Habibi, Thwaites, Et Al. Roles of Neutrophils & IL-17 in RSV Infection Science 1 Mucosal Neutrophil Activation Predisposes T

Total Page:16

File Type:pdf, Size:1020Kb

Habibi, Thwaites, Et Al. Roles of Neutrophils & IL-17 in RSV Infection Science 1 Mucosal Neutrophil Activation Predisposes T Habibi, Thwaites, et al. Roles of neutrophils & IL-17 in RSV infection Science 1 Mucosal neutrophil activation predisposes to respiratory viral infection 2 Running title: Roles of neutrophils & IL-17 in RSV infection 3 One sentence summary: Mucosal neutrophil activation at the time of respiratory virus exposure 4 enhances infection and opposes early prodromal mucosal inflammatory responses that prevent disease. 5 Authors: Maximillian S Habibi1*, Ryan S Thwaites1*, Meiping Chang2, Agnieszka Jozwik1, Allan 6 Paras1, Freja Kirsebom1, Augusto Varese1, Amber Owen1, Leah Cuthbertson1, Phillip James1, 7 Tanushree Tunstall1, David Nickle3, Trevor T Hansel1, Miriam F Moffatt1, Cecilia Johansson1, 8 Christopher Chiu4ǂ and Peter J. M. Openshaw1ǂ 9 Affiliations: 10 1National Heart and Lung Institute, Imperial College London, London, United Kingdom 11 2Merck &Co., Inc., Kenilworth, NJ, USA 12 3Genetics & Pharmacogenomics, Department of Translational Medicine, Merck &Co., Inc., Boston, 13 Massachusetts, USA 14 4Department of Infectious Diseases, Imperial College London, London, United Kingdom 15 *, ǂ these authors contributed equally 16 17 Correspondence should be addressed to: Peter J. M. Openshaw FRCP PhD, National Heart and Lung 18 Institute, Imperial College London, London W2 1PG, UK. E-mail: [email protected]; 19 or Christopher Chiu MRCP FRCPath Ph.D, Department of Infectious Disease, Imperial College 20 London, London W12 0NN, UK. E-mail: [email protected]; 21 or Cecilia Johansson PhD, National Heart and Lung Institute, Imperial College London, London W2 22 1PG, UK. E-mail: [email protected] 1 Habibi, Thwaites, et al. Roles of neutrophils & IL-17 in RSV infection Science 23 Abstract: 24 The variable outcome of viral exposure is only partially explained by known factors. We administered 25 respiratory syncytial virus (RSV) to 58 volunteers, of whom 57% became infected. Mucosal neutrophil 26 activation prior to exposure was highly predictive of symptomatic RSV disease. This was associated 27 with rapid pre-symptomatic decline in mucosal IL-17A and other mediators. Conversely, those who 28 resisted infection showed pre-symptomatic activation of IL-17 and TNF-related pathways. 29 Vulnerability to infection was not associated with baseline microbiome but was reproduced in mice by 30 pre-infection chemokine-driven airway recruitment of neutrophils, which caused enhanced disease 31 mediated by pulmonary CD8+ T cell infiltration. Thus, mucosal neutrophilic inflammation at respiratory 32 virus exposure enhances susceptibility, revealing dynamic time-dependent local immune responses 33 before symptom onset and explaining hitherto unpredictable outcomes of pathogen exposure. 2 Habibi, Thwaites, et al. Roles of neutrophils & IL-17 in RSV infection Science 34 Main Text: 35 The respiratory tract is by necessity an open portal, highly vulnerable to invasion by many pathogens. 36 A complex system of defenses counters this vulnerability, but current knowledge of what governs 37 susceptibility fails to fully explain the erratic transmission of infectious agents (1, 2). For some 38 infections, antibodies in the respiratory mucosa are clearly protective (3). Furthermore, infectious 39 agents can also be blocked by antimicrobial peptides (4), entrapment in mucus (5), the downstream 40 effects of pattern recognition receptor activation (1, 2, 6), as well as direct inactivation by immune cells 41 (6). The SARS-CoV-2 pandemic has brought into sharp focus the need for greater understanding of the 42 role of mucosal innate immunity in protection against respiratory infection. Better understanding of 43 such defenses may offer ways to prevent or modulate viral disease, even against novel and emerging 44 pathogens. Among innate immune cells, neutrophils are classically ascribed roles in defense against 45 bacteria and fungi, but their role in antiviral responses is less clear. Although they are sometimes found 46 in the lungs of patients with severe viral infections and have a demonstrable antiviral role in animal 47 models, information concerning how they contribute to defense and disease in human respiratory viral 48 infections is largely lacking (7). 