The 2017 Solar Eclipse As Observed from the Rooftop of Fronczak Hall

Total Page:16

File Type:pdf, Size:1020Kb

The 2017 Solar Eclipse As Observed from the Rooftop of Fronczak Hall Interactions The Newsletter of the UB Department of Physics, 2017-18 The 2017 solar eclipse as observed from the rooftop of Fronczak Hall Alok Mukherjee, PhD student Condensed Matter Experiment CHAIR’S LETTER | HONG LUO ear alumni and friends, graduate and undergraduate students, to put together videos of various I hope you had another great in addition to funds dedicated to cutting- departments. They piloted the program D year since I last wrote to you. edge research. More details can be with Physics, not entirely a surprise to It has been a rewarding year for us here found on page four. We were so pleased us. It is very rewarding to get a glimpse in the department. I am very excited that Om and Saraswati could visit the of student accomplishments with the to tell you that our undergraduates department a little earlier in October, a guidance of faculty members. You can continue to amaze us. One of them, Anne homecoming for them after more than view this video at: Fortman, became our newest Goldwater forty years, and an inspiration for our https://arts-sciences.buffalo.edu/physics/ Scholar. It is rewarding to see that this faculty and students. We are also very about/physics-ub.html once illusive scholarship has become a grateful to Dr. Ashok Kaveeshwar, a regular scholarship for our majors. The long-time staunch supporter of UB, who Two new faculty members joined us quality and hard work of the students allocated 100% of his generous annual this year, Prof. Priya Banerjee from UC and the dedication of faculty mentors CAS contribution to the department San Diego, working in biophysics, and made it almost an annual scholarship, this year. Instructional Assistant Prof. Landon although it is usually no more than Lehman, who is responsible for three for a university, including the I am also very happy to tell you that instruction of lecture and lab courses. most elite institutions. Anne came to UB one of our junior faculty members, Both have made their presence felt in a as a chemistry major with a chemistry Prof. Ciaran Williams, received the very short period of time and we all wish departmental scholarship. After one prestigious NSF CAREER award. He is them great success in the future. year at UB taking some physics classes, the ninth winner in the department, Anne expressed her interest in joining keeping us first in CAS by a large margin. Our former colleague Prof. Jan Per us to Prof. Rappoccio, who later became Roalsvig passed away on Aug. 16, 2017. her research mentor. The department The department went through its I overlapped with him very briefly, and did not have a similar scholarship, but comprehensive review earlier in April, he was a very gentle and kind colleague. managed to put enough resources which takes place every six or seven To honor his great service of 35 years together to match the chemistry years. It involves a self-study of the to UB and the wish of his wife Myrth, scholarship. She is now a senior, department, and a team of external many made donations to the department, maintains a 4.0 GPA, is one of the experts spending two days interacting including a very generous donation CAS Ambassadors, jointly gave a with faculty, staff and students to see from Myrth, to be used to support our departmental seminar with another where the department is and where graduate students. student, and has one paper in it should go in the future. While the preparation. department typically has some level Stay in touch and share things at work of preparation for such a review, it and in life with us! One great development was clear after the self-study that the last year was the faculty, staff and students made great Best regards, very generous strides during the review period and we contribution decided to have an impromptu review. from our alum It was a very successful review, with Dr. Om Bahethi both the reviewers and the university and his wife administrations at all levels recognizing Hong Luo, Chair Saraswati Bahethi. the outstanding achievements of the Professor of Physics It was used for six department, in addition to providing scholarships to our very insightful input for both the very deserving department and UB administration for further growth. As a part of the effort to promote CAS undergraduate programs, and educating students and the public, CAS decided 2 2017-18 Interactions TABLE OF CONTENTS WEBSITE In this Issue: http://arts-sciences.buffalo.edu/physics. html ›› Letter from the Chair 2 › Hong Luo CONTACT Comments about the newsletter, or 4-6 ›› Alumni News information about yourself for our › Om and Saraswati Bahethi Foundation Alumni News section, may be sent to U.S.A. supports students and research Tracy Gasinski via email: › Felicia S. Manciu [email protected] or mailed to: Department of