Genomic and Epigenetic Characterisation of Childhood Ependymoma

Total Page:16

File Type:pdf, Size:1020Kb

Genomic and Epigenetic Characterisation of Childhood Ependymoma GENOMIC AND EPIGENETIC CHARACTERISATION OF CHILDHOOD EPENDYMOMA John-Paul Kilday, MBChB MRCPCH Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy December 2011 i This thesis is dedicated to the children and their families whose lives have been affected by brain tumours ii ABSTRACT iv ACKNOWLEDGEMENTS v CONTENTS vi LIST OF FIGURES xii LIST OF TABLES xix ABBREVIATIONS (AND NOTE) xxiv iii ABSTRACT Paediatric ependymomas remain a clinical management challenge, with a relatively poor prognosis when compared to other childhood tumours of the central nervous system. An improved understanding of underlying ependymoma biology may identify new correlates of outcome and potential therapeutic targets. To address this, AffymetrixTM 500K SNP arrays were used to establish the nature and range of genomic imbalances in 63 paediatric ependymomas (42 primary and 21 recurrent). Over 80 % of tumours were analysed against patient-matched constitutional DNA. In addition, the Illumina® GoldenGate® Cancer Panel I array was used to identify differences in methylation profile across 98 paediatric ependymomas (73 primary and 25 recurrent). While collective assessment revealed the most common anomalies, specific aberrations were characteristic of certain ependymoma subgroups, particularly those relating to tumour location, patient age, disease recurrence and patient prognosis. The genomic imbalance of 15 selected candidate genes (NSL1, DNAJC25, NAV1, CDKN2A, CHI3L1, HOXA5, TXN, BNIPL, and PRUNE) were confirmed by quantitative Polymerase Chain Reaction. Genomic gain involving regions of chromosome 1q were associated with an unfavourable patient outcome, such as the focal locus on 1q21.3 encompassing PRUNE. The genomic gain of PRUNE correlated with an increased encoded protein expression, as assessed by immunohistochemistry (IHC). This adverse prognostic association with 1q was upheld in the subsequent part of this work. Fluorescent in situ hybridisation and IHC were used to evaluate a panel of six putative prognostic markers (1q25 gain, PRUNE, Tenascin-C, Nucleolin, Ki-67 and NAV1 expression) across a paediatric intracranial ependymoma tissue microarray cohort of 107 primary tumours treated within the confines of two aged defined clinical trials (UK CCLG 1992 04 and SIOP 1999 04). Within the younger UK CCLG 1992 04 cohort, copy number gain of chromosome 1q25 and PRUNE overexpression were independently associated with an increased risk of disease progression, while strong PRUNE expression was also an independent marker of worse overall survival. In addition, increased Tenascin-C expression correlated with a reduced overall survival on univariate analysis. For older children in the SIOP 1999 04 cohort, strong PRUNE expression in ependymomas was again identified as an adverse prognostic marker, correlating with increased mortality on univariate assessment. iv ACKNOWLEGDEMENTS I would like to thank numerous people for their help, advice and support throughout this PhD. Particular thanks must go to principal supervisor Professor Richard Grundy for allowing me to work as one of his PhD students. His encouragement, insight, advice and guidance were much invaluable and much appreciated. I am also extremely grateful to my second supervisor Dr. Beth Coyle for being a source of knowledgeable support. I am extremely grateful to Dr. Richard Gilbertson and his laboratory (St. Jude’s Hospital, Memphis, Tennessee, USA) for their collaborative support in providing a proportion of the SNP array data. I must also thank Dr. Steve Clifford and Dr. Ed Schwalbe (Northern Institute for Cancer Research) for their guidance with the methylation array data analysis, Dr. Sarah Nicholson (CCLG) for