49 Respiratory syncytial virus (RSV) is the leading cause of infant hospitalization worldwide, infecting 50 around 34 million children each year (8) and contributing prominently to morbidity and mortality in 51 elderly and immunosuppressed adults (9, 10). Though RSV infection is essentially confined to the 52 respiratory epithelium, resultant neutrophilic lung inflammation can be life-threatening, particularly in 53 at-risk children (11, 12). Although prophylaxis with palivizumab (a monoclonal anti-RSV antibody) 54 can prevent hospitalization of premature infants (13), no specific therapeutic intervention is currently 55 available and no vaccine has yet been licensed that protects against RSV (14). This is despite the 56 existence of several promising candidates (15), including enhancement of placental anti-RSV IgG 57 transfer by maternal immunization. There is therefore a pressing need to further identify interventions 58 that prevent RSV and other respiratory viral diseases. 3 Habibi, Thwaites, et al. Roles of neutrophils & IL-17 in RSV infection Science 59 Animal models of respiratory viral infection provide useful mechanistic insights but do not fully 60 recapitulate human disease (6). Conversely, observational studies of hospitalized children and high-risk 61 adults are limited by heterogeneity of populations and disease severity, an inability to dynamically 62 assess the status of host immunity and, specifically, the mucosa before and immediately after viral 63 exposure. Experimental infection of human volunteers therefore provides a unique opportunity to 64 identify pre-existing immune factors and pre-symptomatic responses in a controlled setting that 65 correlate with protection and disease (16, 17). 66 All adults have RSV-specific antibodies, reflecting multiple rounds of infection throughout the course 67 of their lives. Nevertheless, symptomatic re-infection occurs repeatedly even in healthy people and is 68 associated with unusually short-lived humoral and cellular memory responses (3). Such defective 69 defense against reinfection is also observed following some other respiratory viral infections, including 70 coronaviruses (18). Furthermore, variations in antibody levels do not accurately predict susceptibility 71 to RSV infection in experimental studies of volunteers, those with the lowest antibody levels being only 72 modestly more susceptible to viral challenge (3, 19). Although mucosal IgA, circulating IgG (3), and 73 resident memory CD8+ T cells (20) show some association with resistance to infection and reduced 74 disease severity, these factors do not completely explain who resists or succumbs. Additionally, 75 although RSV viral burden approximately correlates with symptoms in experimentally infected adults 76 (16) and moderately ill infants (21, 22), viral load may be paradoxically reduced in the most severely 77 affected children (23). 