Biochemical Studies on Sulfate-Reducing Bacteria XIII

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical Studies on Sulfate-Reducing Bacteria XIII J. Biochem., 75, 519-529 (1974) Biochemical Studies on Sulfate-reducing Bacteria . Sulfite Reductase from Desulfovibrio vulgaris-Mechanism of Trithionate, Thiosulfate, and Sulfide Formation and Enzymatic Properties Kunihiko KOBAYASHI, Yasuhide SEKI, and Makoto ISHIMOTO Department of Chemical Microbiology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo Received for publication, September 10, 1973 The reaction of sulfite reductase [EC 1. 8. 99. 1] from Desulfovibrio vulgaris was investigated using a purified enzyme preparation in a system coupled with methyl viologen and hydrogenase [EC 1.12.2.1]. Trithionate, thiosulfate, and sulfide were detected even in the early phase of sulfite reduction and the amount of each compound did not decrease during the reaction or after hydrogen uptake ceased. The specific radioactivity of sulfide formed from 35S-labelled sulfite was scarcely reduced on adding cold trithionate and only slightly on adding cold thiosulfate. These results, in addition to the fact that trithionate and thiosulfate are not reduced by the enzyme, indicate that these three compounds are produced by sulfite reductase. At high concentrations of sulfite and low concentrations of methyl viologen or hydrogenase, trithionate was the dominant product. Under the opposite conditions, the formation of relatively large amounts of sulfide or thiosulfate was observed. On the basis of these findings, a mechanism was proposed for the reaction, including labile intermediates, presumably sulfoxylate and elemental sulfur, which accept electrons from reduced methyl viologen to form sulfur and sulfide or react with sulfite to produce trithionate and thiosulfate, respectively. Some enzymatic properties were examined. K,,, was 3.6•~10-3M for sulfite. The optimum pH was 5.5 to 6.0. The enzyme was partially inhibited by arsenite at concentrations of 10-2 to 10-4 M. It could reduce hydroxylamine, nitrite, and trimethylamine N-oxide, but not nitrate, chlorate, cyanide, azide, adenosine N-oxide, or taurine. Disc electrophoresis and enzyme staining using oxidation of reduced methyl viologen with acceptors in polyacrylamide gel revealed that desulfoviridin had reducing activities not only for sulfite but also for hydroxylamine and nitrite. It was previously observed by Kobayashi et al. mediary formation of trithionate and thiosul (1) that sulfite reduction in the extract of fate. A stepwise reduction of sulfite involving Desulfovibrio vulgaris proceeds with inter- sulfite reductase, trithionate reductase (Eq. 1), Vol. 75, No. 3, 1974 519 XIII 520 K. KOBAYASHI, Y. SEKI, and M. ISHIMOTO and thiosulfate reductase (Eq. 2) was proposed. (6) was also used, where indicated. Sodium trithionate was synthesized ac- cording to Willstatter (7). Methyl viologen was a product of British Drug Houses. The sulfite reductase reaction was carried out in Warburg vessels under a hydrogen Sulfite reductase was recently purified atmosphere in the presence of hydrogenase from D. gigas (2) and D. vulgaris (3) and and methyl viologen (3). The standard mix was identified as desulfoviridin. Lee and Peck ture contained 0.5 unit of hydrogenase, 1 ƒÊmole (2) reported that the enzyme from D. gigas of methyl viologen, 10 ƒÊmoles of sodium bi produces only trithionate from sulfite, while sulfite, and enzyme in 1.0ml of 0.08M phos Skyring and Trudinger (4) showed, by en phate buffer, pH 6.0. The center well con zyme location in polyacrylamide gel after tained 0.1ml of 20% KOH absorbed in fluted disc electrophoresis of D. gigas extract, that filter paper. The reaction was started by the desulfoviridin band forms sulfide in sulfite tipping sulfite from the side arm into the main reduction. Kobayashi et al. (3) detected not compartment. Hydrogen uptake was followed only trithionate but also thiosulfate and sulfide manometrically at 30•Ž. as the products of sulfite reduction with Assays of sulfur