MANUFACTURE of SODIUM DITHIONITE from SODIUM- MERCURY AMALGAM and AQUEOUS SOLUTION of SULFUR DIOXIDE by RAMAN NAYAR B. Tech

Total Page:16

File Type:pdf, Size:1020Kb

MANUFACTURE of SODIUM DITHIONITE from SODIUM- MERCURY AMALGAM and AQUEOUS SOLUTION of SULFUR DIOXIDE by RAMAN NAYAR B. Tech |5"IV) MANUFACTURE OF SODIUM DITHIONITE FROM SODIUM- MERCURY AMALGAM AND AQUEOUS SOLUTION OF SULFUR DIOXIDE by RAMAN NAYAR B. Tech. (Hon.), I.I.T., Kharagpur, 1967 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of CHEMICAL ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November, 1972 In presenting this thesis in partial fulfullment of the requirements for an advanced degree at the University of British Columbia/ I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that publication, in part or in whole, or the copying of this thesis for financial gain shall not be allowed without my written permission. RAMAN NAYAR Department of Chemical Engineering The University of British Columbia Vancouver 8, Canada Date K^~ot Xo' \^ 7 3 ii ABSTRACT A relatively dilute (approximately 1 to 2%) water solution of sodium dithionite was produced from sodium-mercury amalgam and aqueous solution of sulfur dioxide in a simple "once through" reactor [proposed process]. The reactor could be run in conjunction with the Castner-Kellner type cell. The manufactured solution could then be used directly for the brightening of groundwood pulp. The bench scale experiments were carried out in a continuous-flow-stirred-tank reactor where the aqueous and amalgam phases formed an interface. The effects of important process variables on the steady-state concentration of sodium dithionite in the reactor and yields of sodium dithionite on sulfur dioxide in the aqueous feed and on sodium consumed in a single pass were determined. The above-mentioned yields are important in assessing the economic feasibility of the pro• posed process. The steady-state yield of sodium dithionite on sodium in the amalgam entering the reactor and'conversion of sodium to different products in the reactor were also determined. The present investigation showed that the process variables can be controlled to give approximately 2.3% sodium dithionite solution with steady-state Na2S20^ yields of about 21% on sulfur dioxide in the aqueous feed and about 67% on sodium consumed. The yields obtained depend on the levels of process variables such as: 1. the concentration of sodium in the amalgam enter• ing the reactor, 2. the concentration of total sulfur dioxide in the aqueous feed solution, 3. the agitation in the aqueous phase, 4. the agitation in the amalgam phase, 5. the residence time in the aqueous phase, 6. the residence time in the amalgam phase, 7. the interfacial-area/aqueous-volume ratio, 8. the temperature of the aqueous phase, and 9. the pH of the aqueous phase. This experimental study indicates that it may be economically feasible for a pulp mill to change .from zinc dithionite produced in situ to sodium dithionite produced in situ by the proposed; process. Further, the proposed process compared to the manufacture of zinc dithionite in situ avoids the discharge of zinc ions which act as biocidal agents when discharged into the effluent receiving waters. The models suggested by Ketelaar (44) and Gerritsen (30) were found inadequate to explain the processes occurring iv in the reacting system sodium-mercury amalgam and aqueous sulfur dioxide. A qualitative model has been suggested on the basis of the experimental work and the information available in the literature. This work also sheds some light on the type of reactor which would be suitable for the proposed process. V ACKNOWLEDGEMENT The author wishes to express his thanks to the faculty and staff of the Chemical Engineering Department, The University of British Columbia. Special thanks are extended to Dr. F.E. Murray, who suggested the project and under whose guidance this work was undertaken. The author is indebted to the