Physics 7 ›› Faculty News University at Buffalo 239 Fronczak Hall 8-9 ›› Research News Buffalo, NY 14260 › Stimulating specific neurons deep in the brain using magnetic fields › Speeding up GW calculations to meet the challenge of large scale quasiparticle predictions › Using a ferromagnet to enhance “valley splitting” in 2D semiconductors EDITING STAFF 10-11 ›› Faculty and Student Awards Editors: Prof. Doreen Wackeroth and Nicole Pannullo 12-15 ›› Department Events and Outreach Editorial Assistant: Tracy Gasinski › 2017 Rustgi Memorial Lecture Design and Production: › The New York State Section of the Gina Cali-Misterkiewicz American Physical Society held at UB Elin Hawkinson › BOOST 2017 Renee Ruffino › Buffalo March for Science Pierce Strudler › Eclipse viewing on Fronczak Hall’s rooftop › Science and Art Cabaret keeps going strong GIVE TO THE DEPARTMENT OF PHYSICS STAY CONNECTED - You will always be a part of UB and we want you to Thank you for your support of the stay connected and get involved by: Department of Physics! With the support of alumni and friends, • Attending alumni events and programs we can access vital resources to • Becoming a Regional Network Leader enhance our department and • Helping build a strong network of alumni in your region provide support for students, • Mentoring UB students research projects and programs. • Attending career events with students We are grateful for your • Recruiting prospective students as a UB Admissions Ambassador generosity. • Connecting with an alumni chapter in your area • Giving to UB and making an impact on students You can support your department • Following UB and the College of Arts and Sciences on social media and help to provide for our students by making a gift online: https://arts-sciences.buffalo.edu/ TO GET INVOLVED, please visit http://arts-sciences.buffalo.edu/ physics/make-a-gift.html alumni/get-involved.html or email [email protected] Interactions 2017-18 3 ALUMNI NEWS Om and Saraswati Bahethi Foundation U.S.A. supports students and research at the Department of Physics Hong Luo, PhD, and Xuedong Hu, PhD ›› In 1967, Om Bahethi came to the U.S. from India to pursue a PhD in physics at UB. He had seven dollars in his pocket, as he recalled. He was two months late for his teaching assistant position, but was able to receive the assistantship and start his graduate studies. He was the first student of Prof. Emeritus Michael Fuda. Upon successful completion Dr. Om Bahethi and his wife, Sarswati Bahethi, with Professor Arnd Pralle (second from right) and Associate Vice Presi- of his PhD, he started his career in dent for Individual and Planned Giving, Wendy Irving (right), share a laugh at their visit to the UB Physics Department. industry. He and his wife, Saraswati Photo: Hong Luo Bahethi, co-founded Science Systems and Applications, Inc. in 1977 and Dr. Bahethi During his first year in the Master’s Rahul Munshi is a PhD student has been its Chairman of the Board. Dr. program, Zhao studied diligently, solved working in Prof. Pralle’s group on Bahethi served as President of Science problems independently and got an experimental biophysics, with a research Systems and Applications, Inc. until excellent GPA of 3.875, the highest among focus on behavioral modification by June 15, 2016. He has provided hands-on all MS students over the past few years. magnetothermal modulation of neurons. direction for support services on NASA, Zhao has not only focused on courses, but Rahul did his undergraduate study at and NOAA contracts for scientific R&D, worked hard to find his research interest. the Indian Institute of Technology, and satellite remote sensing and retrieval In fall 2017, he joined Prof. Peihong had research experience in theoretical of physical parameters. Through the Zhang’s research group for his Master’s and experimental optics. He did an Om and Saraswati Bahethi Foundation project, and will study first-principle internship project at the Indian Institute U.S.A. (OSBFUSA), the Bahethis made simulation of materials. With a solid of Astrophysics, and designed a far- an extremely generous donation to the foundation of knowledge and an intense ultraviolet spectrograph for a satellite department for undergraduate and enthusiasm for research, Zhao plans based observatory for monitoring graduate scholarships and cutting edge to pursue a PhD degree in the area of nascent galaxies. His excellent research for the first round. Future plans Computational Physics in the future. performance earned him a Presidential are currently being made so that more Fellowship when he came to UB for students can benefit from their help. Changliang Zhu entered the Physics his graduate studies in 2012. At UB, he Master’s program in the fall of 2016. He joined Prof. Pralle’s biophysics lab, with We have two winners for the OSBFUSA studied hard and achieved an impressive an initial research focus on optically Scholarship for Master’s students GPA of 3.834.