compounds were per- purified D. vulgaris sulfite reductase, which formed as follows. Hydrogen sulfide absorbed had no ability to reduce trithionate or thio in the alkaline filter paper in the center well sulfate. of the Warburg vessel was determined accord- Further investigation of the sulfite reduc ing to St. Lorant (8). Trithionate and thio tase reaction was intended to ascertain that sulfate were determined by a cyanolysis a single enzyme produced the three com method, as described previously (3). Tetra pounds in sulfite reduction and to clarify the thionate was also determined, but the amount mechanism of formation of these compounds. was always negligible within the limit of ex We have found that the distribution of sulfur perimental error. Sulfite was determined by into these products varies according to the reac the p-rosaniline method (9) with a slight tion conditions, and a branched-chain scheme modification ; an aliquot (0.1 ml) was trans including two labile intermediates (3) is pro ferred to 0.9 ml of 0.1M Na2HgCl4 and, after posed. Enzyme activity for nitrogenous sub 30-fold dilution, subjected to color develop strates and the effects of inhibitors are also ment. shown. The theoretical amount of hydrogen uptake required for the formation of the three MATERIALS AND METHODS products from sulfite was calculated using the formula, Sulfite reductase [EC 1.8.99.1] was purified from Desulfovibrio vulgaris as previously de scribed (3). Preparations obtained by hydro where parentheses represent the amounts in xylapatite chromatography or repeated DEAE- moles of the compounds produced, according cellulose chromatography were used as purified to the following equations, enzyme. These preparations contained small amounts of a minor green protein (see Fig. 9A), but were not able to reduce trithionate or thiosulfate. Hydrogenase [EC 1.12.2.1] was solubilized from particulate fractions of D. vulgaris and was partially purified accord The distribution of sulfur in products was ing to Yagi (5). The preparation was not expressed as a percentage for each product able to reduce sulfite, thiosulfate, and trithio (g atoms of sulfur) of the total amount of nate. Particulate hydrogenase preparation sulfur in all the products. J. Biochem. SULFATE-REDUCING BACTERIA. XIII 521 Measurement of the specific activity of uptake in the presence of purified hydrogenase sulfide formed from 35S-labelled sulfite was (5) and methyl viologen under hydrogen. carried out using sulfide absorbed by the Trithionate and thiosulfate in the reaction alkaline filter paper in the center well of the mixture were determined, as well as hydrogen vessel (10). [35S]-Sodium bisulfite was pre sulfide absorbed in the alkali in the center pared from [35S]-sulfuric acid by reduction well of the vessels. with copper. The concentration of sulfite was As shown in Fig. 1, trithionate, thiosul adjusted after iodimetric titration of an aliquot. fate, and sulfide were deteced even at the After the enzymatic reduction, sulfide was beginning of the reaction ; trithionate was the converted to methylene blue with dimethyl-p- major product among the three under these phenylenediamine (8), followed by colorimetric conditions. None of the three products de determination. Methylene blue was then creased during the reaction or changed in adsorbed on activated charcoal (8mg for 11ml amount after hydrogen uptake ceased (Fig. of the colored solution). After washing with 1A) ; trithionate and thiosulfate formed were water on a filter paper, radioactivity on the not further reduced to produce thiosulfate charcoal was measured with a GM counter. and sulfide. These results are in agreement In experiments for acceptor specificity, with the fact that trithionate and thiosulfate hydrogen uptake was followed under the same did not serve as substrates of the enzyme conditions as for sulfite reduction except for (3). the acceptor. These results indicate that trithionate, To locate reductase activities on polyacryl thiosulfate, and sulfide are the terminal, not amide gels