Chemical Engineering Workshop personnel for their assistance in assembling the experimental equipment. The author wishes to thank Mr. E. Rudischer, in particular, for his assistance and cooper• ation . Financial support for this research was most gratefully received from the National Research Council of Canada and from the British Columbia Research Council. The author is also indebted to his wife Jane for her invaluable help throughout this work. vi TABLE OF CONTENTS CHAPTER PAGE I. INTRODUCTION 1 II. REVIEW OF PERTINENT PRIOR WORK 7 A. Manufacturing Processes for Sodium Dithionite 7 1. Zinc dust: sodium carbonate process ... 7 2. Electrolytic or cathodic reduction process 9 3. Sodium formate process 9 4. Sodium borohydride process 10 5. Sodium amalgam process 11 (a) Advantages of the sodium amalgam process 11 (b) Types of the sodium amalgam process ... 12 (i) Sodium amalgam: S02-organic solvent process 12 (ii) Sodium amalgam: gaseous SO2 process and sodium amalgam: liquid SO2 process 13 (iii) Sodium amalgam: S02-NaHS03/Na2S03 buffer process 13 B. Recommended Conditions for Improving the Yield of Sodium Dithionite in the Sodium Amalgam: S02-NaHS03/Na2S03 Buffer Process . 15 C. Mercury Contamination of Sodium Dithionite Produced by the Sodium Amalgam: SOj-NaHSO,/ Na„S0o Buffer Process ...... 17 vii CHAPTER PAGE D. Lignin Preserving Bleaching of Ground- wood Pulp by Sodium Dithionite 19 1. Definition of the terms "brightening" and "bleaching" . 19 2. Characteristics of the groundwood bleach• ing process . 20 3. Effects of groundwood brightening . 21 4. Conditions for groundwood brightening by sodium dithionite 21 E. Sodium-mercury Amalgam 24 1. Molecular structure of sodium-mercury amalgam .......... 24 2. Surface tension of sodium-mercury amalgam 25 3. Sensitivity to oxidation of sodium- mercury amalgam ...... 25 4. Density of sodium-mercury amalgam ... 26 F. Sulfur Dioxide Solution in Water ..... 26 1. Principal equilibria ......... 26 2. Diffusion of sulfur dioxide in water ................. 32 G. Important Reactions in the Proposed Process ..... 33 1. The Sodium dithionite formation reaction . ..... 35 2. The water reaction 39 3. The sodium dithionite decomposition reactions ....... 43 (a) Homogeneous decomposition of sodium dithionite 43 (b) Heterogeneous decomposition of sodium dithionite 4 6 viii CHAPTER PAGE 4. The sodium dithionite oxidation reaction ..... 48 III. THEORETICAL MODELS 50 IV. EXPERIMENTAL 54 A. Experimental Materials .... 54 1. Sodium-mercury amalgam ..... 54 2. Aqueous sulfur dioxide solution 54 B. Experimental Apparatus . 55 1. Reactor 55 2. pH measurement of the aqueous phase ... 64 3. Temperature measurement of different streams 65 4. Insulation of the equipment ....... 67 5. Electrical wiring diagram ........ 67 C. Calibration Curves ..... 67 D. An Experimental Run ........ 69 E. Analytical Procedures and Errors ...... 71 1. Sodium-mercury amalgam .... 71 (a) Analysis of sodium-mercury amalgam 71 (b) Accuracy and precision of the analytical procedure 72 2. Aqueous sulfur dioxide solution ..... 75 (a) Analysis of aqueous sulfur dioxide solution 75 (b) Accuracy and precision of the analytical procedure 76 3. Aqueous sodium dithionite solution .... 77 ix CHAPTER PAGE (a) Analysis of sodium dithionite in the product stream 77 (b) Accuracy and precision of the analytical procedures 79 V. EXPERIMENTAL RESULTS 8 2 A. Batch Experiments 82 B. Introduction to Experiments in the CFSTR .......... 87 C. Definitions of Some Important Quantities which are used for the Interpretation of Data ... 90 D. Reproducibility of Experimental Runs in the CFSTR 94 E. Data from CFSTR Experiments ......... 101 1. Concentration of sodium in fresh amalgam 101 2. Concentration of "total" sulfur dioxide in the aqueous feed solution 121 3. Agitation in the aqueous phase 133 4. Flow rate of aqueous sulfur dioxide solution, i.e. residence time in the aqueous phase ...... 144 5. Interfacial-area/aqueous-volume ratio . 