TMA construction and assisting me retrieve patient clinical information and Dr. Felipe Andreiuolo (Institut Gustav-Roussy) for his collaborative expertise with Tenascin-C IHC staining and scoring. All the members of staff at the Children’s Brain Tumour Research Centre have helped me at some stage throughout this work and I am extremely thankful to you all. Special thanks must go to Dr. Hazel Rodgers and Dr. Suzanne Miller for listening to my numerous questions and supporting me with the thesis presentation. Others that must be mentioned for their technical support and scientific advice include Dr. Martyna Adamowicz, Dr. Ruman Rahman, Dr. Jennifer Barrow, Mr. Stuart Smith, Biswaroop Mistra, Dr. Lisa Storer, Professor James Lowe, Dr. Keith Sibson and Lee Ridley. Thanks also to Dr Alain Pitiot and Francois Morvillier at the Brain and Body centre for allowing me to use the SNPview computer program. A special thank you must also be reserved for my family. Their enduring patience, love and support were much appreciated – thanks Mum, Dad, Anne-Marie and Laura. Finally I would like to express my gratitude to the James Tudor Foundation for funding this research. v CHAPTER 1: INTRODUCTION 1 1.1 Paediatric brain tumours 2 1.1.1 Background 2 1.1.2 Neural development 3 1.1.3 Brain tumour stem cells 6 1.2 Clinical and pathological aspects of paediatric ependymoma 7 1.2.1 Epidemiology 7 1.2.2 Tumour location 8 1.2.3 Aetiology and predisposing syndromes 8 1.2.4 Histology and ependymoma classification 9 1.2.5 Treatment of paediatric intracranial ependymoma 13 1.2.6 Survival and clinicopathological prognostic markers 16 1.3 Genetics of cancer 17 1.3.1 Oncogenes and tumour suppressor genes 17 1.3.2 Loss of heterozygosity 19 1.3.3 Epigenetics 20 1.4 Increasing resolution of genomic profiling 22 1.4.1 Comparative genomic hybridisation 22 1.4.2 Array comparative genomic hybridisation 24 1.4.3 Single nucleotide polymorphism arrays 25 1.5 Biological aspects of paediatric ependymoma 27 1.5.1 Cytogenetic studies – ependymoma karyotypes 27 1.5.2 Comparative genomic hybridisation meta-analysis 29 1.5.2.1 Paediatric versus adult ependymomas 30 1.5.2.2 Paediatric ependymomas from different CNS locations 35 1.5.3 Higher resolution genomic analyses of paediatric ependymoma 35 1.5.4 Methylation analyses of ependymoma 38 1.5.5 Ependymoma-initiating cells 39 1.5.6 Cell signalling pathways 41 1.5.7 Biological prognostic markers for paediatric ependymoma 43 1.6 Summary and aims 55 CHAPTER 2: MATERIALS AND METHODS 56 2.1 DNA extraction 57 2.1.1 Frozen ependymoma cohort 57 2.1.2 Tumour tissue assessment 57 2.1.3 DNA extraction from frozen tumour tissue 59 2.1.4 DNA extraction from blood 59 2.1.5 DNA quantification and quality control 60 vi 2.2 The 500K AffymetrixTM SNP array 61 2.2.1 500K SNP array protocol overview 61 2.2.2 SNP array scanning and initial data interpretation 62 2.2.3 SNP array analysis – GTYPE 63 2.2.4 SNP array analysis – CNAG 64 2.2.5 SNP array analysis – data visualisation software 66 2.3 Illumina® GoldenGate® Cancer Panel assay for methylation 67 2.3.1 GoldenGate® Cancer Panel assay protocol overview 67 2.3.2 Methylation array scanning 70 2.3.3 Methylation array quality control 71 2.3.4 Methylation array initial data interpretation 74 2.4 Real time quantitative Polymerase Chain Reaction 75 2.4.1 Primer optimisation 77 2.4.2 Primer efficiencies 78 2.4.3 PCR reactions on tumour and blood samples 82 2.4.4 Quantification of target gene copy number in tumour samples 82 2.5 Fluorescent in situ hybridisation 83 2.6 Immunohistochemistry 85 2.7Statistics 87 2.7.1 Associations of variables in two way tables 88 2.7.2 Associations with patient age 88 2.7.3 Correlation of SNP array and qPCR results 88 2.7.4 Correlation of methylation array technical replicates 89 2.7.5 Kappa measure of agreement 89 2.7.6 Survival analysis 89 2.7.7 Differential