78 How the very early events following viral exposure influence clinical outcomes has not been studied in 79 either adults or children. Studying the respiratory mucosa before, during, and after human RSV 80 challenge, we found that prior neutrophil activation in the upper respiratory tract predisposes to 81 symptomatic viral infection. The neutrophilic mucosal environment was strongly associated with a 82 reduction in antiviral mucosal inflammatory responses immediately after viral exposure that was 83 followed by the onset of disease. By contrast, a protective response characterized by rapid activation of 84 type-17 inflammation was observed in those resisting infection. Moreover, studies in mice showed that 4 Habibi, Thwaites, et al. Roles of neutrophils & IL-17 in RSV infection Science 85 recruitment of airway neutrophils prior to viral administration enhanced the cytotoxic CD8+ T cell 86 response and disease severity. 5 Habibi, Thwaites, et al. Roles of neutrophils & IL-17 in RSV infection Science 87 Results 88 Characterization of time-course of responses to human RSV challenge 89 Fifty-eight healthy adult volunteers were inoculated with RSV Memphis 37. Nasal sampling was 90 performed at baseline (7-14 days pre-inoculation) and then repeatedly up to 14 days after inoculation 91 (Fig. 1A). Symptoms were quantified using a previously validated self-reported symptom scale (24). 92 Twenty-three participants developed PCR-positive RSV infection with symptoms of upper respiratory 93 tract disease (“Cold”), whereas 25 had no evidence of RSV infection and did not develop symptoms 94 (“No Cold”). Ten participants had PCR evidence of RSV infection, but had self-reported symptom 95 scores that did not reach the threshold required for the “Cold” group. This indeterminate group was 96 excluded from subsequent analyses, which focused on identifying factors associated with the most 97 distinct outcomes. No significant demographic differences were observed between the Cold and No 98 Cold groups (table S1). 99 In infected volunteers, viral load (determined by qPCR from daily nasal washes) broadly indicated three 100 phases: (1) a pre-symptomatic incubation phase during the first 3 days post-inoculation when virus was 101 undetectable; (2) a viral replication phase from days 3-7; and (3) a viral clearance phase from day 8 102 (previously shown to be associated with the rise in virus-specific CD8+ T cells in both blood and lower 103 airway (20))
Recommended publications
  • The Rise and Fall of the Bovine Corpus Luteum
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
    [Show full text]
  • Characterization of BRCA1-Deficient Premalignant Tissues and Cancers Identifies Plekha5 As a Tumor Metastasis Suppressor
    ARTICLE https://doi.org/10.1038/s41467-020-18637-9 OPEN Characterization of BRCA1-deficient premalignant tissues and cancers identifies Plekha5 as a tumor metastasis suppressor Jianlin Liu1,2, Ragini Adhav1,2, Kai Miao1,2, Sek Man Su1,2, Lihua Mo1,2, Un In Chan1,2, Xin Zhang1,2, Jun Xu1,2, Jianjie Li1,2, Xiaodong Shu1,2, Jianming Zeng 1,2, Xu Zhang1,2, Xueying Lyu1,2, Lakhansing Pardeshi1,3, ✉ ✉ Kaeling Tan1,3, Heng Sun1,2, Koon Ho Wong 1,3, Chuxia Deng 1,2 & Xiaoling Xu 1,2 1234567890():,; Single-cell whole-exome sequencing (scWES) is a powerful approach for deciphering intra- tumor heterogeneity and identifying cancer drivers. So far, however, simultaneous analysis of single nucleotide variants (SNVs) and copy number variations (CNVs) of a single cell has been challenging. By analyzing SNVs and CNVs simultaneously in bulk and single cells of premalignant tissues and tumors from mouse and human BRCA1-associated breast cancers, we discover an evolution process through which the tumors initiate from cells with SNVs affecting driver genes in the premalignant stage and malignantly progress later via CNVs acquired in chromosome regions with cancer driver genes. These events occur randomly and hit many putative cancer drivers besides p53 to generate unique genetic and pathological features for each tumor. Upon this, we finally identify a tumor metastasis suppressor Plekha5, whose deficiency promotes cancer metastasis to the liver and/or lung. 1 Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China. 2 Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China.