Recommended publications
  • Nathaniel Gabor
    Nathaniel Gabor Nathaniel M. Gabor JET Distinguished Associate Professor of Physics Laboratory of Quantum Materials Optoelectronics Department of Physics and Astronomy University of California Riverside 900 University Ave Riverside, CA 92521 [email protected] http://qmolab.ucr.edu Education Massachusetts Institute of Technology Postdoctoral Fellow Physics 2012 - 2013 Cornell University Ph.D., M.S. Physics 2012 Pennsylvania State University B.S. (Highest Distinction) Physics 2004 Selected National and International Awards and Honors National Academy of Sciences Kavli Frontiers Fellow 2019 – ‘The Kavli Frontiers of Science symposium is the Academy’s premiere activity for distinguished young scientists.’ Research Corporation for Science Advancement Scialog Fellow 2018 – ‘Bringing together promising early career investigators and scientific leaders for the search and discovery of truly transformative ideas.’ CIFAR Azrieli Global Scholar Award 2017 – ‘CIFAR invites outstanding early career investigators into research programs addressing some of the most complex challenges facing the world today.’ Research Corporation for Science Advancement Scialog Fellow 2017 – ‘Bringing together promising early career investigators and scientific leaders for the search and discovery of truly transformative ideas.’ NSF CAREER Award 2017 – ‘The National Science Foundation’s most prestigious awards in support of early- career faculty who have the potential to serve as academic role models in research and education.’ Cottrell Scholar Award 2017 – ‘Honors
    [Show full text]
  • CONTENTS Group Membership, January 2002 2
    CONTENTS Group Membership, January 2002 2 APPENDIX 1: Report on Activities 2000-2002 & Proposed Programme 2002-2006 4 1OPAL 4 2H1 7 3 ATLAS 11 4 BABAR 19 5DØ 24 6 e-Science 29 7 Geant4 32 8 Blue Sky and applied R&D 33 9 Computing 36 10 Activities in Support of Public Understanding of Science 38 11 Collaborations and contacts with Industry 41 12 Other Research Related Activities by Group Members 41 13 Staff Management and Implementation of Concordat 41 APPENDIX 2: Request for Funds 1. Support staff 43 2. Travel 55 3. Consumables 56 4. Equipment 58 APPENDIX 3: Publications 61 1 Group Membership, May 2002 Academic Staff Dr John Allison Senior Lecturer Professor Roger Barlow Professor Dr Ian Duerdoth Senior Lecturer Dr Mike Ibbotson Reader Dr George Lafferty Reader Dr Fred Loebinger Senior Lecturer Professor Robin Marshall Professor, Group Leader Dr Terry Wyatt Reader Dr A N Other (from Sept 2002) Lecturer Fellows Dr Brian Cox PPARC Advanced Fellow Dr Graham Wilson (leave of absence for 2 yrs) PPARC Advanced Fellow James Weatherall PPARC Fellow PPARC funded Research Associates∗ Dr Nick Malden Dr Joleen Pater Dr Michiel Sanders Dr Ben Waugh Dr Jenny Williams PPARC funded Responsive Research Associate Dr Liang Han PPARC funded e-Science Research Associates Steve Dallison core e-Science Sergey Dolgobrodov core e-Science Gareth Fairey EU/PPARC DataGrid Alessandra Forti GridPP Andrew McNab EU/PPARC DataGrid PPARC funded Support Staff∗ Phil Dunn (replacement) Technician Andrew Elvin Technician Dr Joe Foster Physicist Programmer Julian Freestone
    [Show full text]
  • Coulomb Gluons and Colour Evolution
    Coulomb gluons and colour evolution René Ángeles-Martínez in collaboration with Jeff Forshaw Mike Seymour JHEP 1512 (2015) 091 DPyC, BUAP & arXiv:1602.00623 (accepted for publication) 2016 In this talk: Progress towards including the colour interference of soft gluons in partons showers. PDF Hard process (Q) Parton Shower: Approx: Collinear + Soft radiation Q qµ ⇤ QCD Underlying event Hadronization Hadron-Hadron collision, Soper (CTEQ School) … 2 Motivation • Why? Increase precision of theoretical predictions for the LHC • Is this necessary? Yes, for particular non-inclusive observables. • Are those relevant to search for new physics? Yes, these can tell us about the (absence of) colour of the production mechanism (couplings). 3 Outline • Coulomb gluons, collinear factorisation & colour interference. • Concrete effect: super-leading-logs. • Including colour interference in partons showers. (Also see JHEP 07, 119 (2015), arXiv:1312.2448 & 1412.3967) 4 One-loop in the soft approximation kµ Q ⌧ ij Hard subprocess is a vector Colour matrices acting on 2 colour + spin d d k ↵ pi pj ig2T T − · 2 s i · j (2⇡)d [p k i0][ p k i0][k2+i0] Z j · ± − i · ± ↵ i : i0 i :+i0 i : i0 − − j : i0 j :+i0 j :+i0 − 2 ↵ Introduction: one-loop soft gluon correction After contour integration: d4k (2⇡)δ(k2)✓(k0) (2⇡)2δ(p k)δ( p k) g2µ2✏T T p p + iδ˜ i · − j · 2 s i · j i · j (2⇡)4 [p k][p k] ij 2[k2] Z j · i · ↵ (On-shell gluon: Purely real) (Coulomb gluon: Purely imaginary) 1ifi, j in , ˜ δij = 81ifi, j out , <>0 otherwise.