methylation analysis between clinical subgroups 90 CHAPTER 3: GENOME-WIDE CHARACTERISATION OF GENOMIC 91 AND EPIGENETIC ABERRATIONS IN PAEDIATRIC EPENDYMOMA 3.1 Introduction 92 3.2 Materials and methods 93 3.2.1 500K SNP array analysis of 63 paediatric ependymomas 93 3.2.1.1 The sample cohort 93 3.2.1.2 Global genomic imbalance data analysis 97 3.2.1.3 SNP array call rates 98 3.2.1.4 FISH validation of SNP array findings 98 3.2.2 Methylation array analysis of 98 paediatric ependymomas 98 3.2.2.1 The sample cohort 98 3.2.2.2 Methylation array data analysis 103 3.2.2.3 Assessment of methylation intra-assay reproducibility 103 3.2.3 Statistical analysis 104 vii 3.3 Results 104 3.3.1 Clinical associations: the SNP array primary tumour cohort 104 3.3.2 Clinical associations: the methylation array primary tumour cohort 105 3.3.3 Chromosomal arm imbalance in 63 paediatric ependymomas 106 3.3.4 Association of chromosomal arm imbalances with clinical subgroups 111 3.3.5 Association of cytoband imbalances with clinical subgroups 114 3.3.6 FISH validation of chromosome 1q gain results from the SNP array 120 3.3.7 Methylation cluster analysis identifies clinically relevant subgroups 122 3.4 Discussion 126 3.4.1 Aberrations in paediatric ependymomas from different CNS locations 128 3.4.2 Aberrations in ependymomas from younger and older children 131 3.4.3 Aberrations in potential prognostic groups 133 3.4.3.1 Cytoband imbalance group two / chromosome 1q gain 133 3.4.3.1.1 Refining the SNP definition of 1q gain 135 3.4.3.2 Cytoband imbalance group three 136 3.4.3.3 Other aberrations in recurrent intracranial ependymomas 137 3.5 Summary 138 CHAPTER 4: PUTATATIVE CANDIDATE GENES IN THE 140 PATHOGENESIS OF PAEDIATRIC EPENDYMOMA 4.1 Introduction 141 4.2 Materials and methods 144 4.2.1 500K SNP array analysis of 45 paediatric ependymomas 144 4.2.1.1 The sample cohort 144 4.2.1.2 Genomic imbalance data analysis – gene list formation 145 4.2.1.3 aUPD data analysis
Recommended publications
  • Efficacy and Mechanistic Evaluation of Tic10, a Novel Antitumor Agent
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent Joshua Edward Allen University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Oncology Commons Recommended Citation Allen, Joshua Edward, "Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent" (2012). Publicly Accessible Penn Dissertations. 488. https://repository.upenn.edu/edissertations/488 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/488 For more information, please contact [email protected]. Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent Abstract TNF-related apoptosis-inducing ligand (TRAIL; Apo2L) is an endogenous protein that selectively induces apoptosis in cancer cells and is a critical effector in the immune surveillance of cancer. Recombinant TRAIL and TRAIL-agonist antibodies are in clinical trials for the treatment of solid malignancies due to the cancer-specific cytotoxicity of TRAIL. Recombinant TRAIL has a short serum half-life and both recombinant TRAIL and TRAIL receptor agonist antibodies have a limited capacity to perfuse to tissue compartments such as the brain, limiting their efficacy in certain malignancies. To overcome such limitations, we searched for small molecules capable of inducing the TRAIL gene using a high throughput luciferase reporter gene assay. We selected TRAIL-inducing compound 10 (TIC10) for further study based on its induction of TRAIL at the cell surface and its promising therapeutic index. TIC10 is a potent, stable, and orally active antitumor agent that crosses the blood-brain barrier and transcriptionally induces TRAIL and TRAIL-mediated cell death in a p53-independent manner.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Cytotoxic Effects and Changes in Gene Expression Profile
    Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes.
