Real and Complex Modulation TIPL 4708

Total Page:16

File Type:pdf, Size:1020Kb

Real and Complex Modulation TIPL 4708 Real and Complex Modulation TIPL 4708 Presented by Matt Guibord Prepared by Matt Guibord 1 What is modulation? • Modulation is the act of changing a carrier signal’s properties (amplitude, phase, frequency) in a controlled way in order to transmit data across a channel or to obtain desired signal properties 2 Types of Digital Modulation Pulse Amplitude Modulation (PAM) Phase Shift Keying (PSK) Quadrature Amplitude Modulation (QAM) Frequency Modulation (FM) 3 Phase and Amplitude Modulation • A phase and amplitude modulated carrier signal can be represented as: cos2 Where: is the amplitude modulation function is the phase modulation function is the carrier frequency • Which can be decomposed using the angle sum trigonometric identity into: cos cos2sin sin2 This is a “bandpass” signal cos 2 sin 2 Where: since the I and Q functions Oftenare modulating called “I” and a carrier “Q” is the “in‐phase” modulation function is the “quadrature‐phase” modulation function 4 Analytical Equivalent and Baseband Equivalent • The “bandpass” signal can be decomposed into a “lowpass” modulation function multiplied by a complex exponential (carrier) by using Euler’s formula and defining a new “baseband equivalent” modulation function, Xbb(t): Recall Euler’s formula: Baseband equivalent cossin Then: Analytic equivalent cos 2 sin 2 0 Hz (DC) fC “Baseband” or “Lowpass” “RF” or “Bandpass” 5 Real Modulation Example (Real Mixing) • As an example of real modulation, consider the case of mixing a low frequency sine wave to a higher frequency, such that Xbb(t) is simply a cosine wave: From Euler’s cos2 2 • The resulting modulated signal is: 2 1 1 2 2 1 1 Desired signal 2 2 Undesired 1 1 cos 2 cos 2 Image signal 2 2 6 Complex Modulation Example (Complex Mixing) • Define Xbb(t) to be a complex exponential at the same frequency as the cosine in the previous example: cos[ 2 sin ] [ 2 ] XI(t) XQ(t) • The resulting modulated signal is: From Euler’s cos 2 sin2 cos2 Desired signal only 7 Real vs Complex Example Visualized Real signals have equivalent (mirrored) Complex signals have independent positive and positive and negative frequency spectrums: negative frequency spectrums: Lower Upper Lower Upper sideband sideband sideband sideband -fIF fIF fIF 0 Hz (DC) fC 0 Hz (DC) fC “Baseband” or “Low pass” “RF” or “Band pass” “Baseband” or “Low pass” “RF” or “Band pass” This type of transmission is called “double This type of transmission is called “single sideband” (DSB) transmission since the same sideband” (SSB) transmission since each information is transmitted in both sidebands sideband can transmit unique information 8 Applications of Complex Modulation • Image reject mixing uses the concept of complex modulation, exactly as shown in the complex modulation example, to reject the image signal in order to relax filtering requirements ImageReal Reject Mixing Mixing Relaxed Image ImageReject Reject Filter Filter 0 Hz (DC) fC “Baseband” or “Low pass” “RF” or “Band pass” • Digital communications uses complex modulation to “double” the data rate for a given signal bandwidth, ultimately using sine and cosine as an orthogonal basis in order to transmit independently on the in-phase and quadrature-phase signals cos 2 sin 2 Transmit independent information on both I and Q 9 Digital Communications and Constellation Plots • Constellation plots are used to visualize the complex baseband modulation function, Xbb(t), by mapping the complex values onto the complex plane • Amplitude of the carrier is the distance 16-QAM Constellation Plot from the origin: θ(t) XQ(t) a(t) 0111 1111 • Phase of the carrier is the angle measured Quadrature-Phase Component (Q) Component Quadrature-Phase relative to the positive I axis: 0011 1011 In-Phase Component (I) XI(t) tan Symbols Example bit mapping 10 Find Transmitted Signal from Constellation Plot • We want to transmit 0011 across the channel using the 16-QAM