153 6. Temperature of the aqueous phase 164 7. pH of the aqueous phase 168 8. Flow rate of fresh amalgam, i.e. residence time in the amalgam phase . 168 VI. DISCUSSION I70 A. Model for the Reacting System in the Proposed Process 170 X CHAPTER PAGE 1. Development of the model 170 2. The model 185 B. Conditions for Improving the Yields of Sodium Dithionite in the Proposed Process 188 C. Economic Feasibility of the Proposed Process ....... 194 D. Reactor for the Proposed Process ...... 198 VII. CONCLUSIONS 199 VIII. RECOMMENDATIONS FOR FURTHER WORK 203 IX. NOMENCLATURE 205 BIBLIOGRAPHY ........ 208 APPENDIX A. EQUIPMENT SPECIFICATION A-l 1. pH measurement A-l 2. Digital temperature recording ........ A-l 3. Calibration curves ....... A-2 B. STATISTICAL EVALUATION OF ACCURACY AND PRECISION B-l 1. Error of a measurement process ....... B-l 2. Evaluation of accuracy B-3 3. Evaluation of precision (or imprecision). B-4 4. Propagation of random error B-8 C. SODIUM-MERCURY AMALGAM C-l 1. Purity of the chemicals in preparing amalgam C-l 2. Problems encountered in preparation of amalgam ..... C-2 xi APPENDIX PAGE 3. Calculation of sodium content in an amalgam sample C-3 4. Estimation of the precision of the analytical procedure C-4 D. AQUEOUS SOLUTION OF SULFUR DIOXIDE D-l 1. Purity of the chemicals in preparing aqueous sulfur dioxide solution D-l 2. Calculation of the total sulfur dioxide con• centration in an aqueous solution sample . D-2 3. Estimation of the precision of the analytical procedure ..... D-3 E. SODIUM DITHIONITE IN THE PRODUCT STREAM ..... E-l 1. Details of the analytical procedures and sample calculations E-l (a) The iodine-formaldehyde method E-l (b) The Rubine-R method E-8 2. Estimation of the precision of the Rubine-R E-16 method F. DATA PROCESSING F-l 1. Mathematical expressions for calculating C Y Y C0NNA X and Na S S204' S02, Na' ' Na / °2< rate of sodium consumption, and sample calculations 2. The 95 per cent confidence limits of the steady-state C8 Y , CONNA, X^, Na/S02 and rate of sodium consumption _ for an experimental run 3.
Recommended publications
  • Information to Users
    INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quédlty of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hemd comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. * 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white stcmdard 35mm slide format.* *For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department. IVBcrofilnis lateniai^oiial 8612390 Lee, Jong-Kwon STRESS CORROSION CRACKING AND PITTING OF SENSITIZED TYPE 304 STAINLESS STEEL IN CHLORIDE SOLUTIONS CONTAINING SULFUR SPECIES AT TEMPERATURES FROM 50 TO 200 DEGREES C The Ohio State University Ph.D.
    [Show full text]
  • Identification and Characterization of Oxalate Oxidoreductase, A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 2010 Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine Pyrophosphate-dependent 2-Oxoacid Oxidoreductase That Enables Anaerobic Growth on Oxalate Elizabeth Pierce University of Michigan, Ann Arbor Donald F. Becker University of Nebraska-Lincoln, [email protected] Stephen W. Ragsdale University of Michigan, Ann Arbor, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons Pierce, Elizabeth; Becker, Donald F.; and Ragsdale, Stephen W., "Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine Pyrophosphate-dependent 2-Oxoacid Oxidoreductase That Enables Anaerobic Growth on Oxalate" (2010). Biochemistry -- Faculty Publications. 179. https://digitalcommons.unl.edu/biochemfacpub/179 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 52, pp. 40515–40524, December 24, 2010 © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine Pyrophosphate-dependent 2-Oxoacid Oxidoreductase That Enables Anaerobic Growth on Oxalate*□S Received for publication, June 17, 2010, and in revised form, October 15, 2010 Published, JBC Papers in Press, October 18, 2010, DOI 10.1074/jbc.M110.155739 Elizabeth Pierce‡, Donald F. Becker§, and Stephen W.