after disc electrophoresis, substrate- intermediary, products of sulfite reductase, dependent oxidation of reduced methyl vio and that neither trithionate reductase nor thio logen (11, 12) was applied. A partially sulfate reductase takes part in thiosulfate and sulfide formation. purified preparation of sulfite reductase The decrease in the relative amount of (DEAE-cellulose fraction) was subjected to electrophoresis on polyacrylamide gel (5•~50 trithionate among the products during hy mM) at pH 9 (13 ). After electrophoresis for drogen uptake (Fig. 1B) would be due to the 90 min, gels were transferred to a test tube decrease in sulfite concentration (see below). (7mM in diameter) which contained 5ml of 0.08M Tris-HC1 buffer, pH 7.0, containing 2 mM methyl viologen and 10 mg of sodium dithionite. Approximately 10 mg of either NH2OH • HCl, NaNO2, or NaHSO3 was added to the solution. After several minutes incu bation at room temperature (about 30•Ž), the gels were placed on a glass plate under air and colorless bands in the blue gels appeared. Protein was determined by the method of Lowry et al. (14) or by measuring absorb ance at 280 mp. The factor 0.6 mg protein/ ml for 1 unit of absorbance was used. Fig. 1. Time course of product formation in sulfite RESULTS reduction. Reaction was carried out under the standard conditions except for the amount of sulfite 1. Formation of Trithionate, Thiosulfate (5 ƒÊmoles). Hydroxylapatite fraction (1mg of pro and Sulfide by Sulfite Reductase-Time course tein) was used as the enzyme preparation. A) Hy of product formation in sulfite reduction
Recommended publications
  • Kinetics of Oxidation of Hydrazine & Hydroxylamine by N
    Indian Journal of Chemistry VoL I5A, AUQust 1977, pp. 713-715 Kinetics of Oxidation of Hydrazine & Hydroxylamine by N-Chlorobenzamide B. S. RAWAT & M. C. AGRAWAL Department of Chemistry, Harcourt Butler Technological Institute, Kanpur 208002 Received 16 December 1976; accepted 28 February 1977 The rates of oxidation of hydrazine and hydroxylamine by N-chlorobenzamide (NCB) have been measured in hydrochloric acid media. The reactions follow identical kinetics. being first order each in [NCB]. [H+] and [CI-] and show independent nature to the reducing substrates. Added salt and solvent effects are negligible. Molecular chlorine obtained from the reaction of NCB and HCI has been found to be the effective oxidant. XIDATION of hydrazine- and hydroxylamine- excess of NCB at 40°. The results conformed to by a variety of oxidants in aqueous solutions the reactions (1 and 2), O has been studied. In general, hydrazine is N2H4+2C6HsCONHCI = N2+2C6HsCONH2+2HCl quantitatively converted into nitrogen but other ... (1) products such as ammonia and hydrazoic acid have also been reported. 2NH20H+CaHsCONHCI = N2+C6HsCONH2 It was interesting that the oxidation of hydroxyl- +2H20 +HCl ... (2) amine by ferricyanide" showed a variable stoichio- and are in accord with the results of Singh and metry depending upon the relative concentrations coworkers+ who have experimentally obtained nitro- of the reactants. Both hydrazine and hydroxyl- gen and benzamide as the end-products of the amine were quantitatively estimated in strong acidic reaction. solutions by N-chlorobenzamide4• In this paper the results of the kinetics of oxidation of hydrazine Results and hydroxylamine by N-chlorobenzamide (NCB) Effects of varyi1lg [NeB] and [substrates]- are recorded and a suitable mechanism is proposed.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quédlty of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hemd comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. * 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white stcmdard 35mm slide format.* *For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department. IVBcrofilnis lateniai^oiial 8612390 Lee, Jong-Kwon STRESS CORROSION CRACKING AND PITTING OF SENSITIZED TYPE 304 STAINLESS STEEL IN CHLORIDE SOLUTIONS CONTAINING SULFUR SPECIES AT TEMPERATURES FROM 50 TO 200 DEGREES C The Ohio State University Ph.D.