    [Show full text]
  • UMP/CMPK Is Not the Critical Enzyme in the Metabolism of Pyrimidine Ribonucleotide and Activation of Deoxycytidine Analogs in Human RKO Cells
    UMP/CMPK Is Not the Critical Enzyme in the Metabolism of Pyrimidine Ribonucleotide and Activation of Deoxycytidine Analogs in Human RKO Cells Rong Hu1, Wing Lam1, Chih-Hung Hsu1,2, Yung-Chi Cheng* 1 Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America, 2 Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China Abstract Background: Human UMP/CMP kinase was identified based on its enzymatic activity in vitro. The role of this protein is considered critical for the maintenance of pyrimidine nucleotide pool profile and for the metabolism of pyrimidine analogs in cells, based on the in vitro study of partially purified enzyme and recombinant protein. However, no detailed study has yet addressed the role of this protein in nucleotide metabolism in cells. Methodology/Principal Findings: Two stable cell lines in which UMP/CMP kinase (mRNA: AF087865, EC 2.7.4.14) can be either up-regulated or down-regulated were developed using Tet-On Gene Expression Systems. The amount and enzymatic activity of UMP/CMP kinase extracted from these two cell lines can be induced up by 500% or down by 95–98%. The ribonucleotides of endogenous pyrimidine as well as the metabolism of exogenous natural pyrimidine nucleosides and their analogs were not susceptible to the altered amount of UMP/CMP kinase in these two stable RKO cell lines. The level of incorporation of pyrimidine nucleoside analogs, such as gemcitabine (dFdC) and troxacitabine (L-OddC), into cellular DNA and their potency in inhibiting cell growth were not significantly altered by up-regulation or down-regulation of UMP/CMP kinase expression in cells.
    [Show full text]
  • Identification and Analysis of Single-Nucleotide Polymorphisms in the Gemcitabine Pharmacologic Pathway
    The Pharmacogenomics Journal (2004) 4, 307–314 & 2004 Nature Publishing Group All rights reserved 1470-269X/04 $30.00 www.nature.com/tpj ORIGINAL ARTICLE Identification and analysis of single-nucleotide polymorphisms in the gemcitabine pharmacologic pathway AK Fukunaga1 ABSTRACT 2 Significant variability in the antitumor efficacy and systemic toxicity of S Marsh gemcitabine has been observed in cancer patients. However, there are 1 DJ Murry currently no tools for prospective identification of patients at risk for TD Hurley3 untoward events. This study has identified and validated single-nucleotide HL McLeod2 polymorphisms (SNP) in genes involved in gemcitabine metabolism and transport. Database mining was conducted to identify SNPs in 14 genes 1Department of Clinical Pharmacy and Pharmacy involved in gemcitabine metabolism. Pyrosequencing was utilized to Practice, Purdue University, W. Lafayette, IN, determine the SNP allele frequencies in genomic DNA from European and 2 USA; Departments of Medicine, Genetics, and African populations (n ¼ 190). A total of 14 genetic variants (including 12 Molecular Biology and Pharmacology, Washington University School of Medicine and SNPs) were identified in eight of the gemcitabine metabolic pathway genes. the Siteman Cancer Center, St Louis, MO, USA; The majority of the database variants were observed in population samples. 3Department of Biochemistry and Molecular Nine of the 14 (64%) polymorphisms analyzed have allele frequencies that Biology, Indiana University School of Medicine, were found to be significantly different between the European and African Indianapolis, IN, USA populations (Po0.05). This study provides the first step to identify markers Correspondence: for predicting variability in gemcitabine response and toxicity. Dr HL McLeod, Washington University The Pharmacogenomics Journal (2004) 4, 307–314.