    [Show full text]
  • Arxiv:Hep-Ph/0403045V2 5 Mar 2004 .Maltoni F
    Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics Editors: M.A. Dobbs1, S. Frixione2, E. Laenen3, K. Tollefson4 Contributing Authors: H. Baer5, E. Boos6, B. Cox7, M.A. Dobbs1, R. Engel8, S. Frixione2, W. Giele9, J. Huston4, S. Ilyin6, B. Kersevan10, F. Krauss11, Y. Kurihara12, E. Laenen3,L.Lonnblad¨ 13, F. Maltoni14, M. Mangano15, S. Odaka12, P. Richardson16, A. Ryd17, T. Sjostrand¨ 13, P. Skands13, Z. Was18, B.R. Webber19, D. Zeppenfeld20 1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 2INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy 3NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands 4Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1116, USA 5Department of Physics, Florida State University, 511 Keen Building, Tallahassee, FL 32306-4350, USA 6Moscow State University, Moscow, Russia 7Dept of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. 8 Institut f¨ur Kernphysik, Forschungszentrum Karlsruhe, Postfach 3640, D - 76021 Karlsruhe, Germany 9Fermi National Accelerator Laboratory, Batavia, IL 60510-500, USA 10Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana,Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19,SI-1000 Ljubljana, Slovenia 11Institut f¨ur Theoretische Physik, TU Dresden, 01062 Dresden, Germany 12KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan 13Department of Theoretical Physics, Lund University, S-223 62 Lund, Sweden 14Centro Studi e Ricerche “Enrico Fermi”, via Panisperna, 89/A - 00184 Rome, Italy 15CERN, CH–1211 Geneva 23, Switzerland 16Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, U.K. 17Caltech, 1200 E.
    [Show full text]
  • Materials Research Science and Engineering Centers
    Materials Research Science and Engineering Centers Interdisciplinary materials research and education addressing fundamental problems in science and engineering that are important to society Materials Research Science and Engineering Centers are supported by the The National National Science Foundation (NSF) to undertake materials research of scope and Science complexity that would not be feasible under traditional funding of individual Foundation research projects. Materials Research THESE CENTERS: Science & ♦ require outstanding research quality, intellectual breadth, interdisciplinarity, flexibility Engineering in responding to new research opportunities, support for research infrastructure, and Centers foster the integration of research and education in the materials field; Program was established in ♦ address fundamental, complex problems of intellectual and societal importance, 1994. ♦ contribute to national priorities by fostering active collaboration between academia and other sectors, and ♦ constitute a national network of university-based Centers in materials research. Center Characteristics The MRSECs constitute a spectrum of coordinated Centers of differing scientific breadth and administrative complexity that may address any area (or several areas) of materials research. ♦ Each MRSEC encompasses one or more Interdisciplinary Research Groups (IRGs). ♦ Each IRG involves a group of faculty members, associated researchers and students addressing a major topic in materials research. ♦ In each IRG, sustained support for interactive effort by several participants with complementary backgrounds, skills, and knowledge is critical to progress. 1 Each MRSEC also incorporates most or all of the following activities to an extent commensurate with the size of the Center: ♦ Programs to stimulate interdisciplinary education, including research experiences for undergraduates accessible to students from other institutions, and the development of human resources (including support for under-represented groups).