    [Show full text]
  • Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents
    Novel “Add-On” Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents Haojun Chen*1,2, Orit Jacobson*2, Gang Niu2, Ido D. Weiss3, Dale O. Kiesewetter2, Yi Liu2, Ying Ma2, Hua Wu1, and Xiaoyuan Chen2 1Department of Nuclear Medicine, Xiamen Cancer Hospital of the First Affiliated Hospital of Xiamen University, Xiamen, China; 2Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; and 3Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland One of the major design considerations for a drug is its The goal of drug development is to achieve high activity and pharmacokinetics in the blood. A drug with a short half-life in specificity for a desired biologic target. However, many potential the blood is less available at a target organ. Such a limitation pharmaceuticals that meet these criteria fail as therapeutics because dictates treatment with either high doses or more frequent doses, of unfavorable pharmacokinetics, in particular, rapid blood clearance, both of which may increase the likelihood of undesirable side effects. To address the need for additional methods to improve which prevents the achievement of therapeutic concentrations. For the blood half-life of drugs and molecular imaging agents, we some drugs, the administration of large or frequently repeated doses developed an “add-on” molecule that contains 3 groups: a trun- is required to achieve and maintain therapeutic levels (1) but can, in cated Evans blue dye molecule that binds to albumin with a low turn, increase the probability of undesired side effects.
    [Show full text]
  • Identification and Characterization of Oxalate Oxidoreductase, A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 2010 Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine Pyrophosphate-dependent 2-Oxoacid Oxidoreductase That Enables Anaerobic Growth on Oxalate Elizabeth Pierce University of Michigan, Ann Arbor Donald F. Becker University of Nebraska-Lincoln, [email protected] Stephen W. Ragsdale University of Michigan, Ann Arbor, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons Pierce, Elizabeth; Becker, Donald F.; and Ragsdale, Stephen W., "Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine Pyrophosphate-dependent 2-Oxoacid Oxidoreductase That Enables Anaerobic Growth on Oxalate" (2010). Biochemistry -- Faculty Publications. 179. https://digitalcommons.unl.edu/biochemfacpub/179 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 52, pp. 40515–40524, December 24, 2010 © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine Pyrophosphate-dependent 2-Oxoacid Oxidoreductase That Enables Anaerobic Growth on Oxalate*□S Received for publication, June 17, 2010, and in revised form, October 15, 2010 Published, JBC Papers in Press, October 18, 2010, DOI 10.1074/jbc.M110.155739 Elizabeth Pierce‡, Donald F. Becker§, and Stephen W.
    [Show full text]
  • Efficient Surface Formation Route of Interstellar Hydroxylamine Through NO Hydrogenation II: the Multilayer Regime in Interstellar Relevant Ices
    1 Efficient Surface Formation Route of Interstellar Hydroxylamine through NO Hydrogenation II: the multilayer regime in interstellar relevant ices G. Fedoseev1, a), S. Ioppolo1, ‡, T. Lamberts1, 2, J. F. Zhen1, H. M. Cuppen2, H. Linnartz1 1Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, NL 2300 RA Leiden, The Netherlands 2Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9010, NL 6500 GL Nijmegen, The Netherlands Hydroxylamine (NH2OH) is one of the potential precursors of complex pre-biotic species in space. Here we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. A complex reaction network involving both final (N2O, NH2OH) and intermediate (HNO, NH2O·, etc.) products is discussed. The main conclusion is that hydroxylamine formation takes place via a fast and barrierless mechanism and it is found to be even more abundantly formed in a water-rich environment at lower temperatures. In parallel, we experimentally verify the non-formation of hydroxylamine upon UV photolysis of NO ice at cryogenic temperatures as well as the non-detection of NC- and NCO-bond bearing species after UV processing of NO in carbon monoxide-rich ices. Our results are implemented into an astrochemical reaction model, which shows that NH2OH is abundant in the solid phase under dark molecular cloud conditions. Once NH2OH desorbs from the ice grains, it becomes available to form more complex species (e.g., glycine and β-alanine) in gas phase reaction schemes.