plot on the previous slide • To send 0011, choose I = 1, Q = -3: 16-QAM Constellation Plot 13 X (t) 1 • Carrier amplitude: Q 2 1 3 10 3 -3 -2 -1 1 2 3 • Carrier phase: 0111 1111 -1 3 a(t) θ(t) tan tan 71.6° 1.25 -2 Quadrature-Phase Component (Q) Component Quadrature-Phase 1 0011 1011 -3 • Resulting signal, X(t): In-Phase Component (I) XI(t) 10 cos 2 1.25 Easier to implement in cos23sin2 digital hardware 11 Example Constellation Plots QPSK Constellation Plot 8-PSK Constellation Plot 32-QAM Constellation Plot 1024-QAM Constellation Plot Quadrature-Phase Component (Q) Component Quadrature-Phase Quadrature-Phase Component (Q) Component Quadrature-Phase Quadrature-Phase Component (Q) Component Quadrature-Phase Quadrature-Phase Component (Q) Component Quadrature-Phase In-Phase Component (I) In-Phase Component (I) In-Phase Component (I) In-Phase Component (I) More challenging noise and distortion requirements Lower data rate (fewer bits per symbol) 12 Thanks for your time! 13 © Copyright 2017 Texas Instruments Incorporated. All rights reserved. This material is provided strictly “as-is,” for informational purposes only, and without any warranty. Use of this material is subject to TI’s , viewable at TI.com .
Recommended publications
  • Optical Single Sideband for Broadband and Subcarrier Systems
    University of Alberta Optical Single Sideband for Broadband And Subcarrier Systems Robert James Davies 0 A thesis submitted to the faculty of Graduate Studies and Research in partial fulfillrnent of the requirernents for the degree of Doctor of Philosophy Department of Electrical And Computer Engineering Edmonton, AIberta Spring 1999 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, rue Wellington Ottawa ON KlA ON4 Ottawa ON KIA ON4 Canada Canada Yom iUe Votre relérence Our iSie Norre reference The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otheMrise de celle-ci ne doivent être Unprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Radio systems are being deployed for broadband residential telecommunication services such as broadcast, wideband lntemet and video on demand. Justification for radio delivery centers on mitigation of problems inherent in subscriber loop upgrades such as Fiber to the Home (WH)and Hybrid Fiber Coax (HFC).
    [Show full text]
  • UNIT V- SPREAD SPECTRUM MODULATION Introduction
    UNIT V- SPREAD SPECTRUM MODULATION Introduction: Initially developed for military applications during II world war, that was less sensitive to intentional interference or jamming by third parties. Spread spectrum technology has blossomed into one of the fundamental building blocks in current and next-generation wireless systems. Problem of radio transmission Narrow band can be wiped out due to interference. To disrupt the communication, the adversary needs to do two things, (a) to detect that a transmission is taking place and (b) to transmit a jamming signal which is designed to confuse the receiver. Solution A spread spectrum system is therefore designed to make these tasks as difficult as possible. Firstly, the transmitted signal should be difficult to detect by an adversary/jammer, i.e., the signal should have a low probability of intercept (LPI). Secondly, the signal should be difficult to disturb with a jamming signal, i.e., the transmitted signal should possess an anti-jamming (AJ) property Remedy spread the narrow band signal into a broad band to protect against interference In a digital communication system the primary resources are Bandwidth and Power. The study of digital communication system deals with efficient utilization of these two resources, but there are situations where it is necessary to sacrifice their efficient utilization in order to meet certain other design objectives. For example to provide a form of secure communication (i.e. the transmitted signal is not easily detected or recognized by unwanted listeners) the bandwidth of the transmitted signal is increased in excess of the minimum bandwidth necessary to transmit it.
