomass appliances. USA Please contact your Jeremias technical department for exact documentation and advise on installing rules in your country. Jeremias Inc. 983 Industrial Park Drive *Some of the appliances may work in overpressure, in that case a silicone joint in the inner liner may be necessary. Marietta, GA 30062, USA phone: +1 678 388 2740 e-mail: [email protected] www.jeremiasinc.com All the Jeremias Products are tested for the use of Bio- Jeremias highly recommend to rely on specialised com- mass as main fuel and certified with the very specific V2 panies in planning and installation of biomass Heating Jeremias is represented in the following countries: and V3 corrosion classes for solid fuel including coal or systems specially with Biomass Boilers and CHPs.
    [Show full text]
  • Manufacturer of Boilers for Industrial, Commercial and District Heating Use
    MANUFACTURER OF BOILERS FOR INDUSTRIAL, COMMERCIAL AND DISTRICT HEATING USE In Europe since 1935 OIL & GAS BOILERS In oil & gas range of boilers we offer: i • 3 - pass hot water boilers, shell and tube • 3 - pass steam boilers, shell and tube We can also make a custom-made combination of a water-tube and flue gas boiler. In our offer we also have a wide range of accessories for oil and gas boilers. Thermal deaerators | Condensate tanks | Blow down tanks | Pump units | Economizers LOW AND HIGH TEMPERATURE LOW AND HIGH PRESSURE HOT WATER BOILERS STEAM BOILERS Type: 3-pass, Type: 3-pass shell and tube shell and tube Fuel: oli / gas Fuel: oil / gas Capacity: from 800 kW to 50 MW Steam rating: 630 - 68 000 kg/h Pressure: up to 36 bar(g) Pressure: 0,7 - 43 bar(g) 2 Send your inquiry: [email protected] Non-standard products available upon request. WHRB & CO-GENERATION BOILERS WHRB BOILERS BOILERS FOR CO-GENERATION SYSTEMS • We design and develop non-standard • Danstoker’s exhaust gas steam boilers are boilers and economizers for heat recovery supplied as single or double pass boilers with i from exhaust gases originating from integrated economizers and/or superheaters. chemical and industrial processes. • More than 2500 units sold worldwide • The waste heat is recovered in single, double or triple-pass boilers provided with low-temperature economizers or integrated superheaters in the steam boilers. WATER OR STEAM BOILERS WATER OR STEAM BOILERS: Type: generally intended for generation Type: horizontal/vertical boiler designed for of low and high temperature hot installation after engines (water/steam) water or steam or turbine (steam) Parameters: up to 43 bar(g) - water/ steam Engine size: 0,4 – 20 MW, max 46 kg flue gas/sec., Capacity: depending on the exhaust gas max 43 bar(g) volume.
    [Show full text]