    [Show full text]
  • Caprolactam 99/00-4
    Caprolactam 99/00-4 March 2001 TABLE OF CONTENTS Page I EXECUTIVE SUMMARY - 1 - A. SYNOPSIS - 1 - B. TECHNOLOGY DEVELOPMENTS - 1 - 1. Enhancements to Conventional Technology - 2 - 2. Caprolactam from Alternative Sources - 2 - C. TECHNO-ECONOMICS - 5 - 1. Enhancements to Conventional Technology - 5 - 2. Routes Based on Butadiene - 5 - D. COMMERCIAL STATUS - 8 - 1. Consumption - 8 - 2. Supply/Demand Balance - 9 - 3. Trade - 9 - 4. Ammonium Sulfate - 10 - E. STRATEGIC ISSUES - 12 - 1. Cyclicality - 12 - 2. Nylon Feedstocks from One Source - 13 - F. NYLON RECYCLING - 14 - G. CONCLUSIONS - 15 - II INTRODUCTION - 16 - A. AIM OF THE STUDY - 1 - B. OVERVIEW - 17 - 1. Enhancements to Conventional Technology - 17 - 2. Caprolactam from Alternative Sources - 17 - C. CHEM SYSTEMS PRODUCTION COST METHODOLOGY - 20 - 1. Capital Cost Estimation - 20 - (a) Battery Limits Investment - 20 - (b) Off-Sites Investment - 21 - (c) Contractor Charges(2) Typically 15-25 Percent of Installed BL and OS Costs - 22 - (d) Project Contingency Allowance(2) - 22 - (e) Working Capital - 22 - (f) Other Project Costs(3) - 23 - (1) Start-Up/Commissioning Costs - 23 - (2) Miscellaneous Owner’s Costs - 23 - 2. Cost of Production Elements - 24 - (a) Battery Limits - 24 - (b) Production Costs - 25 - (1) Labor - 25 - TABLE OF CONTENTS (Continued) Page III CAPROLACTAM FROM AROMATIC-DERIVED FEEDSTOCKS - 26 - A. COMMERCIAL TECHNOLOGIES - 26 - 1. Overview - 26 - 2. Process Chemistry - 26 - (a) Cyclohexanone Synthesis - 26 - (b) Oxime Formation with Cyclohexanone Using Hydroxylamine
    [Show full text]
  • Toxicological Profile for Hydrazines. US Department Of
    TOXICOLOGICAL PROFILE FOR HYDRAZINES U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 1997 HYDRAZINES ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. HYDRAZINES iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 HYDRAZINES vii CONTRIBUTORS CHEMICAL MANAGER(S)/AUTHOR(S): Gangadhar Choudhary, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Hugh IIansen, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Steve Donkin, Ph.D. Sciences International, Inc., Alexandria, VA Mr. Christopher Kirman Life Systems, Inc., Cleveland, OH THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 1 . Green Border Review. Green Border review assures the consistency with ATSDR policy. 2 . Health Effects Review. The Health Effects Review Committee examines the health effects chapter of each profile for consistency and accuracy in interpreting health effects and classifying end points. 3. Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to substance-specific minimal risk levels (MRLs), reviews the health effects database of each profile, and makes recommendations for derivation of MRLs. HYDRAZINES ix PEER REVIEW A peer review panel was assembled for hydrazines. The panel consisted of the following members: 1. Dr.
