Mimicry, Crypsis, Masquerade and Other Adaptive Resemblances

Total Page:16

File Type:pdf, Size:1020Kb

Mimicry, Crypsis, Masquerade and Other Adaptive Resemblances MIMICRY, CRYPSIS, MASQUERADE AND OTHER ADAPTIVE RESEMBLANCES MIMICRY, CRYPSIS, MASQUERADE AND OTHER ADAPTIVE RESEMBLANCES Donald L. J. Quicke FRES, PhD Professor, Chulalongkorn University, Bangkok, Thailand This edition first published 2017 © 2017 John Wiley & Sons Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Donald L. J. Quicke to be identified as the author of this work has been asserted in accordance with law. Registered Office(s) John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, P019 8SQ, UK Editorial Office 9600 Garsington Road, Oxford, OX4 2DQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. A catalogue record for this book is available from the Library of Congress and the British Library. ISBN 9781118931530 Cover images: courtesy of Donald L.J. Quicke (except top left on back cover, courtesy of Linda Pitkin) Set in 9/11pt Photina by SPi Global, Pondicherry, India 10 9 8 7 6 5 4 3 2 1 For all the dogs who live on streets everywhere with no‐one to love them, and to those wonderful organisations such as Soi Dog Foundation in Thailand, that work hard to care for them. This is wonderful Puii. She lives at Saphan Taksin Pier. CONTENTS Preface, xiii Butterfly pupal colour polymorphism, 32 A comment on statistics, xv Winter pelage: pelts and plumage, 35 A comment on scientific names, xvi Melanism, 37 Industrial melanism, 37 Acknowledgements, xvii Fire melanism, 40 Background selection, 41 Orientation and positioning, 43 1 INTRODUCTION AND CLASSIFICATION Transparency, 45 OF MIMICRY SYSTEMS, 1 Reflectance and silvering, 47 A brief history, 2 Adaptive colour change, 49 On definitions of ‘mimicry’ and adaptive resemblance, 3 Caterpillars and food plant colouration, 50 The concept of ‘adaptive resemblance’, 8 Daily and medium‐paced changes, 54 The classification of mimicry systems, 9 Rapid colour change, 56 Wickler’s system, 9 Chameleons, 56 Vane‐Wright’s system, 10 Cephalopod chromatophores Georges Pasteur (1930–2015), 11 and dermal papillae, 57 Other approaches, 13 Bird eggs and their backgrounds, 58 Endler, 13 Disguising your eyes, 61 Zabka & Tembrock, 13 Disruptive and distractive markings, 61 Maran, 14 Edge‐intercepting patches, 61 Mimicry as demonstration of evolution, 14 Distractive markings, 63 Zebra stripes and tsetse flies, 66 Stripes and motion dazzle – more zebras, kraits 2 CAMOUFLAGE: CRYPSIS AND DISRUPTIVE and tigers, 69 COLOURATION IN ANIMALS, 19 Computer graphics experiments with human subjects, 69 Introduction, 20 Observations on real animals, 69 Distinguishing crypsis from masquerade, 20 Comparative analysis, 71 Crypsis examples, 24 Dual signals, 72 Countershading, 24 Protective crypsis in non‐visual modalities, 73 Experimental tests of concealment by Apostatic and antiapostatic selection, 73 countershading, 27 Search images, 74 Bioluminescent counter‐illumination, 28 Experimental tests of search image, 76 Background matching, 29 Gestalt perception, 76 Visual sensitivity of predators, 30 Effect of cryptic prey variability, 77 To make a perfect match or compromise, 31 Reflexive selection and aspect diversity, 77 Colour polymorphism, 32 Searching for cryptic prey – mathematical Seasonal colour polymorphism, 32 models, 80 vii viii Contents Ontogenetic changes and crypsis, 81 Behaviour of protected aposematic animals, 135 Hiding the evidence, 82 Of birds and butterflies, 135 Petiole clipping by caterpillars, 82 Evolution of sluggishness, 139 Exogenous crypsis, 82 Origins of protective compounds, 140 Military camouflage and masquerade, 85 Plant‐derived toxins, 140 Cardiac glycosides, 141 Pyrrolizidine alkaloids, 144 3 CAMOUFLAGE: MASQUERADE, 87 De novo synthesis of protective compounds, 145 Introduction, 88 Obtaining toxins from animal sources, 147 Classic examples, 88 Costs of chemical defence, 149 Twigs as models, 88 Aposematism with non‐chemical defence, 150 Leaves (alive or dead) as models, 88 Escape speed and low profitability, 150 Bird dropping resemblances, 89 Parasitoids and aposematic insects, 152 Spider web stabilimenta, 93 Diversity of aposematic forms, 152 Tubeworms, etc., 94 Egg load assessment, 154 Experimental tests of survival value of masquerade, 94 Proof of aposematism, 154 Ontogenetic changes and masquerade, 97 Bioluminescence as a warning signal, 155 Thanatosis (death feigning), 97 Warning sounds, 155 Feign or flee? The trade‐offs of thanatosis, 100 Warning colouration in mammals, 157 Other aspects of death mimicry, 100 Weapon advertisement, 158 Seedless seeds and seedless fruit, 100 Mutualistic aposematism, 160 Aposematism induced by a parasite, 161 4 APOSEMATISM AND ITS EVOLUTION, 103 Aposematic commensalism, 161 Polymorphism and geographic variation in Introduction, 104 aposematic species, 161 Initial evolution of aposematism, 108 Aposematism in plants, 163 Associations of unpalatable experience Synergistic selection of unpalatability with place, 109 in plants, 165 Mathematical models and ideas of warning colouration Aposematism in fungi, 166 evolution, 112 Why are some unpalatable organisms aposematic Kin selection models, 112 and others not?, 167 Green beard selection, 112 Family selection models, 113 5 ANTI‐PREDATOR MIMICRY. I. Individual selection models, 113 MATHEMATICAL MODELS, 171 Spatial models and metapopulations, 116 Handicap and signal honesty, 117 Introduction, 172 Early warnings – reflex bleeding, vomiting Properties of models, rewards, learning rates and and other noxious secretions, 120 numerical relationships, 172 Longevity of aposematic protected taxa, 121 Simple models and their limitations, 173 Macroevolutionary consequences, 121 Müller’s original model, 173 Experimental studies, 121 Simple models of Batesian and Tough aposematic prey and individual selection, 121 Müllerian mimicry, 173 Pyrazine and other early warnings, 123 Are Batesian and Müllerian mimicry Learning and memorability, 124 different?, 174 Strength of obnoxiousness, 126 An information theory model, 176 Is the nature of the protective compound Monte‐Carlo simulations, 177 important?, 126 More refined models – time, learning, forgetting Neophobia and the role of novelty, 127 and sampling, 180 Innate responses of predators, 130 Importance of alternative prey, 181 Aposematism and gregariousness, 132 Signal detection theory, 181 Phylogenetic analysis of aposematism Genetic and evolutionary models, 182 and gregariousness, 134 Coevolutionary chases, 185 Contents ix Models involving population dynamics, 185 Myrmecomorphy by caterpillars, 237 Neural networks and evolution Ant chemical mimicry by parasitoid of Batesian mimicry, 188 wasps, 237 Automimicry in Batesian/Müllerian mimicry, 188 Protective mimicries among vertebrates, 239 Predator’s dilemma with potentially harmful prey, 190 Fish, 239 Batesian mimicry among fish, 239 Müllerian mimicry among fish, 239 6 ANTI‐PREDATOR MIMICRY. II. Batesian and Müllerian mimicry among EXPERIMENTAL TESTS, 191 terrestrial vertebrates, 239 Introduction, 192 The coral snake problem – Emsleyan Experimental tests of mimetic advantage,
Recommended publications
  • On Visual Art and Camouflage
    University of Northern Iowa UNI ScholarWorks Faculty Publications Faculty Work 1978 On Visual Art and Camouflage Roy R. Behrens University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©1978 The MIT Press Follow this and additional works at: https://scholarworks.uni.edu/art_facpub Part of the Art and Design Commons Recommended Citation Behrens, Roy R., "On Visual Art and Camouflage" (1978). Faculty Publications. 7. https://scholarworks.uni.edu/art_facpub/7 This Article is brought to you for free and open access by the Faculty Work at UNI ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Leonardo. Vol. 11, pp. 203-204. 0024--094X/78/070 I -0203S02.00/0 6 Pergamon Press Ltd. 1978. Printed in Great Britain. ON VISUAL ART AND CAMOUFLAGE Roy R. Behrens* In a number of books on visual fine art and design [ 1, 21, countershading makes a 3-dimensional object seem flat, there is mention of the kinship between camouflage and while normal shading in flat paintings can make a painting, but no one has, to my knowledge, pursued it. I depicted object appear to be 3-dimensional. He also have intermittently researched this relationship for discussed the function of disruptive patterning, in which several years, and my initial observations have recently even the most brilliant colors may contribute to the been published [3]. Now I have been awarded a faculty destruction of an animal’s outline. While Thayer’s research grant from the Graduate School of the description of countershading is still respected, his book is University of Wisconsin-Milwaukee to pursue this considered somewhat fanciful because of exaggerated subject in depth.