    [Show full text]
  • Donev, Luke.Pdf (4.675Mb)
    CARBON NANOTUBE TRANSISTORS: CAPACITANCE MEASUREMENTS, LOCALIZED DAMAGE, AND USE AS GOLD SCAFFOLDING A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Luke Anthony Kaiser Donev May 2009 °c 2009 Luke Anthony Kaiser Donev ALL RIGHTS RESERVED CARBON NANOTUBE TRANSISTORS: CAPACITANCE MEASUREMENTS, LOCALIZED DAMAGE, AND USE AS GOLD SCAFFOLDING Luke Anthony Kaiser Donev, Ph.D. Cornell University 2009 Carbon nanotubes are incredible materials with interesting mechanical and elec- trical properties. This thesis presents diverse experiments based on carbon nan- otube transistors. We measured the capacitance of individual carbon nanotubes. The density of states of a carbon nanotube will influence the tube’s capacitance. We report good agreement with theory and that we successfully probe the tube’s density of states. We show it is possible to open holes into the carbon nanotubes without com- pletely destroying the conductance of the tube. The application of localized damage to nanotube transistors opens up several exciting potential device ge- ometries. We also present several experiments where carbon nanotubes are used as nanoscale scaffolding for the deposition and manipulation of gold. Nanometer scale balls of gold are deposited on nanotubes from an atomic force microscope. Nanotubes are also used to influence gold wires undergoing electromigration. This thesis demonstrates just some of many novel techniques being applied to carbon nanotubes, and lays groundwork for the exciting applications nan- otubes will help realize. BIOGRAPHICAL SKETCH Luke Anthony Kaiser Donev was born on August 19, 1979 in Toronto, Canada. He was greeted by his parents Mary and Stef and brother Jason.
    [Show full text]
  • Double Diffractive Higgs and Di-Photon Production at The
    MAN/HEP/2001/03 MC-TH-01/09 October 2001 Double Diffractive Higgs and Di-photon Production at the Tevatron and LHC Brian Cox and Jeff Forshaw Dept. of Physics and Astronomy, University of Manchester Manchester M13 9PL, England [email protected] Beate Heinemann Oliver Lodge Laboratory, University of Liverpool Liverpool, L69 7ZE, England [email protected] Abstract We use the POMWIG Monte Carlo generator to predict the cross-sections for double diffractive higgs and di-photon production at the Tevatron and LHC. We find that the higgs production cross-section is too small to be observable at Tevatron energies, and even at arXiv:hep-ph/0110173v2 13 Oct 2001 the LHC observation would be difficult. Double diffractive di-photon production, however, should be observable within one year of Tevatron Run II. 1 Introduction With the start of Run II at the Tevatron the possibility of detecting a light higgs boson has of course been the focus of much attention. One suggested experimentally clean search strategy is to look in double diffractive collisions in which the final state contains only intact protons, which escape the central detectors, and the decay products of the higgs, in this case two b quark jets. The protons would be tagged in roman pot detectors a long way down stream of the interaction point, allowing a very precise determination of the higgs mass, using the so-called missing mass method [1]. With such proton tagging, the available center of mass energy of up to 200 GeV means that the preferred higgs mass of around 115 GeV is kinematically accessible, at least in principle.