    [Show full text]
  • Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging
    molecules Review Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging Maxime Munch 1,2,*, Benjamin H. Rotstein 1,2 and Gilles Ulrich 3 1 University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada; [email protected] 2 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada 3 Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, École Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, CEDEX 02, 67087 Strasbourg, France; [email protected] * Correspondence: [email protected]; Tel.: +1-613-696-7000 Academic Editor: Emmanuel Gras Received: 30 November 2020; Accepted: 16 December 2020; Published: 21 December 2020 Abstract: Recent progress realized in the development of optical imaging (OPI) probes and devices has made this technique more and more affordable for imaging studies and fluorescence-guided surgery procedures. However, this imaging modality still suffers from a low depth of penetration, thus limiting its use to shallow tissues or endoscopy-based procedures. In contrast, positron emission tomography (PET) presents a high depth of penetration and the resulting signal is less attenuated, allowing for imaging in-depth tissues. Thus, association of these imaging techniques has the potential to push back the limits of each single modality. Recently, several research groups have been involved in the development of radiolabeled fluorophores with the aim of affording dual-mode PET/OPI probes used in preclinical imaging studies of diverse pathological conditions such as cancer, Alzheimer’s disease, or cardiovascular diseases. Among all the available PET-active radionuclides, 18F stands out as the most widely used for clinical imaging thanks to its advantageous characteristics (t1/2 = 109.77 min; 97% β+ emitter).
    [Show full text]
  • Brearley, Francis Q. Thomas, Andrew D-Land
    Land-use Change Impacts on Soil Processes Tropical and Savannah Ecosystems Land-use Change Impacts on Soil Processes Tropical and Savannah Ecosystems Edited by Francis Q. Brearley Manchester Metropolitan University and Andrew D. Thomas Aberystwyth University CABI is a trading name of CAB International CABI CABI Nosworthy Way 745 Atlantic Avenue Wallingford 8th Floor Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 682 9015 Fax: +44 (0)1491 833508 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CAB International 2015. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Land-use change impacts on soil processes : tropical and savannah ecosystems / edited by Francis Q. Brearley, Manchester Metropolitan University; and Andrew D. Thomas, Aberystwyth University. pages cm Includes bibliographical references and index. ISBN 978-1-78064-210-9 (hbk : alk. paper) 1. Soils--Environmental aspects--Case studies. 2. Land use--Environmental aspects--Case studies. 3. Soil ecology--Case studies. I. Brearley, Francis Q., editor. II. Thomas, Andrew D. (Andrew David), 1970- editor. III. Title: Land use change impacts on soil processes. S596.L36 2015 577.5’7--dc23 2015021721 ISBN-13: 978 1 78064 210 9 Commissioning editors: Vicki Bonham and Nicki Dennis Editorial assistant: Emma McCann Production editors: Tracy Head and Emma Ross Typeset by SPi, Pondicherry, India.
    [Show full text]
  • Sulfate-Reducing Bacteria in Anaerobic Bioreactors Are Presented in Table 1
    Sulfate-reducing Bacteria inAnaerobi c Bioreactors Stefanie J.W.H. Oude Elferink Promotoren: dr. ir. G. Lettinga bijzonder hoogleraar ind eanaërobisch e zuiveringstechnologie en hergebruik dr. W.M. deVo s hoogleraar ind e microbiologie Co-promotor: dr. ir. AJ.M. Stams universitair docent bij deleerstoelgroe p microbiologie ^OSJO^-M'3^- Stefanie J.W.H.Oud eElferin k Sulfate-reducing Bacteria inAnaerobi c Bioreactors Proefschrift terverkrijgin g van degraa d van doctor op gezag van derecto r magnificus van deLandbouwuniversitei t Wageningen, dr. C.M. Karssen, inhe t openbaar te verdedigen opvrijda g 22me i 1998 des namiddags tehal f twee ind eAula . r.r, A tri ISBN 90 5485 8451 The research described inthi s thesiswa s financially supported by agran t ofth e Innovative Oriented Program (IOP) Committee on Environmental Biotechnology (IOP-m 90209) established by the Dutch Ministry of Economics, and a grant from Pâques BV. Environmental Technology, P.O. Box 52, 8560AB ,Balk , TheNetherlands . BIBLIOTHEEK LANDBOUWUNIVERSITEIT WAGENTNGEN 1 (J ÜOB^ . ^3"£ Stellingen 1. Inhu n lijst van mogelijke scenario's voor de anaërobe afbraak van propionaat onder sulfaatrijke condities vergeten Uberoi enBhattachary a het scenario dat ind e anaërobe waterzuiveringsreactor van depapierfabrie k teEerbee k lijkt opt etreden , namelijk de afbraak vanpropionaa t door syntrofen en sulfaatreduceerders end e afbraak van acetaat en waterstof door sulfaatreduceerders en methanogenen. Ditproefschrift, hoofdstuk 7 UberoiV, Bhattacharya SK (1995)Interactions among sulfate reducers, acetogens, and methanogens in anaerobicpropionate systems. 2. De stelling van McCartney en Oleszkiewicz dat sulfaatreduceerders inanaërob e reactoren waarschijnlijk alleen competerenme t methanogenen voor het aanwezige waterstof, omdat acetaatafbrekende sulfaatreduceerders nog nooit uit anaëroob slib waren geïsoleerd, was correct bij indiening, maar achterhaald bij publicatie.