    [Show full text]
  • Tumor Elastography and Its Association with Cell-Free Tumor DNA in the Plasma of Breast Tumor Patients: a Pilot Study
    3534 Original Article Tumor elastography and its association with cell-free tumor DNA in the plasma of breast tumor patients: a pilot study Yi Hao1#, Wei Yang2#, Wenyi Zheng2,3#, Xiaona Chen3,4, Hui Wang1,5, Liang Zhao1,5, Jinfeng Xu6,7, Xia Guo4 1Department of Ultrasound, South China Hospital of Shenzhen University, Shenzhen, China; 2Department of Ultrasound, Shenzhen Hospital, Southern Medical University, Shenzhen, China; 3The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; 4Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China; 5Department of Ultrasound, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China; 6Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, Shenzhen, China; 7The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China #These authors contributed equally to this work. Correspondence to: Xia Guo. Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China. Email: [email protected]; Jinfeng Xu. Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China. Email: [email protected]. Background: Breast tumor stiffness, which can be objectively and noninvasively evaluated by ultrasound elastography (UE), has been useful for the differentiation of benign and malignant breast lesions and the prediction of clinical outcomes. Liquid biopsy analyses, including cell-free tumor DNA (ctDNA), exhibit great potential for personalized treatment. This study aimed to investigate the correlations between the UE and ctDNA for early breast cancer diagnosis.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Clinical Utility of Recently Identified Diagnostic, Prognostic, And
    Modern Pathology (2017) 30, 1338–1366 1338 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms Arantza Onaindia1, L Jeffrey Medeiros2 and Keyur P Patel2 1Instituto de Investigacion Marques de Valdecilla (IDIVAL)/Hospital Universitario Marques de Valdecilla, Santander, Spain and 2Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll- like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
    [Show full text]
  • Assembly of an Integrated Human Lung Cell Atlas Reveals That
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.02.20120634; this version posted June 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Assembly of an integrated human lung cell atlas reveals that SARS-CoV-2 receptor is co-expressed with key elements of the kinin-kallikrein, renin-angiotensin and coagulation systems in alveolar cells Davi Sidarta-Oliveira1,2, Carlos Poblete Jara1,3, Adriano J. Ferruzzi4, Munir S. Skaf4, William H. Velander5, Eliana P. Araujo1,3, Licio A. Velloso1 1Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil 2 Physician-Scientist Graduate Program, School of Medical Sciences, University of Campinas, Brazil 3Nursing School, University of Campinas, Brazil 4Institute of Chemistry and Center for Computing in Engineering and Sciences University of Campinas, Brazil 5Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, USA Correspondence: Licio A. Velloso Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil Address: Rua Carl Von Lineaus s/n, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz - Barão Geraldo, Campinas - SP, 13083-864 Phone: +55 19 3521-0025 E-mail: [email protected] Abstract SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID- 19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory insufficiency, acute cardiovascular failure, and coagulopathy.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Dnmt3a Haploinsufficiency Transforms Flt3-ITD Myeloproliferative Disease Into A
    Author Manuscript Published OnlineFirst on March 25, 2016; DOI: 10.1158/2159-8290.CD-16-0008 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Dnmt3a haploinsufficiency transforms Flt3-ITD myeloproliferative disease into a rapid, spontaneous, and fully-penetrant acute myeloid leukemia Sara E. Meyer1, Tingting Qin2, David E. Muench1, Kohei Masuda1, Meenakshi Venkatasubramanian3, Emily Orr1, Lauren Suarez4, Steven D. Gore5, Ruud Delwel6, Elisabeth Paietta7, Martin S. Tallman8, Hugo Fernandez9, Ari Melnick10, Michelle M. Le Beau11, Scott Kogan12, Nathan Salomonis3, Maria E. Figueroa2,*, H. Leighton Grimes1,13,* 1Division of Cellular and Molecular Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA 2Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA 3Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA 4Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 5Division of Hematologic Malignancies, Yale Cancer Center, Yale School of medicine, New Haven, Connecticut, USA 6Department of Hematology, and Clinical Trial Center, Erasmus University Medical Center, Rotterdam, The Netherlands 7Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA 1 Downloaded from cancerdiscovery.aacrjournals.org on September
    [Show full text]
  • Downloaded from Genomic Data Common Website (GDC at Accessed on 2019)
    G C A T T A C G G C A T genes Article Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer Ritu Pandey 1,2,*, Muhan Zhou 3, Yuliang Chen 3, Dalila Darmoul 4 , Conner C. Kisiel 2, Valentine N. Nfonsam 5 and Natalia A. Ignatenko 1,2 1 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; [email protected] 2 University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; [email protected] 3 Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; [email protected] (M.Z.); [email protected] (Y.C.) 4 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France; [email protected] 5 Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA; [email protected] * Correspondence: [email protected] Abstract: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death world- wide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated Citation: Pandey, R.; Zhou, M.; Chen, KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) Y.; Darmoul, D.; Kisiel, C.C.; and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome Nfonsam, V.N.; Ignatenko, N.A.