    [Show full text]
  • An Integrative, Genomic, Transcriptomic and Network-Assisted
    Yan et al. BMC Medical Genomics 2020, 13(Suppl 5):39 https://doi.org/10.1186/s12920-020-0675-4 RESEARCH Open Access An integrative, genomic, transcriptomic and network-assisted study to identify genes associated with human cleft lip with or without cleft palate Fangfang Yan1†, Yulin Dai1†, Junichi Iwata2,3, Zhongming Zhao1,4,5* and Peilin Jia1* From The International Conference on Intelligent Biology and Medicine (ICIBM) 2019 Columbus, OH, USA. 9-11 June 2019 Abstract Background: Cleft lip with or without cleft palate (CL/P) is one of the most common congenital human birth defects. A combination of genetic and epidemiology studies has contributed to a better knowledge of CL/P-associated candidate genes and environmental risk factors. However, the etiology of CL/P remains not fully understood. In this study, to identify new CL/P-associated genes, we conducted an integrative analysis using our in-house network tools, dmGWAS [dense module search for Genome-Wide Association Studies (GWAS)] and EW_dmGWAS (Edge-Weighted dmGWAS), in a combination with GWAS data, the human protein-protein interaction (PPI) network, and differential gene expression profiles. Results: A total of 87 genes were consistently detected in both European and Asian ancestries in dmGWAS. There were 31.0% (27/87) showed nominal significance with CL/P (gene-based p < 0.05), with three genes showing strong association signals, including KIAA1598, GPR183,andZMYND11 (p <1×10− 3). In EW_dmGWAS, we identified 253 and 245 module genes associated with CL/P for European ancestry and the Asian ancestry, respectively. Functional enrichment analysis demonstrated that these genes were involved in cell adhesion, protein localization to the plasma membrane, the regulation of the apoptotic signaling pathway, and other pathological conditions.
    [Show full text]
  • Expression Signatures of the Lipid-Based Akt Inhibitors Phosphatidylinositol Ether Lipid Analogues in NSCLC Cells
    Published OnlineFirst May 6, 2011; DOI: 10.1158/1535-7163.MCT-10-1028 Molecular Cancer Therapeutic Discovery Therapeutics Expression Signatures of the Lipid-Based Akt Inhibitors Phosphatidylinositol Ether Lipid Analogues in NSCLC Cells Chunyu Zhang1, Abdel G. Elkahloun2, Hongling Liao3, Shannon Delaney1, Barbara Saber1, Betsy Morrow1, George C. Prendergast4, M. Christine Hollander1, Joell J. Gills1, and Phillip A. Dennis1 Abstract Activation of the serine/threonine kinase Akt contributes to the formation, maintenance, and therapeutic resistance of cancer, which is driving development of compounds that inhibit Akt. Phosphatidylinositol ether lipid analogues (PIA) are analogues of the products of phosphoinositide-3-kinase (PI3K) that inhibit Akt activation, translocation, and the proliferation of a broad spectrum of cancer cell types. To gain insight into the mechanism of PIAs, time-dependent transcriptional profiling of five active PIAs and the PI3K inhibitor LY294002 (LY) was conducted in non–small cell lung carcinoma cells using high-density oligonucleotide arrays. Gene ontology analysis revealed that genes involved in apoptosis, wounding response, and angiogen- esis were upregulated by PIAs, whereas genes involved in DNA replication, repair, and mitosis were suppressed. Genes that exhibited early differential expression were partitioned into three groups; those induced by PIAs only (DUSP1, KLF6, CENTD2, BHLHB2, and PREX1), those commonly induced by PIAs and LY (TRIB1, KLF2, RHOB, and CDKN1A), and those commonly suppressed by PIAs and LY (IGFBP3, PCNA, PRIM1, MCM3, and HSPA1B). Increased expression of the tumor suppressors RHOB (RhoB), KLF6 (COPEB), and CDKN1A (p21Cip1/Waf1) was validated as an Akt-independent effect that contributed to PIA-induced cytotoxicity. Despite some overlap with LY, active PIAs have a distinct expression signature that contributes to their enhanced cytotoxicity.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0297536A1 Chin Et Al