    [Show full text]
  • Brearley, Francis Q. Thomas, Andrew D-Land
    Land-use Change Impacts on Soil Processes Tropical and Savannah Ecosystems Land-use Change Impacts on Soil Processes Tropical and Savannah Ecosystems Edited by Francis Q. Brearley Manchester Metropolitan University and Andrew D. Thomas Aberystwyth University CABI is a trading name of CAB International CABI CABI Nosworthy Way 745 Atlantic Avenue Wallingford 8th Floor Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 682 9015 Fax: +44 (0)1491 833508 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CAB International 2015. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Land-use change impacts on soil processes : tropical and savannah ecosystems / edited by Francis Q. Brearley, Manchester Metropolitan University; and Andrew D. Thomas, Aberystwyth University. pages cm Includes bibliographical references and index. ISBN 978-1-78064-210-9 (hbk : alk. paper) 1. Soils--Environmental aspects--Case studies. 2. Land use--Environmental aspects--Case studies. 3. Soil ecology--Case studies. I. Brearley, Francis Q., editor. II. Thomas, Andrew D. (Andrew David), 1970- editor. III. Title: Land use change impacts on soil processes. S596.L36 2015 577.5’7--dc23 2015021721 ISBN-13: 978 1 78064 210 9 Commissioning editors: Vicki Bonham and Nicki Dennis Editorial assistant: Emma McCann Production editors: Tracy Head and Emma Ross Typeset by SPi, Pondicherry, India.
    [Show full text]
  • Sulfate-Reducing Bacteria in Anaerobic Bioreactors Are Presented in Table 1
    Sulfate-reducing Bacteria inAnaerobi c Bioreactors Stefanie J.W.H. Oude Elferink Promotoren: dr. ir. G. Lettinga bijzonder hoogleraar ind eanaërobisch e zuiveringstechnologie en hergebruik dr. W.M. deVo s hoogleraar ind e microbiologie Co-promotor: dr. ir. AJ.M. Stams universitair docent bij deleerstoelgroe p microbiologie ^OSJO^-M'3^- Stefanie J.W.H.Oud eElferin k Sulfate-reducing Bacteria inAnaerobi c Bioreactors Proefschrift terverkrijgin g van degraa d van doctor op gezag van derecto r magnificus van deLandbouwuniversitei t Wageningen, dr. C.M. Karssen, inhe t openbaar te verdedigen opvrijda g 22me i 1998 des namiddags tehal f twee ind eAula . r.r, A tri ISBN 90 5485 8451 The research described inthi s thesiswa s financially supported by agran t ofth e Innovative Oriented Program (IOP) Committee on Environmental Biotechnology (IOP-m 90209) established by the Dutch Ministry of Economics, and a grant from Pâques BV. Environmental Technology, P.O. Box 52, 8560AB ,Balk , TheNetherlands . BIBLIOTHEEK LANDBOUWUNIVERSITEIT WAGENTNGEN 1 (J ÜOB^ . ^3"£ Stellingen 1. Inhu n lijst van mogelijke scenario's voor de anaërobe afbraak van propionaat onder sulfaatrijke condities vergeten Uberoi enBhattachary a het scenario dat ind e anaërobe waterzuiveringsreactor van depapierfabrie k teEerbee k lijkt opt etreden , namelijk de afbraak vanpropionaa t door syntrofen en sulfaatreduceerders end e afbraak van acetaat en waterstof door sulfaatreduceerders en methanogenen. Ditproefschrift, hoofdstuk 7 UberoiV, Bhattacharya SK (1995)Interactions among sulfate reducers, acetogens, and methanogens in anaerobicpropionate systems. 2. De stelling van McCartney en Oleszkiewicz dat sulfaatreduceerders inanaërob e reactoren waarschijnlijk alleen competerenme t methanogenen voor het aanwezige waterstof, omdat acetaatafbrekende sulfaatreduceerders nog nooit uit anaëroob slib waren geïsoleerd, was correct bij indiening, maar achterhaald bij publicatie.
    [Show full text]
  • Using Either Hydrogen Or Dithionite As Reductant in Uranium
    AC 2012-4906: USING EITHER HYDROGEN OR DITHIONITE AS RE- DUCTANT IN URANIUM CONTAMINATED GROUNDWATER AT POST- LEACH URANIUM MINING SITES, SOUTH TEXAS Prof. Lee Clapp, Texas A&M University, Kingsville Lee Clapp is Associate Professor in environmental engineering. Prof. Mohamed Abdelrahman, Texas A&M University, Kingsville Mohamed Abdelrahman received the B.S. and M.S. degrees in electrical engineering and engineering physics from Cairo University, Egypt in 1988 and 1992, respectively. He received an M.S. and a Ph.D. in measurement and control and nuclear engineering from Idaho State University in 1994 and 1996, re- spectively. He is currently the Associate Dean of Engineering at Texas A&M University, Kingsville. Abdelrahman’s research focus is industrial applications of sensing and control with major research fund- ing from the U.S. Department of Energy, National Science Foundation, and industry. He has also focused on collaborative and innovative educational research. Abdelrahman is passionate about outreach activities for popularizing engineering research and education. His activities in that arena included NSF funded sites for research experience for undergraduates and research experience for Teachers. He has published his research results in more than 90 papers in refereed journals and conference proceedings and 30+ technical reports. Mr. Petronilo Estandarte Pana, LBJ Middle School, PSJA ISD B.S.E.M., M.S. GeoEng’g c American Society for Engineering Education, 2012 Modeling, Simulations and Studies using Hydrogen or Dithionite as Reductants in Uranium Contaminated Groundwater at Post- Leach Uranium Mining Sites in South Texas Abstract This paper summarizes the results of a summer research project conducted by a public high school teacher.