    [Show full text]
  • LS28 Camouflage and Mimicry Follow up Student #2
    Follow-up Activity: For Students Life Science 28: Camouflage and Mimicry Introduction: In this lesson, camouflage & mimicry were explored as examples of adaptations adopted by animals to increase their chances of survival. What can an animal do to keep from being a predator's dinner? To survive, some animals use camouflage so they can better blend in with their surroundings. Camouflage is a set of colorings or markings on an animal that help it to blend in with its surroundings, or habitat, and prevent it from being recognized as potential prey. Activity: Candy Camouflage In this science activity, you and your friends will become the hungry predators and you'll hunt for different colored candies. But it may not be as easy as it sounds—some of your prey will be camouflaged by their habitats. Are you ready for the challenge? Materials: • Six plastic bags (one bag for M&Ms; 5 bags for Skittles, separated by color) • Plain M&Ms; at least 10 of each color (at least two 1.69-ounce packages may be needed) • Skittles; at least 60 of each color (one 16-oz package) • Metal pie tin or other deep plate • Cups for collecting candies during the hunt; one cup per predator • Timer • Data charts (attached) • 2-4 Volunteer predators to be hungry M&Ms-feasting birds Preparation: 1. Place 10 M&Ms of each color (yellow, blue, green, brown, red, orange) into one plastic bag 2. Place 60 Skittles of each color (orange, green, red, yellow, purple) into separate plastic bags. This means you will have 5 separate bags of Skittles: one bag containing only red, one bag containing only orange, one bag containing green, one bag of purple and one bag of yellow) 3.
    [Show full text]
  • Mimicry and Defense
    3/24/2015 Professor Donald McFarlane Mimicry and Defense Protective Strategies Camouflage (“Cryptic coloration”) Diverse Coloration Diversion Structures Startle Structures 2 1 3/24/2015 Camouflage (“Cryptic coloration”) Minimize 3d shape, e.g. flatfish Halibut (Hippoglossus hippoglossus) 3 4 2 3/24/2015 Counter‐Shading 5 Disruptive Coloration 6 3 3/24/2015 Polymorphism – Cepeae snails 7 Polymorphism – Oophaga granuliferus 8 4 3/24/2015 Polymorphism – 9 Polymorphism – Oophaga Geographic locations of study populations and their color patterns. (A) Map of the pacific coast of Colombia showing the three study localities: in blue Oophaga histrionica, in orange O. lehmanni, and in green the pHYB population. (B) Examples of color patterns of individuals from the pHYB population (1–4) and the pattern from a hybrid between Oophaga histrionica and O. lehmanni bred in the laboratory (H) 10 5 3/24/2015 Diversion Structures 11 Startle Structures 12 6 3/24/2015 Warning Coloration (Aposematic coloration) Advertise organism as distasteful, toxic or venomous Problem: Predators must learn by attacking prey; predator learning is costly to prey. Therefore strong selective pressure to STANDARDIZE on a few colors/patterns. This is MULLERIAN MIMICRY. Most common is yellow/black, or red/yellow/black 13 Warning Coloration (Aposematic coloration) Bumblebee (Bombus Black and yellow mangrove snake (Boiga sp.) Sand Wasp (bembix oculata) dendrophila) Yellow‐banded poison dart frog (Dendrobates leucomelas Fire salamander ( Salamandra salamandra) 14 7 3/24/2015 Warning Coloration (Aposematic coloration) coral snakes (Micrurus sp.) ~ 50 species in two families, all venomous 15 Batesian Mimicry 1862 –Henry Walter Bates; “A Naturalist on the River Amazons” 16 8 3/24/2015 Batesian Mimicry Batesian mimics “cheat” –they lack toxins, venom, etc.
    [Show full text]
  • Dynamics of Salticid-Ant Mimicry Systems
    ResearchOnline@JCU This file is part of the following reference: Ceccarelli, Fadia Sara (2006) Dynamics of salticid-ant mimicry systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1311/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1311/ TITLE PAGE Dynamics of Salticid-Ant Mimicry Systems Thesis submitted by Fadia Sara CECCARELLI BSc (Hons) in March 2006 for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University I STATEMENT OF ACCESS I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole of part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. ------------------------------ -------------------- F. Sara Ceccarelli II ABSTRACT Mimicry in arthropods is seen as an example of evolution by natural selection through predation pressure. The aggressive nature of ants, and their possession of noxious chemicals, stings and strong mandibles make them unfavourable prey for many animals. The resemblance of a similar-sized arthropod to an ant can therefore also protect the mimic from predation.