    [Show full text]
  • CS647: Advanced Topics in Wireless Networks Basics
    CS647: Advanced Topics in Wireless Networks Basics of Wireless Transmission Part II Drs. Baruch Awerbuch & Amitabh Mishra Computer Science Department Johns Hopkins University CS 647 2.1 Antenna Gain For a circular reflector antenna G = η ( π D / λ )2 η = net efficiency (depends on the electric field distribution over the antenna aperture, losses such as ohmic heating , typically 0.55) D = diameter, thus, G = η (π D f /c )2, c = λ f (c is speed of light) Example: Antenna with diameter = 2 m, frequency = 6 GHz, wavelength = 0.05 m G = 39.4 dB Frequency = 14 GHz, same diameter, wavelength = 0.021 m G = 46.9 dB * Higher the frequency, higher the gain for the same size antenna CS 647 2.2 Path Loss (Free-space) Definition of path loss LP : Pt LP = , Pr Path Loss in Free-space: 2 2 Lf =(4π d/λ) = (4π f cd/c ) LPF (dB) = 32.45+ 20log10 fc (MHz) + 20log10 d(km), where fc is the carrier frequency This shows greater the fc, more is the loss. CS 647 2.3 Example of Path Loss (Free-space) Path Loss in Free-space 130 120 fc=150MHz (dB) f f =200MHz 110 c f =400MHz 100 c fc=800MHz 90 fc=1000MHz 80 Path Loss L fc=1500MHz 70 0 5 10 15 20 25 30 Distance d (km) CS 647 2.4 Land Propagation The received signal power: G G P P = t r t r L L is the propagation loss in the channel, i.e., L = LP LS LF Fast fading Slow fading (Shadowing) Path loss CS 647 2.5 Propagation Loss Fast Fading (Short-term fading) Slow Fading (Long-term fading) Signal Strength (dB) Path Loss Distance CS 647 2.6 Path Loss (Land Propagation) Simplest Formula: -α Lp = A d where A and
    [Show full text]
  • 3 Characterization of Communication Signals and Systems
    63 3 Characterization of Communication Signals and Systems 3.1 Representation of Bandpass Signals and Systems Narrowband communication signals are often transmitted using some type of carrier modulation. The resulting transmit signal s(t) has passband character, i.e., the bandwidth B of its spectrum S(f) = s(t) is much smaller F{ } than the carrier frequency fc. S(f) B f f f − c c We are interested in a representation for s(t) that is independent of the carrier frequency fc. This will lead us to the so–called equiv- alent (complex) baseband representation of signals and systems. Schober: Signal Detection and Estimation 64 3.1.1 Equivalent Complex Baseband Representation of Band- pass Signals Given: Real–valued bandpass signal s(t) with spectrum S(f) = s(t) F{ } Analytic Signal s+(t) In our quest to find the equivalent baseband representation of s(t), we first suppress all negative frequencies in S(f), since S(f) = S( f) is valid. − The spectrum S+(f) of the resulting so–called analytic signal s+(t) is defined as S (f) = s (t) =2 u(f)S(f), + F{ + } where u(f) is the unit step function 0, f < 0 u(f) = 1/2, f =0 . 1, f > 0 u(f) 1 1/2 f Schober: Signal Detection and Estimation 65 The analytic signal can be expressed as 1 s+(t) = − S+(f) F 1{ } = − 2 u(f)S(f) F 1{ } 1 = − 2 u(f) − S(f) F { } ∗ F { } 1 The inverse Fourier transform of − 2 u(f) is given by F { } 1 j − 2 u(f) = δ(t) + .
    [Show full text]
  • Radio Communications in the Digital Age
    Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS
    [Show full text]
  • Microwave Frequency Demodulation Using Two Coupled Optical Resonators with Modulated Refractive Index
    PHYSICAL REVIEW APPLIED 15, 034056 (2021) Microwave Frequency Demodulation Using two Coupled Optical Resonators with Modulated Refractive Index Adam Mock * School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan 48859, USA (Received 16 October 2020; revised 1 February 2021; accepted 10 February 2021; published 18 March 2021) Traditional electronic frequency demodulation of a microwave frequency voltage is challenging because it requires complicated phase-locked loops, narrowband filters with fixed passbands, or large footprint local oscillators and mixers. Herein, a different frequency demodulation concept is proposed based on refractive index modulation of two coupled microcavities excited by an optical wave. A frequency- modulated microwave frequency voltage is applied to two photonic crystal microcavities in a spatially odd configuration. The spatially odd perturbation causes coupling between the even and odd supermodes of the coupled-cavity system. It is shown theoretically and verified by finite-difference time-domain sim- ulations how careful choice of the modulation amplitude and frequency can switch the optical output from on to off. As the modulating frequency is detuned from its off value, the optical output switches from off to on. Ultimately, the optical output amplitude is proportional to the frequency deviation of the applied voltage making this device a frequency-modulated-voltage to amplitude-modulated-optical- wave converter. The optical output can be immediately detected and converted to a voltage that would result in a frequency-demodulated voltage signal. Or the optical output can be fed into a larger radio- over-fiber optical network. In this case the device presents a compact, low power, and tunable route for multiplexing frequency-modulated voltages with amplitude-modulated optical communication systems.