    [Show full text]
  • Report from Science Committee
    Report From Science Committee JennyReport Thomas, IoP Town Meeting From Science Committee One year since last Town Meeting SC scientific business Reapproval of LHC-GPDs High Performance Computing Funding of new projects Statements of Interest Accelerator Centres SC administrative business New Members/Retiring members Meetings with Peer-Review and AP chairs Visits to PP institutes SLA Review Review of Peer Review Structure Jenny Thomas, IoP Town Meeting SCSC StrategyStrategy SC has defined a strategy over the last few years New projects are essential to the life blood of our field Longer term and shorter term projects must be planned for High impact science will be funded where: UK can play a major and intellectually leading role Science is internationally excellent, timely and fundamental Sun-setting is a natural part of a vibrant programme Blue skies R&D is an important investment in the future The financial outlook Jenny Thomas, IoP TownThe Meeting financial outlook We have a balanced budget over 10 year period SC has wrestled with the spreadsheets and understands the numbers In the short term, there are shortfalls We don’t have much wiggle room until 05/06 We do have lots of stuff we want to do Ian just has to get the money from OST. If we get 4% we may be able to do everything we want Start thinking of great new science to do. Who is SC? Jenny Thomas, IoP Town Meeting Who is SC? Martin Ward, Leicester (Chair) Jenny Thomas, UCL (Deputy Chair) Jordan Nash, IC Richard Hills, Cambridge Jeff Forshaw, Manchester John Peacock, Edinburgh
    [Show full text]
  • {PDF} Why Does E=Mc2?: (And Why Should We Care?)
    WHY DOES E=MC2?: (AND WHY SHOULD WE CARE?) PDF, EPUB, EBOOK Brian Cox,Jeff Forshaw | 272 pages | 09 Mar 2010 | The Perseus Books Group | 9780306819117 | English | Cambridge, MA, United States Why Does E=mc2?: (And Why Should We Care?) by Brian Cox, Jeff Forshaw, Paperback | Barnes & Noble® NOOK Book. Home 1 Books 2. Add to Wishlist. Sign in to Purchase Instantly. Members save with free shipping everyday! See details. Brian Cox and Professor Jeff Forshaw go on a journey to the frontier of twenty-first century science to unpack Einstein's famous equation. Explaining and simplifying notions of energy, mass, and light-while exploding commonly held misconceptions-they demonstrate how the structure of nature itself is contained within this equation. Along the way, we visit the site of one of the largest scientific experiments ever conducted: the now-famous Large Hadron Collider, a gigantic particle accelerator capable of re-creating conditions that existed fractions of a second after the Big Bang. Jeff Forshaw is a Professor of Theoretical Physics at the University of Manchester, specializing in the physics of elementary particles. He was awarded the Institute of Physics Maxwell Medal in for outstanding contributions to theoretical physics. Related Searches. A nutritionist offers recipes and a diet program to aid in determining which foods cause View Product. Between You and Me. At the age of 87, Mike Wallace is a legendary figure in broadcast journalism. Now, after 60 years of reporting on important events around the world, he shares his personal
    [Show full text]
  • Soft Gluons and Non-Global Observables Mike Seymour – University of Manchester / CERN TH on Behalf of Rene Angeles Martinez, Matthew De Angelis, Jeffrey R
    Soft Gluons and Non-global Observables Mike Seymour – University of Manchester / CERN TH on behalf of Rene Angeles Martinez, Matthew De Angelis, Jeffrey R. Forshaw, Simon Plätzer, Michael H. Seymour based on JHEP 05 (2018) 044 (arxiv:1802.08531) Soft gluon evolution • In particular, how does soft gluon emission affect subsequent soft gluon evolution? Soft Gluons and Non-global Observables • Soft gluon emission evolution algorithm • An IR-finite reformulation • The ordering variable • Colour flow basis • (Towards) an exact numerical implementation • (“amplitude-level parton shower”) et al [14], as well as Weigert and Caron-Huot [7, 11, 30]. In Appendix B we make the can- cellation of infrared divergences explicit for observables that are inclusive below a resolution scale, and in Appendix C we explicitly calculate contributions in a fixed-order expansion. Finally, Appendix D sets up the machinery to deal with the fact that most colour bases are not orthogonal (see [31] for a notable exception). 2Thegeneralalgorithm Our starting point is the cross section for emitting n soft gluons. At this stage we will assume that it is ok to order successive emissions in energy. This assumption is ok for processes that are insensitive to Coulomb gluon exchanges but appears not to be valid otherwise [29, 32]. We have that σ =Tr(V H(Q)V† ) Tr A (µ) 0 µ,Q µ,Q ⌘ 0 µ σ =Tr(V D V H(Q)V† D† V† ) ⇧ d 1 µ,E1 1 E1,Q E1,Q 1µ µ,E1 d 1 Tr A (µ) d⇧ ⌘ 1 1 ⌫ µ σ =Tr(V D V D V H(Q)V† D† V† D† V† ) ⇧ ⇧ d 2 µ,E2 2 E2,E1 1 E1,Q E1,Q 1µ E2,E1 2⌫ µ,E2 d 1d 2 Tr A (µ) d⇧ d⇧ ⌘ 2 1 2 etc.