    [Show full text]
  • How Relevant Are Bone Marrow-Derived Mast Cells (Bmmcs) As Models for Tissue Mast Cells? a Comparative Transcriptome Analysis of Bmmcs and Peritoneal Mast Cells
    cells Article How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells 1, 2, 1 1 2,3 Srinivas Akula y , Aida Paivandy y, Zhirong Fu , Michael Thorpe , Gunnar Pejler and Lars Hellman 1,* 1 Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; [email protected] (S.A.); [email protected] (Z.F.); [email protected] (M.T.) 2 Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; [email protected] (A.P.); [email protected] (G.P.) 3 Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden * Correspondence: [email protected]; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862 These authors contributed equally to this work. y Received: 29 July 2020; Accepted: 16 September 2020; Published: 17 September 2020 Abstract: Bone marrow-derived mast cells (BMMCs) are often used as a model system for studies of the role of MCs in health and disease. These cells are relatively easy to obtain from total bone marrow cells by culturing under the influence of IL-3 or stem cell factor (SCF). After 3 to 4 weeks in culture, a nearly homogenous cell population of toluidine blue-positive cells are often obtained. However, the question is how relevant equivalents these cells are to normal tissue MCs. By comparing the total transcriptome of purified peritoneal MCs with BMMCs, here we obtained a comparative view of these cells.
    [Show full text]
  • Supplementary File 2A Revised
    Supplementary file 2A. Differentially expressed genes in aldosteronomas compared to all other samples, ranked according to statistical significance. Missing values were not allowed in aldosteronomas, but to a maximum of five in the other samples. Acc UGCluster Name Symbol log Fold Change P - Value Adj. P-Value B R99527 Hs.8162 Hypothetical protein MGC39372 MGC39372 2,17 6,3E-09 5,1E-05 10,2 AA398335 Hs.10414 Kelch domain containing 8A KLHDC8A 2,26 1,2E-08 5,1E-05 9,56 AA441933 Hs.519075 Leiomodin 1 (smooth muscle) LMOD1 2,33 1,3E-08 5,1E-05 9,54 AA630120 Hs.78781 Vascular endothelial growth factor B VEGFB 1,24 1,1E-07 2,9E-04 7,59 R07846 Data not found 3,71 1,2E-07 2,9E-04 7,49 W92795 Hs.434386 Hypothetical protein LOC201229 LOC201229 1,55 2,0E-07 4,0E-04 7,03 AA454564 Hs.323396 Family with sequence similarity 54, member B FAM54B 1,25 3,0E-07 5,2E-04 6,65 AA775249 Hs.513633 G protein-coupled receptor 56 GPR56 -1,63 4,3E-07 6,4E-04 6,33 AA012822 Hs.713814 Oxysterol bining protein OSBP 1,35 5,3E-07 7,1E-04 6,14 R45592 Hs.655271 Regulating synaptic membrane exocytosis 2 RIMS2 2,51 5,9E-07 7,1E-04 6,04 AA282936 Hs.240 M-phase phosphoprotein 1 MPHOSPH -1,40 8,1E-07 8,9E-04 5,74 N34945 Hs.234898 Acetyl-Coenzyme A carboxylase beta ACACB 0,87 9,7E-07 9,8E-04 5,58 R07322 Hs.464137 Acyl-Coenzyme A oxidase 1, palmitoyl ACOX1 0,82 1,3E-06 1,2E-03 5,35 R77144 Hs.488835 Transmembrane protein 120A TMEM120A 1,55 1,7E-06 1,4E-03 5,07 H68542 Hs.420009 Transcribed locus 1,07 1,7E-06 1,4E-03 5,06 AA410184 Hs.696454 PBX/knotted 1 homeobox 2 PKNOX2 1,78 2,0E-06
    [Show full text]