    [Show full text]
  • Digital Audio Broadcasting : Principles and Applications of Digital Radio
    Digital Audio Broadcasting Principles and Applications of Digital Radio Second Edition Edited by WOLFGANG HOEG Berlin, Germany and THOMAS LAUTERBACH University of Applied Sciences, Nuernberg, Germany Digital Audio Broadcasting Digital Audio Broadcasting Principles and Applications of Digital Radio Second Edition Edited by WOLFGANG HOEG Berlin, Germany and THOMAS LAUTERBACH University of Applied Sciences, Nuernberg, Germany Copyright ß 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (þ44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (þ44) 1243 770571. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
    [Show full text]
  • Demodulation of Chaos Phase Modulation Spread Spectrum Signals Using Machine Learning Methods and Its Evaluation for Underwater Acoustic Communication
    sensors Article Demodulation of Chaos Phase Modulation Spread Spectrum Signals Using Machine Learning Methods and Its Evaluation for Underwater Acoustic Communication Chao Li 1,2,*, Franck Marzani 3 and Fan Yang 3 1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China 2 University of Chinese Academy of Sciences, Beijing 100190, China 3 LE2I EA7508, Université Bourgogne Franche-Comté, 21078 Dijon, France; [email protected] (F.M.); [email protected] (F.Y.) * Correspondence: [email protected] Received: 25 September 2018; Accepted: 28 November 2018; Published: 1 December 2018 Abstract: The chaos phase modulation sequences consist of complex sequences with a constant envelope, which has recently been used for direct-sequence spread spectrum underwater acoustic communication. It is considered an ideal spreading code for its benefits in terms of large code resource quantity, nice correlation characteristics and high security. However, demodulating this underwater communication signal is a challenging job due to complex underwater environments. This paper addresses this problem as a target classification task and conceives a machine learning-based demodulation scheme. The proposed solution is implemented and optimized on a multi-core center processing unit (CPU) platform, then evaluated with replay simulation datasets. In the experiments, time variation, multi-path effect, propagation loss and random noise were considered as distortions. According to the results, compared to the reference algorithms, our method has greater reliability with better temporal efficiency performance. Keywords: underwater acoustic communication; direct sequence spread spectrum; chaos phase modulation sequence; partial least square regression; machine learning 1. Introduction The underwater acoustic communication has always been a crucial research topic [1–6].
    [Show full text]
  • 7.3.7 Video Cassette Recorders (VCR) 7.3.8 Video Disk Recorders
    /7 7.3.5 Fiber-Optic Cables (FO) 7.3.6 Telephone Company Unes (TELCO) 7.3.7 Video Cassette Recorders (VCR) 7.3.8 Video Disk Recorders 7.4 Transmission Security 8. Consumer Equipment Issues 8.1 Complexity of Receivers 8.2 Receiver Input/Output Characteristics 8.2.1 RF Interface 8.2.2 Baseband Video Interface 8.2.3 Baseband Audio Interface 8.2.4 Interfacing with Ancillary Signals 8.2.5 Receiver Antenna Systems Requirements 8.3 Compatibility with Existing NTSC Consumer Equipment 8.3.1 RF Compatibility 8.3.2 Baseband Video Compatibility 8.3.3 Baseband Audio Compatibility 8.3.4 IDTV Receiver Compatibility 8.4 Allows Multi-Standard Display Devices 9. Other Considerations 9.1 Practicality of Near-Term Technological Implementation 9.2 Long-Term Viability/Rate of Obsolescence 9.3 Upgradability/Extendability 9.4 Studio/Plant Compatibility Section B: EXPLANATORY NOTES OF ATTRIBUTES/SYSTEMS MATRIX Items on the Attributes/System Matrix for which no explanatory note is provided were deemed to be self-explanatory. I. General Description (Proponent) section I shall be used by a system proponent to define the features of the system being proposed. The features shall be defined and organized under the headings ot the following subsections 1 through 4. section I. General Description (Proponent) shall consist of a description of the proponent system in narrative form, which covers all of the features and characteris­ tics of the system which the proponent wishe. to be included in the public record, and which will be used by various groups to analyze and understand the system proposed, and to compare with other propo.ed systems.