    [Show full text]
  • Technical Report TR-00-13
    SE0100078 Technical Report TR-00-13 Thermodynamic data for copper Implications for the corrosion of copper under repository conditions I Puigdomenech Royal Institute of Technology, Stockholm C Taxen Swedish Corrosion Institute, Stockholm August 2000 Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 102 40 Stockholm Tel 08-459 84 00 Fax 08-661 57 19 / PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK Thermodynamic data for copper Implications for the corrosion of copper under repository conditions I Puigdomenech Royal Institute of Technology, Stockholm C Taxen Swedish Corrosion Institute, Stockholm August 2000 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. ABSTRACT The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of cop- per canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous 2 2 species in the system: Cu - H2O - H+ - H2 - F~ - Cl" - S ~ - SO4 ~ - NO3~ - NC>2~ - NH41" - PO43- - CC>32~. For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100°C.
    [Show full text]
  • Long-Term Stability of Dithionite in Alkaline Anaerobic Aqueous Solution
    ACCEPTED MANUSCRIPT 1 Long-term stability of dithionite in alkaline anaerobic aqueous solution 2 Katherine Telfeyan *, Artas A. Migdisov, Sachin Pandey, Velimir V. Vesselinov, and Paul W. 3 Reimus 4 5 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 6 87545, United States 7 8 *Corresponding author: Phone: +1 505 665 3880; e-mail: [email protected] 9 Abstract 10 Closed-system experiments were conducted to investigate the decomposition of sodium 11 dithionite in aqueous solutions under varying pH and starting concentrations to simulate the 12 deployment of dithionite as an in-situ redox barrier. Co-determination of dithionite and its 13 degradation products was conducted using UV-Vis spectrometry, iodometric titration, and ion 14 chromatography. In unbuffered solutions, dithionite reacted rapidly, whereas in near-neutral 15 solutions (pH ~7), it persisted for ~ 50 days and in alkaline solution (pH ~9.5) for >100 days. 16 These are the longest lifetimes reported to date, which we attribute to not only excluding oxygen 17 but also preventing outgassing of H 2S. Thoroughly constraining the reaction products has led to 18 the following hypothesized reaction: 2- - 2- 2- 2- + 19 4 S 2O4 + H 2O HS +SO 3 +2 SO 4 +S 4O6 + H 20 which represents relatively rapid degradation at near-neutral pH values. At the more alkaline pH, 21 and over longer time scales, the reaction is best representedMANUSCRIPT by: 2- - 2- 2- + 22 3 S 2O4 + 3 H 2O 2HS +SO 3 +3 SO 4 + 4 H 23 the following kinetic rate law was developed for the pH range studied: dC = S 10 .
    [Show full text]
  • Biochemical Studies on Sulfate-Reducing Bacteria XIII
    J. Biochem., 75, 519-529 (1974) Biochemical Studies on Sulfate-reducing Bacteria . Sulfite Reductase from Desulfovibrio vulgaris-Mechanism of Trithionate, Thiosulfate, and Sulfide Formation and Enzymatic Properties Kunihiko KOBAYASHI, Yasuhide SEKI, and Makoto ISHIMOTO Department of Chemical Microbiology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo Received for publication, September 10, 1973 The reaction of sulfite reductase [EC 1. 8. 99. 1] from Desulfovibrio vulgaris was investigated using a purified enzyme preparation in a system coupled with methyl viologen and hydrogenase [EC 1.12.2.1]. Trithionate, thiosulfate, and sulfide were detected even in the early phase of sulfite reduction and the amount of each compound did not decrease during the reaction or after hydrogen uptake ceased. The specific radioactivity of sulfide formed from 35S-labelled sulfite was scarcely reduced on adding cold trithionate and only slightly on adding cold thiosulfate. These results, in addition to the fact that trithionate and thiosulfate are not reduced by the enzyme, indicate that these three compounds are produced by sulfite reductase. At high concentrations of sulfite and low concentrations of methyl viologen or hydrogenase, trithionate was the dominant product. Under the opposite conditions, the formation of relatively large amounts of sulfide or thiosulfate was observed. On the basis of these findings, a mechanism was proposed for the reaction, including labile intermediates, presumably sulfoxylate and elemental sulfur, which accept electrons from reduced methyl viologen to form sulfur and sulfide or react with sulfite to produce trithionate and thiosulfate, respectively. Some enzymatic properties were examined. K,,, was 3.6•~10-3M for sulfite. The optimum pH was 5.5 to 6.0.