    [Show full text]
  • Forward Physics at 420M at LHC
    Brian Cox DIS 2005, Madison, April 2005 Forward Physics at 420m at LHC • Selection rules mean that central system is (to a good approx) 0++ • If you see a new particle produced exclusively with proton tags you know its quantum numbers • CP violation in the Higgs sector shows up directly as azimuthal asymmetries • Proton tagging may be the discovery channel in certain regions of the MSSM • Tagging the protons means excellent mass resolution (~ GeV) irrespective of the decay products of the central system • Unique access to a host of interesting QCD Very schematically it’s a glue – glue collider where you know the beam energy of the gluons - source of pure gluon jets - and central production of any 0++ state which couples strongly to glue is a possibility … Central Production at LHC xIP~ 0.007 xIP~ 0.03 Plots from Henri Kowalski and TOTEM (Helsinki group) Central Production at LHC xIP~ 0.007 xIP~ 0.03 The KMR Calculation of the Exclusive Process q -> Proton Dominant uncertainty: KMR estimate factor of 2-3. Independent estimate by Lund group “definitely less than 10”. Divergent: controlled by Sudakov Jeff Forshaw, HERA LHC Workshop The KMR Calculation of the Exclusive Process q -> Proton Dominant uncertainty: KMR estimate factor of 2-3. Independent estimate by Lund group “definitely less than 10”. Divergent: controlled by Sudakov Jeff Forshaw, HERA LHC Workshop Latest Acceptance curves from Helsinki Group R. Orava, FP420 FNAL meeting , 26 April The Benchmark process : SM Higgs production The Benchmark process : SM Higgs production b jets : MH = 120 GeV = 2 fb MH = 140 GeV = 0.7 fb -1 MH = 120 GeV : 11 signal, S/B ~ 1 in 30 fb 0++ Selection rule Also, since resolution of taggers > Higgs width: QCD Background ~ •The b jet channel is possible, with a good understanding of detectors and clever level 1 trigger •The WW* (ZZ*) channel is extremely promising : no trigger problems, better mass resolution at higher masses (even in leptonic / semi-leptonic channel) •If we see Higgs + tags - the quantum numbers are 0++ Resolution from R.
    [Show full text]
  • Gaps Between Jets at the LHC
    Gaps between jets at the LHC Simone Marzani University of Manchester Collider Physics 2009: Joint Argonne & IIT Theory Institute May 18th -22nd , 2009 In collaboration with Jeff Forshaw and James Keates arXiv:0905.1350 [hep-ph] Outline • Jet vetoing: Gaps between jets – Global and non-global logarithms – Discovery of super-leading logarithms • Some LHC phenomenology – Global logarithms – Super-leading logarithms • Conclusions and Outlook Jet vetoing:" Gaps between jets! The observable Production of two jets with! • transverse momentum Q ! • rapidity separation Y! jet radius R! Y! • Emission with !kT >Q0 forbidden in the inter-jet region! Plenty of QCD effects! “wider” gaps! Y! Forward BFKL Non- forward BFKL (Mueller-Navelet jets) (Mueller-Tang jets) Super-leading logs Wide-angle soft radiation Fixed order Q L = ln “emptier” gaps! Q0 Higgs +2 jets! Weak boson fusion! Gluon fusion! • Different QCD radiation in the inter-jet region! • To enhance the WBF channel, one can make a veto Q0 on additional radiation between the tagged jets! • QCD radiation as in dijet production! Forshaw and Sjödahl arXiv:0705.1504 [hep-ph] • Important in order to extract the VVH coupling! Soft gluons in QCD! • What happens if we dress a hard scattering with soft gluons?! • Sufficiently inclusive observables are not affected: real and virtual cancel via Bloch-Nordsieck theorem! • Soft gluon corrections are important if the real radiation is constrained into a small region of phase-space! • In such cases BN fails and miscancellation between real and virtual induces
    [Show full text]