    [Show full text]
  • Additive Synthesis, Amplitude Modulation and Frequency Modulation
    Additive Synthesis, Amplitude Modulation and Frequency Modulation Prof Eduardo R Miranda Varèse-Gastprofessor [email protected] Electronic Music Studio TU Berlin Institute of Communications Research http://www.kgw.tu-berlin.de/ Topics: Additive Synthesis Amplitude Modulation (and Ring Modulation) Frequency Modulation Additive Synthesis • The technique assumes that any periodic waveform can be modelled as a sum sinusoids at various amplitude envelopes and time-varying frequencies. • Works by summing up individually generated sinusoids in order to form a specific sound. Additive Synthesis eg21 Additive Synthesis eg24 • A very powerful and flexible technique. • But it is difficult to control manually and is computationally expensive. • Musical timbres: composed of dozens of time-varying partials. • It requires dozens of oscillators, noise generators and envelopes to obtain convincing simulations of acoustic sounds. • The specification and control of the parameter values for these components are difficult and time consuming. • Alternative approach: tools to obtain the synthesis parameters automatically from the analysis of the spectrum of sampled sounds. Amplitude Modulation • Modulation occurs when some aspect of an audio signal (carrier) varies according to the behaviour of another signal (modulator). • AM = when a modulator drives the amplitude of a carrier. • Simple AM: uses only 2 sinewave oscillators. eg23 • Complex AM: may involve more than 2 signals; or signals other than sinewaves may be employed as carriers and/or modulators. • Two types of AM: a) Classic AM b) Ring Modulation Classic AM • The output from the modulator is added to an offset amplitude value. • If there is no modulation, then the amplitude of the carrier will be equal to the offset.
    [Show full text]
  • En 300 720 V2.1.0 (2015-12)
    Draft ETSI EN 300 720 V2.1.0 (2015-12) HARMONISED EUROPEAN STANDARD Ultra-High Frequency (UHF) on-board vessels communications systems and equipment; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU 2 Draft ETSI EN 300 720 V2.1.0 (2015-12) Reference REN/ERM-TG26-136 Keywords Harmonised Standard, maritime, radio, UHF ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Of Single Sideband Demodulation by Richard Lyons
    Understanding the 'Phasing Method' of Single Sideband Demodulation by Richard Lyons There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are: • synchronous detection, • phasing method, • Weaver method, and • filtering method. Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION' section. BACKGROUND I was recently involved in trying to understand the operation of a discrete SSB demodulation system that was being proposed to replace an older analog SSB demodulation system. Having never built an SSB system, I wanted to understand how the "phasing method" of SSB demodulation works. However, in searching the Internet for tutorial SSB demodulation information I was shocked at how little information was available. The web's wikipedia 'single-sideband modulation' gives the mathematical details of SSB generation [1]. But SSB demodulation information at that web site was terribly sparse. In my Internet searching, I found the SSB information available on the net to be either badly confusing in its notation or downright ambiguous. That web- based material showed SSB demodulation block diagrams, but they didn't show spectra at various stages in the diagrams to help me understand the details of the processing. A typical example of what was frustrating me about the web-based SSB information is given in the analog SSB generation network shown in Figure 1. x(t) cos(ωct) + 90o 90o y(t) – sin(ωct) Meant to Is this sin(ω t) represent the c Hilbert or –sin(ωct) Transformer.
    [Show full text]