Diversity, Evolution, and Distribution of Selected African Rodents, with Focus on East African Savannahs

Total Page:16

File Type:pdf, Size:1020Kb

Diversity, Evolution, and Distribution of Selected African Rodents, with Focus on East African Savannahs School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science Diversity, evolution, and distribution of selected African rodents, with focus on East African savannahs Ph.D. Thesis Mgr. Vladimír Mazoch Supervisor: doc. Mgr. Radim Šumbera, Ph.D. Institute of Zoology, University of South Bohemia, České Budějovice, the Czech Republic Co-supervisor: doc. Mgr. et Mgr. Josef Bryja Ph.D. Institute of Vertebrate Biology, the Czech Academy of Sciences, Brno, the Czech Republic České Budějovice 2018 This thesis should be cited as: Mazoch, V., 2018: Diversity, evolution, and distribution of selected African rodents, with focus on East African savannahs. Ph.D. Thesis Series, No. 13. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 117 pp. Annotation The thesis describes genetic diversity and phylogeography in several species of African rodents. It examines cryptic diversity, origin of these taxa together with colonization routes, refugia, barriers to gene flow and other historical factors influencing their current geographical distribution. Molecular genetic analyses detected considerably higher diversity of small mammals than previously expected. Several candidates for new species have been suggested and many new localities for known species have been discovered. Observed phylogeographic structure revealed geographical barriers to gene flow and current contact zones between neighboring taxonomical units (Zambezi-Kafue river system, Rukwa Rift, Eastern Arc Mountains, Limpopo river valley, etc.). Molecular dating, evidence for expansion and contraction of population size, and species distribution modeling suggest connection of main lineage splits with rapid fluctuations in forest/savanna biomes during the Late Pleistocene. Declaration [in Czech] Prohlašuji, že svoji disertační práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své disertační práce, a to v úpravě vzniklé vypuštěním vyznačených částí archivovaných Přírodovědeckou fakultou elektronickou cestou ve veřejně přístupné části database STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce. Souhlasím dále s tím, aby toutéž elektronickou cestou byly v souladu s uvedeným ustanovením zákona č. 111/1998 Sb. zveřejněny posudky školitele a oponentů práce i záznam o průběhu a výsledku obhajoby kvalifikační práce. Rovněž souhlasím s porovnáním textu mé kvalifikační práce s databází kvalifikačních prací Theses.cz provozovanou Národním registrem vysokoškolských kvalifikačních prací a systémem na odhalování plagiátů, provozovanou Národním registrem vysokoškolských kvalifikačních prací a systémem na odhalování plagiátů. České Budějovice, ....................... …….…….….…………………………… Mgr. Vladimír Mazoch……. This thesis originated from a partnership of Faculty of Science, University of South Bohemia; and Institute of Vertebrate Biology, Czech Academy of Sciences. Financial support This thesis was financially supported by the projects of the Czech Science Foundation, nos. P506/10/0983 and 15-20229S. Acknowledgements The completion of this thesis could not have been possible without the support, assistance, and patience of many people who have accompanied me in recent years as I have worked on this thesis. To all of them, whose names are to be listed here, I wish to express my sincere thanks. I would like to express my gratitude to my supervisor Radim Šumbera for professional guidance, encouragement, and advice he has provided throughout my time as his student, to Pepa Bryja and Ondra Mikula for their constructive suggestions and insightful comments during the writing of the manuscript. I wish to thank to my friend and colleague Hana Konvičková for introduction to lab work and phylogenetic analyses. I am thankful to Molly McDonough and Sophie Gryseels for providing me an opportunity to work with them on their respective manuscripts. I would like to thank my fellow doctoral students Mates Lövy, Honza Šklíba, Ema Hrouzková, Honza Zima, Ondra Kott, Džája Smiešková, Táňa Aghová, and once again Sophie for their feedback, cooperation, and of course friendship, especially during field expeditions. Field work would not be possible without our local colleagues, namely Yonas Meheretu, Kiros Welegerima, Abdul Katakweba, and Ramos Tseu. All of them and many others were not only great field workers but provided many valuable advices during writing of the manuscripts. A very special gratitude goes out to teachers and staff at the University of South Bohemia and Research Facility of Institute of Vertebrate Biology in Studenec for providing fascinating lectures and