    US 20090297536A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0297536A1 Chin et al. (43) Pub. Date: Dec. 3, 2009 (54) COMPOSITIONS, KITS, AND METHODS FOR Related U.S. Application Data IDENTIFICATION, ASSESSMENT, (60) Provisional application No. 60/575,795, filed on May PREVENTION AND THERAPY OF CANCER 28, 2004, provisional application No. 60/580,337, filed on Jun. 15, 2004. (75) Inventors: Lynda Chin, Brookline, MA (US); Publication Classification Cameron W. Brennan, New York, NY (US); Ronald A. DePinho, (51) Int. Cl. Brookline, MA (US); Andrew J. A 6LX 39/395 (2006.01) Aguirre, Boston, MA (US) CI2O I/68 (2006.01) C40B 30/00 (2006.01) AOIK 67/00 (2006.01) Correspondence Address: A 6LX 3L/7052 (2006.01) FOLEY HOAG, LLP A638/02 (2006.01) PATENT GROUP, WORLD TRADE CENTER A638/16 (2006.01) WEST C07K I4/00 (2006.01) 155 SEAPORT BLVD C7H 2L/00 (2006.01) BOSTON, MA 02110 (US) C07K 6/00 (2006.01) A6IP35/00 (2006.01) (73) Assignee: Dana-Farber Cancer Institute, (52) U.S. Cl. ................ 424/172.1; 435/6:506/7; 800/10: Inc., Boston, MA (US) 424/183.1; 424/178.1: 514/44 A: 514/2: 514/12: 530/350:536/23.1; 530/389.1 (21) Appl. No.: 11/597,825 (57) ABSTRACT The invention relates to compositions, kits, and methods for (22) PCT Filed: May 27, 2005 detecting, characterizing, preventing, and treating human cancer. A variety of chromosomal regions (MCRs) and mark (86). PCT No.: PCT/US05/18850 ers corresponding thereto, are provided, wherein alterations in the copy number of one or more of the MCRs and/or S371 (c)(1), alterations in the amount, structure, and/or activity of one or (2), (4) Date: Jun.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Integrative Genomics Analyses Reveal Molecularly Distinct Subgroups of B-Cell Chronic Lymphocytic Leukemia Patients with 13Q14 Deletion
    Published OnlineFirst October 14, 2010; DOI: 10.1158/1078-0432.CCR-10-0151 Clinical Cancer Human Cancer Biology Research Integrative Genomics Analyses Reveal Molecularly Distinct Subgroups of B-Cell Chronic Lymphocytic Leukemia Patients with 13q14 Deletion Laura Mosca1, Sonia Fabris1, Marta Lionetti1, Katia Todoerti1, Luca Agnelli1, Fortunato Morabito2, Giovanna Cutrona3, Adrian Andronache1, Serena Matis3, Francesco Ferrari4, Massimo Gentile2, Mauro Spriano5, Vincenzo Callea6, Gianluca Festini7, Stefano Molica8, Giorgio Lambertenghi Deliliers1, Silvio Bicciato4, Manlio Ferrarini3,9, and Antonino Neri1 Abstract Purpose: Chromosome 13q14 deletion occurs in a substantial number of chronic lymphocytic leukemia (CLL) patients and it is believed to play a pathogenetic role. The exact mechanisms involved in this lesion have not yet been fully elucidated because of its heterogeneity and the imprecise knowledge of the implicated genes. This study was addressed to further contribute to the molecular definition of this lesion in CLL. Experimental Design: We applied single-nucleotide polymorphism (SNP)-array technology and gene expression profiling data to investigate the 13q14 deletion occurring in a panel of 100 untreated, early-stage (Binet A) patients representative of the major genetics, molecular, and biological features of the disease. Results: Concordantly with FISH analysis, SNP arrays identified 44 patients with del(13)(q14) including 11 cases with a biallelic deletion. The shorter monoallelic deletion was 635-kb long. The loss of the miR-15a/16-1 cluster occurred in all del(13)(q14) cases except in 2 patients with a monoallelic deletion, who retained both copies. MiR-15a/16 expression was significantly downregulated only in patients with the biallelic loss of the miRNA cluster compared to 13q normal cases.
    [Show full text]