    [Show full text]
  • Hydroxylamines and Hydrazines As Surrogates of Sp3 Carbons in Medicinal Chemistry
    Wayne State University Wayne State University Dissertations January 2018 Hydroxylamines And Hydrazines As Surrogates Of Sp3 Carbons In Medicinal Chemistry Sandeep Dhanju Wayne State University, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Chemistry Commons Recommended Citation Dhanju, Sandeep, "Hydroxylamines And Hydrazines As Surrogates Of Sp3 Carbons In Medicinal Chemistry" (2018). Wayne State University Dissertations. 2156. https://digitalcommons.wayne.edu/oa_dissertations/2156 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. HYDROXYLAMINES AND HYDRAZINES AS SURROGATES OF SP3 CARBONS IN MEDICINAL CHEMISTRY by SANDEEP DHANJU DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2019 MAJOR: CHEMISTRY (Organic) Approved By: Advisor Date DEDICATION I dedicate my PhD work to my parents Sanubhai Shrestha and Punamaya Dhanju, for their endless love and support. ii ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my Ph.D. advisor Prof. David Crich for his incessant support and guidance for my Ph.D. research work during the past five years in his laboratory. I am grateful and fortunate to be one of his graduate students. His encouragement and motivation drove me to the end of this thesis, and I was able to develop an in-depth knowledge and enthusiasm in the areas of organic chemistry and medicinal chemistry. I would like to extend my gratitude to Prof.
    [Show full text]
  • The Reaction Mechanism of Acetaldehyde Ammoximation to Its Oxime in the TS-1/H2O2 System
    catalysts Article The Reaction Mechanism of Acetaldehyde Ammoximation to Its Oxime in the TS-1/H2O2 System Chaoqun Meng 1,2, Suohe Yang 1, Guangxiang He 1, Guohua Luo 1, Xin Xu 1 and Haibo Jin 1,* 1 Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; [email protected] (C.M.); [email protected] (S.Y.); [email protected] (G.H.); [email protected] (G.L.); [email protected] (X.X.) 2 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China * Correspondence: [email protected]; Tel.: +86-184-1822-9069 Academic Editor: Keith Hohn Received: 11 May 2016; Accepted: 16 July 2016; Published: 22 July 2016 Abstract: A qualitative analysis for the ammoximation of acetaldehyde to its oxime in the TS-1(Titanium Silicalite-1)/H2O2 system was investigated using an in situ infrared spectrometer (ReactIR15). NH3 is first oxidized to NH2OH by TS-1/H2O2; then, CH3CH=NOH forms after NH2OH reacts with CH3CHO. That means the intermediate of this reaction is NH2OH instead of CH3CH=NH. Experiments have been conducted to verify the mechanism, and the results are in good agreement with the infrared findings. Keywords: TS-1; H2O2; ReactIR15; ammoximation; acetaldehyde 1. Introduction Acetaldoxime is one of the simplest oxime-containing compounds, and it has a wide variety of uses in chemical synthesis processes as an important intermediate [1,2]. It is especially notable for its commercial application as an intermediate in the production of pesticides and cyanogenic glucosides [3] or as boiler chemicals to remove oxygen with its limited toxicity and strong reduction [2].
    [Show full text]