access to the laboratory and research facilities. I am also grateful to my significant other, my family, and friends for their support and encouragement throughout my prolonged studies. List of papers and author’s contributions The thesis is based on the following papers: I. Mazoch V., Mikula O., Bryja J., Konvičková H., Russo I. R., Verheyen E. & Šumbera R. (2018). Phylogeography of a widespread sub-Saharan murid rodent Aethomys chrysophilus: the role of geographic barriers and paleoclimate in the Zambezian bioregion. Mammalia, 82(4), 373-387. (IF 2017 = 0.714). Vladimír Mazoch (VM) provided, together with Josef Bryja and Radim Šumbera, substantial contribution to conception and design of the manuscript, drafted first version of the manuscript to the coauthors, revised critically important content, performed laboratory work, collaborate on statistical analysis, and contributed to field work. II. McDonough M. M., Šumbera R., Mazoch V., Ferguson A. W., Phillips C. D., & Bryja J. (2015). Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region. Molecular Ecology, 24(20), 5248-5266. (IF 2017 = 6.131). VM was involved in data collection, ecological niche modelling analysis and interpretation, and provided a revision of the manuscript. III. Bryja J., Mikula O., Šumbera R., Meheretu Y., Aghová T., Lavrenchenko L. A., Mazoch V., Oguge N., Mbau J. S., Welegerima K., Amundala N., Colyn M., Leirs H. & Verheyen E. (2014). Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evolutionary Biology, 14(1), 256. (IF 2017 = 3.027). VM contributed to data analyses, fieldwork, and contributed to writing of the manuscript. IV. Bryja J., Mazoch V., Patzenhauerová H., Mateke C., Zima J. Jr, Šklíba J. & Šumbera R. (2012). Revised occurrence of rodents from the tribe Praomyini (Muridae) in Zambia based on mitochondrial DNA analyses: implications for biogeography and conservation. Folia Zoologica, 61(3/4), 268-283. (IF 2017 = 0.467). VM performed laboratory work, contributed to preparation, analysis of the dataset, manuscript editing, and manuscript review. Content General Introduction ..................................................................... 1 1. Introduction ............................................................................... 2 1.1. General background ................................................................. 2 1.2. East(ern) Africa ........................................................................ 3 1.3. The East African Rift System ................................................ 6 1.4. Climatic fluctuations ................................................................ 8 1.5. Rivers, lakes, and drainage evolution .................................. 10 1.6. Vegetation history of East Africa ........................................ 12 1.7. Small mammals as models for phylogeographic studies .... 15 1.8. The practical importance of understanding diversity and phylogeography of East African rodents ..................... 18 2. Aims and scope of the thesis .................................................... 21 3. References ................................................................................ 22 Chapter I. Phylogeography of a widespread sub-Saharan murid rodent Aethomys chrysophilus: the role of geographic barriers and paleoclimate in the Zambezian bioregion. ......................... 33 Chapter II. Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region. ....................................................................... 49 Chapter III. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. ................................................................ 69 Chapter IV. Revised occurrence of rodents from the tribe Praomyini (Muridae) in Zambia based on mitochondrial DNA analyses: implications for biogeography and conservation. ........................................................................... 91 Conclusion and future perspective ............................................. 109 Appendix ................................................................................... 115 GENERAL INTRODUCTION 1. Introduction 1.1. General background An ongoing boom in studies combining molecular genetics and geographical data provides a capable tool for the understanding
Recommended publications
  • Linking Behavior, Co-Infection Patterns, and Viral Infection Risk with the Whole Gastrointestinal Helminth Community Structure in Mastomys Natalensis