    [Show full text]
  • Predatory Behavior of Jumping Spiders
    Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies.
    [Show full text]
  • Download The
    MAS Context Issue 22 / Summer ’14 Surveillance MAS Context Issue 22 / Summer ’14 Surveillance 3 MAS CONTEXT / 22 / SURVEILLANCE / 22 / CONTEXT MAS Welcome to our Surveillance issue. This issue examines the presence of surveillance around us— from the way we are being monitored in the physical and virtual world, to the potential of using the data we generate to redefine our relationship to the built environment. Organized as a sequence of our relationship with data, the contributions address monitoring, collecting, archiving, and using the traces that we leave, followed by camouflaging and deleting the traces that we leave. By exploring different meanings of surveillance, this issue seeks to generate a constructive conversation about the history, policies, tools, and applications of the information that we generate and how those aspects are manifested in our daily lives. MAS Context is a quarterly journal that addresses issues that affect the urban context. Each issue delivers a comprehensive view of a single topic through the active participation of people from different fields and different perspectives who, together, instigate the debate. MAS Context is a 501(c)(3) not for profit organization based in Chicago, Illinois. It is partially supported by a grant from the Graham Foundation for Advanced Studies in the Fine Arts. MAS Context is also supported by Wright. With printing support from Graphic Arts Studio. ISSN 2332-5046 5 “It felt more like a maximum security prison than a gated community SURVEILLANCE / 22 / CONTEXT MAS when the Chicago Housing Authority tried to beef up the safety of the neighborhood. Our privacy was invaded with police cameras Urban watching our every move.
    [Show full text]
  • Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
    Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators.
    [Show full text]
  • VOL 1, No 69 (69) (2021) the Scientific Heritage (Budapest, Hungary
    VOL 1, No 69 (69) (2021) The scientific heritage (Budapest, Hungary) The journal is registered and published in Hungary. The journal publishes scientific studies, reports and reports about achievements in different scientific fields. Journal is published in English, Hungarian, Polish, Russian, Ukrainian, German and French. Articles are accepted each month. Frequency: 24 issues per year. Format - A4 ISSN 9215 — 0365 All articles are reviewed Free access to the electronic version of journal Edition of journal does not carry responsibility for the materials published in a journal. Sending the article to the editorial the author confirms it’s uniqueness and takes full responsibility for possible consequences for breaking copyright laws Chief editor: Biro Krisztian Managing editor: Khavash Bernat • Gridchina Olga - Ph.D., Head of the Department of Industrial Management and Logistics (Moscow, Russian Federation) • Singula Aleksandra - Professor, Department of Organization and Management at the University of Zagreb (Zagreb, Croatia) • Bogdanov Dmitrij - Ph.D., candidate of pedagogical sciences, managing the laboratory (Kiev, Ukraine) • Chukurov Valeriy - Doctor of Biological Sciences, Head of the Department of Biochemistry of the Faculty of Physics, Mathematics and Natural Sciences (Minsk, Republic of Belarus) • Torok Dezso - Doctor of Chemistry, professor, Head of the Department of Organic Chemistry (Budapest, Hungary) • Filipiak Pawel - doctor of political sciences, pro-rector on a management by a property complex and to the public relations
    [Show full text]
  • Iso-Luminance Counterillumination Drove Bioluminescent Shark Radiation
    OPEN Iso-luminance counterillumination drove SUBJECT AREAS: bioluminescent shark radiation ECOLOGICAL Julien M. Claes1, Dan-Eric Nilsson2, Nicolas Straube3, Shaun P. Collin4 &Je´roˆme Mallefet1 MODELLING ICHTHYOLOGY 1Laboratoire de Biologie Marine, Earth and Life Institute, Universite´ catholique de Louvain, 1348 Louvain-la-Neuve, Belgium, 2Lund ADAPTIVE RADIATION Vision Group, Lund University, 22362 Lund, Sweden, 3Department of Biology, College of Charleston, Charleston, SC 29412, USA, 4The School of Animal Biology and The Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia. Received 13 November 2013 Counterilluminating animals use ventral photogenic organs (photophores) to mimic the residual downwelling light and cloak their silhouette from upward-looking predators. To cope with variable Accepted conditions of pelagic light environments they typically adjust their luminescence intensity. Here, we found 21 February 2014 evidence that bioluminescent sharks instead emit a constant light output and move up and down in the water Published column to remain cryptic at iso-luminance depth. We observed, across 21 globally distributed shark species, 10 March 2014 a correlation between capture depth and the proportion of a ventral area occupied by photophores. This information further allowed us, using visual modelling, to provide an adaptive explanation for shark photophore pattern diversity: in species facing moderate predation risk from below, counterilluminating photophores were partially co-opted for bioluminescent signalling, leading to complex patterns. In addition Correspondence and to increase our understanding of pelagic ecosystems our study emphasizes the importance of requests for materials bioluminescence as a speciation driver. should be addressed to J.M.C. (julien.m. mong sharks, bioluminescence occurs in two shark families only, the Dalatiidae (kitefin sharks) and the [email protected]) Etmopteridae (lanternsharks), which are among the most enigmatic bioluminescent organisms1–3.