    [Show full text]
  • Sodium Dithionite Cas N°: 7775-14-6
    OECD SIDS SODIUM DITHIONITE FOREWORD INTRODUCTION SODIUM DITHIONITE CAS N°: 7775-14-6 OECD SIDS SODIUM DITHIONITE SIDS Initial Assessment Report For SIAM 19 Berlin, Germany, 19-22 October 2004 1. Chemical Name: Sodium dithionite 2. CAS Number: 7775-14-6 3. Sponsor Country: Germany Contact Point: BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) Contact person: Prof. Dr. Ulrich Schlottmann Postfach 12 06 29 D- 53048 Bonn 4. Shared Partnership with: 5. Roles/Responsibilities of BASF AG = lead company the Partners: • Name of industry sponsor BASF AG, Germany /consortium Contact person: Dr. Hubert Lendle GUP/CL – Z 570 D-67056 Ludwigshafen • Process used The BUA Peer Review Process : see next page 6. Sponsorship History • How was the chemical or by ICCA-Initiative category brought into the OECD HPV Chemicals Programme? 7. Review Process Prior to last literature search (update): the SIAM: 14 February 2003 (Human Health): databases medline, toxline; search profile CAS-No. and special search terms 5 February 2004 (Ecotoxicology): databases CA, biosis; search profile CAS-No. and special search terms OECD/ICCA 8. Quality check process: As basis for the SIDS-Dossier the IUCLID was used. All data have been checked and validated by BUA. A final evaluation of the human health part has been performed by the Federal Institute for Risk Assessment (BfR) and of the ecotoxicological part by the Federal Environment Agency (UBA). 9. Date of Submission: Deadline for circulation: 23 July 2004 10. Date of last Update: 11. Comments: OECD SIDS SODIUM DITHIONITE OECD/ICCA - The BUA* Peer Review Process Qualified BUA personnel (toxicologists, ecotoxicologists) perform a quality control on the full SIDS dossier submitted by industry.
    [Show full text]
  • Activity Characteristics of Sulfate Reducing Bacteria and Formation Mechanism of Hydrogen Sulfide - 6369
    Deng et al.: Activity characteristics of sulfate reducing bacteria and formation mechanism of hydrogen sulfide - 6369 - ACTIVITY CHARACTERISTICS OF SULFATE REDUCING BACTERIA AND FORMATION MECHANISM OF HYDROGEN SULFIDE DENG, Q.1,2,3* – WU, X.2 – WANG, Y.2 – LIU, M.1,2 1State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, 454003 Jiaozuo, P. R. China 2School of Safety Science and Engineering, Henan Polytechnic University 454003 Jiaozuo, P. R. China 3Collaborative Innovation Center of Coal Safety Production of Henan Province 454003 Jiaozuo, P. R. China *Corresponding author e-mail: [email protected]; phone: +86-391-398-6252; fax: +81-391-398-7881 (Received 31st May 2018; accepted 13th Sep 2018) Abstract. Various anaerobic environments exist in the Earth’s ecosystem, which can produce a great deal of organic matter each year. In anaerobic habitats, bacterial sulfate reduction may occur due to the action of sulfate-reducing bacteria. As a result, hydrogen sulfide (H2S) is formed. This paper focuses on sulfate- reducing bacteria and the revision of the activity characteristics of these bacteria in the reducing environment. It discusses the metabolic process of sulfate-reducing bacteria using sulphate and organo- sulfur compounds as sulfur source, the mechanism of bacterial sulfate reduction and H2S formation mechanism. There are two main ways of H2S formation in sulfate-reducing bacteria, the production of metabolic sulphate and the metabolic organo-sulfur compounds (mainly cysteine). The paper, combined with the activity characteristics of sulfate-reducing bacteria and the pathway of metabolic formation of H2S, also discusses the circulation of sulfur in the environmental system of the Earth due to the action of sulfate-reducing bacteria, concerning the redox zone division in submarine sedimentary strata and landfills, the biogas formation phase of sulfate-reducing bacteria metabolism in sedimentary formations, and the bacterial sulfate reduction action in salt lakes (seawater) systems.