    ORIGINAL RESEARCH published: 17 August 2021 doi: 10.3389/fvets.2021.669058 Linking Behavior, Co-infection Patterns, and Viral Infection Risk With the Whole Gastrointestinal Helminth Community Structure in Mastomys natalensis Bram Vanden Broecke 1*, Lisse Bernaerts 1, Alexis Ribas 2, Vincent Sluydts 1, Ladslaus Mnyone 3, Erik Matthysen 1 and Herwig Leirs 1 1 Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium, 2 Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, IRBio (Research Institute of Biodiversity), University of Barcelona, Barcelona, Spain, 3 Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania Edited by: Yadong Zheng, Infection probability, load, and community structure of helminths varies strongly between Lanzhou Institute of Veterinary and within animal populations. This can be ascribed to environmental stochasticity Research (CAAS), China or due to individual characteristics of the host such as their age or sex. Other, but Reviewed by: Mario Garrido, understudied, factors are the hosts’ behavior and co-infection patterns. In this study, we Ben-Gurion University of the used the multimammate mouse (Mastomys natalensis) as a model system to investigate Negev, Israel Si-Yang Huang, how the hosts’ sex, age, exploration behavior, and viral infection history affects their Yangzhou University, China infection risk, parasitic load, and community structure of gastrointestinal helminths. We Hannah Rose Vineer, hypothesized that the hosts’ exploration behavior would play a key role in the risk for University of Liverpool, United Kingdom infection by different gastrointestinal helminths, whereby highly explorative individuals *Correspondence: would have a higher infection risk leading to a wider diversity of helminths and a larger Bram Vanden Broecke load compared to less explorative individuals.
    [Show full text]
  • East Melanesian Islands Biodiversity Hotspot
    Ecosystem Profile East Melanesian Islands Biodiversity Hotspot FINAL VERSION DECEMBER 2012 Prepared by: University of the South Pacific in collaboration with: Conservation International University of Papua New Guinea on behalf of: Critical Ecosystem Partnership Fund Drafted by the ecosystem profiling team: Bill Aalbersberg Michael Avosa Roger James Chalapan Kaluwin Paul Lokani Job Opu Suliana Siwatibau Marika Tuiwawa Hilda Waqa-Sakiti Andrew W. Tordoff Assisted by the following experts and contributors: Lawrence Abage Nathos Beach Club, New Ireland, Papua New Guinea Michael Aigro University of Papua New Guinea Julia Aimaea Ministry of Forests and Research, Papua New Guinea Cosmos Akong Whiteman Range, West New Britain, Papua New Guinea Philemon Ala Forestry Department, Vanuatu Freddie Alei University of Papua New Guinea Lui Allick Tafea Provincial Government, Vanuatu Jason Alonk University of Papua New Guinea Alwin Amat University of Papua New Guinea Jeane Amos Raura Manager, New Ireland, Papua New Guinea Lazarus Amos Samna Provincial Government, Vanuatu Philip Anacleti Department of Environment and Conservation, Vanuatu Ramokasa Anisi University of the South Pacific, Solomon Islands Bill Apusae Live and Learn, Solomon Islands Troy Apusae Solomon Islands College of Higher Education Philip Arul University of Papua New Guinea ii Andrew Assman University of Papua New Guinea James Atherton independent consultant, Samoa Gabriel Bata Kilu Locally Managed Marine Area, West New Britain, Papua New Guinea Bradley Ben Aua Wuvulu, Manus, Papua New
    [Show full text]
  • Diet and Microhabitat Use of the Woodland Dormouse Graphiurus Murinus at the Great Fish River Reserve, Eastern Cape, South Africa
    Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve, Eastern Cape, South Africa by Siviwe Lamani A dissertation submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE (ZOOLOGY) in the Faculty of Science and Agriculture at the University of Fort Hare 2014 Supervisor: Ms Zimkitha Madikiza Co-supervisor: Prof. Emmanuel Do Linh San DECLARATION I Siviwe Lamani , student number 200604535 hereby declare that this dissertation titled “Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve , Eastern Cape, South Africa” submitted for the award of the Master of Science degree in Zoology at the University of Fort Hare, is my own work that has never been submitted for any other degree at this university or any other university. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on plagiarism and I have taken every precaution on complying with the regulations. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on research ethics and have taken every precaution to comply with the regulations. The data presented in this dissertation were obtained in the framework of another project that was approved by the University Ethics committee on 31 May 2013 and is covered by the ethical clearance certificate # SAN05 1SGB02. Signature: ii SUPERVISOR’S FOREWORD The format of this Master’s dissertation (abstract, general introduction and two independent papers) has been chosen with two purposes in mind: first, to train the MSc candidate to the writing of scientific papers, and second, to secure and allow for a quicker dissemination of the scientific knowledge.