    [Show full text]
  • Müllerian and Batesian Mimicry Rings of White- Variegated Aposematic Spiny and Thorny Plants: a Hypothesis
    Israel Journal of Plant Sciences ISSN: 0792-9978 (Print) 2223-8980 (Online) Journal homepage: http://www.tandfonline.com/loi/tips20 Müllerian and Batesian mimicry rings of white- variegated aposematic spiny and thorny plants: A hypothesis Simcha Lev-Yadun To cite this article: Simcha Lev-Yadun (2009) Müllerian and Batesian mimicry rings of white- variegated aposematic spiny and thorny plants: A hypothesis, Israel Journal of Plant Sciences, 57:1-2, 107-116 To link to this article: http://dx.doi.org/10.1560/IJPS.57.1-2.107 Published online: 14 Mar 2013. Submit your article to this journal Article views: 41 View related articles Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tips20 Download by: [Universitaire De Lausanne] Date: 03 May 2016, At: 02:12 Israel Journal of Plant Sciences Vol. 57 2009 pp. 107–116 DOI: 10.1560/IJPS.57.1–2.107 This paper has been contributed in honor of Azaria Alon on the occasion of his 90th birthday. Müllerian and Batesian mimicry rings of white-variegated aposematic spiny and thorny plants: A hypothesis SIMCHA LEV-YADUN Department of Science Education–Biology, Faculty of Science and Science Education, University of Haifa—Oranim, Tivon 36006, Israel (Received 4 August 2008; accepted in revised form 9 March 2009) ABSTRACT Twenty-one wild spiny or thorny plant species growing in Israel have been found so far that are conspicuous because of white stripes and spots found on their leaves. Twenty of these species occupy open habitats, and only one is a climber (Smilax aspera) that is found in both shady and open habitats.
    [Show full text]
  • Plant-Environment Interactions: from Sensory Plant Biology to Active
    Signaling and Communication in Plants Series Editors František Baluška Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Jorge Vivanco Center for Rhizosphere Biology, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523-1173, USA František Baluška Editor Plant-Environment Interactions From Sensory Plant Biology to Active Plant Behavior Editor František Baluška Department of Plant Cell Biology IZMB University of Bonn Kirschallee 1 D-53115 Bonn Germany email: [email protected] ISSN 1867-9048 ISBN 978-3-540-89229-8 e-ISBN 978-3-540-89230-4 DOI: 10.1007/978-3-540-89230-4 Library of Congress Control Number: 2008938968 © 2009 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com František Baluška dedicates this book to Prof.
    [Show full text]
  • Peppered Moths
    Icons of Evolution? Why Much of What Jonathan Wells Writes about Evolution is Wrong Alan D. Gishlick, National Center for Science Education PEPPERED MOTHS HOW MANY MOTHS CAN DANCE ON THE TRUNK OF A TREE? THE STORY OF THE PEPPERED MOTH DISTRACTION BY IRRELEVANT DATA ndustrial melanism in peppered moths is ells disagrees with the results of the one of the most frequently used examples research on industrial melanism in Iof natural selection in action. This is large- Wthe peppered moth, and manipulates ly because of its pedagogical simplicity — it is the literature and the data to fit his views. He a straightforward example that is visual and points out that the “problem” of the peppered dynamic — and its copious documentation. moths is far from simple. His discussion cen- Industrial melanism refers to the darkening of ters on three points where he believes text- color that occurred in a number of species of books are in error, alleging that (1) the daytime insects following the Industrial Revolution. resting places of peppered moths invalidates This change appears to be related to the Kettlewell’s experimental results; (2) the pho- increase in pollutants in the environment. tos of the moths are “staged”; and (3) the Before the Industrial Revolution, individuals recovery patterns of populations dominated by of the moth species Biston betularia (com- light moths after the levels of pollution were monly called the “peppered moth”) were pre- reduced do not fit the “model,” although he is dominantly white with black speckles. By the unclear as to what the “model” is. All three of end of the 1800s, they were predominantly these objections are spurious.
    [Show full text]