    [Show full text]
  • James Okstate 0664D 13483.Pdf (6.398Mb)
    THE ELUCIDATION AND QUANTIFICATION OF THE DECOMPOSITION PRODUCTS OF SODIUM DITHIONITE AND THE DETECTION OF PEROXIDE VAPORS WITH THIN FILMS By TRAVIS HOUSTON JAMES Bachelor of Science in Chemistry Hillsdale College Hillsdale, MI 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2014 THE ELUCIDATION AND QUANTIFICATION OF THE DECOMPOSOTION PRODUCTS OF SODIUM DITHIONITE AND THE DETECTION OF PEROXIDE VAPORS WITH THIN FILMS Dissertation Approved: Dr. Nicholas F. Materer Dissertation Advisor Dr. Allen Apblett Dr. Frank Blum Dr. Richard Bunce Dr. Ziad El-Rassi Dr. Tyler Ley ii ACKNOWLEDGEMENTS I would like to thank anyone who, whether I am aware of his or her actions or not, has contributed meaningfully to my life and my efforts. iii Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. Name: TRAVIS HOUSTON JAMES Date of Degree: JULY, 2014 Title of Study: THE ELUCIDATION AND QUANTIFICATION OF THE DECOMPOSOTION PRODUCTS OF SODIUM DITHIONITE AND THE DETECTION OF PEROXIDE VAPORS WITH THIN FILMS Major Field: CHEMISTRY Abstract: Sodium dithionite (Na2S2O4) is an oxidizable sulfur oxyanion often employed as a reducing agent in environmental and synthetic chemistry. When exposed to the atmosphere, dithionite degrades through a series of decomposition reactions to form a 2- number of compounds, with the primary two being bisulfite (HSO3 ) and thiosulfate 2- (S2O3 ). Ten samples of sodium dithionite ranging from brand new to nearly fifty years old were analyzed using ion chromatography; from this, a new quantification method for dithionite and thiosulfate was achieved and statistically validated against the current three iodometric titration method used industrially.
    [Show full text]
  • Composition for Producing Ferrous Dithionite and Process for Removing
    ~™ II 1 1 III II II I III 1 1 Ml II I II I II (19) J European Patent Office Office europeen des brevets (1 1 ) EP 0 508 676 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) int. CI.6: C01B 17/66, C01G 49/00, of the grant of the patent: C02F 1/62 30.07.1997 Bulletin 1997/31 (21) Application number: 92302883.1 (22) Date of filing: 02.04.1992 (54) Composition for producing ferrous dithionite and process for removing dissolved heavy metals from water Zusammensetzung zur Herstellung von Eisen-Dithionit und Verfahren zur Entfernung von in Wasser geldsten Schwermetallen Composition pour preparer du dithionite ferreux et procede pour eliminer des metaux lourds dissous dans I'eau (84) Designated Contracting States: (74) Representative: Blake, John Henry Francis et al AT BE CH DE FR GB IT LI NL SE Brookes & Martin High Holborn House (30) Priority: 08.04.1991 US 682129 52/54 High Holborn London WC1V6SE(GB) (43) Date of publication of application: 14.10.1992 Bulletin 1992/42 (56) References cited: DD-A- 2 001 630 DE-A-2122 415 (73) Proprietor: ROMAR TECHNOLOGIES DE-A- 3 822 922 INCORPORATED Beverly, Massachusetts (US) • DATABASE WPI, no. 78-54 661, DERWENT PUBLICATIONS LTD., London, GB (72) Inventor: Guess, Robert G. Beverly, Massachusetts (US) CO CO CO o Note: Within nine months from the publication of the mention of the grant of the European patent, give LO any person may notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]