    [Show full text]
  • Review of the Hylomyscus Denniae Group (Rodentia: Muridae) in Eastern Africa, with Comments on the Generic Allocation of Epimys Endorobae Heller
    PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 119(2):293–325. 2006. Review of the Hylomyscus denniae group (Rodentia: Muridae) in eastern Africa, with comments on the generic allocation of Epimys endorobae Heller Michael D. Carleton, Julian C. Kerbis Peterhans, and William T. Stanley (MDC) Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0108, U.S.A., e-mail: [email protected]; (JKP) University College, Roosevelt University, Chicago, Illinois 60605, U.S.A.; Department of Zoology, Division of Mammals, The Field Museum of Natural History, Chicago, Illinois 60605, U.S.A., e-mail: [email protected]; (WTS) Department of Zoology, Division of Mammals, The Field Museum of Natural History, Chicago, Illinois 60605, U.S.A., e-mail: [email protected] Abstract.—The status and distribution of eastern African populations currently assigned to Hylomyscus denniae are reviewed based on morpho- logical and morphometric comparisons. Three species are considered valid, each confined largely to wet montane forest above 2000 meters: H. denniae (Thomas, 1906) proper from the Ruwenzori Mountains in the northern Albertine Rift (west-central Uganda and contiguous D. R. Congo); H. vulcanorum Lo¨nnberg & Gyldenstolpe, 1925 from mountains in the central Albertine Rift (southwestern Uganda, easternmost D. R. Congo, Rwanda, and Burundi); and H. endorobae (Heller, 1910) from mountains bounding the Gregory Rift Valley (west-central Kenya). Although endorobae has been interpreted as a small form of Praomys, additional data are presented that reinforce its membership within Hylomyscus and that clarify the status of Hylomyscus and Praomys as distinct genus-group taxa. The 12 species of Hylomyscus now currently recognized are provisionally arranged in six species groups (H.
    [Show full text]
  • Establishment of a Genetically Confirmed Breeding Colony of Mastomys Natalensis from Wild-Caught Founders from West Africa
    viruses Article Establishment of a Genetically Confirmed Breeding Colony of Mastomys natalensis from Wild-Caught Founders from West Africa David Safronetz 1,*,†, Kyle Rosenke 1, Robert J. Fischer 2,‡, Rachel A. LaCasse 3, Dana P. Scott 3, Greg Saturday 3, Patrick W. Hanley 3, Ousmane Maiga 4, Nafomon Sogoba 4, Tom G. Schwan 2 and Heinz Feldmann 1,* 1 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] 2 Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; fi[email protected] (R.J.F.); [email protected] (T.G.S.) 3 Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (R.A.L.); [email protected] (D.P.S.); [email protected] (G.S.); [email protected] (P.W.H.) 4 International Center for Excellence in Research (ICER-Mali), Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali; [email protected] (O.M.); [email protected] (N.S.) * Correspondence: [email protected] (D.S.); [email protected] (H.F.) † Current address: Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada. Citation: Safronetz, D.; Rosenke, K.; ‡ Current Address: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy Fischer, R.J.; LaCasse, R.A.; Scott, D.P.; and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
    [Show full text]
  • Mouse Models of Human Disease an Evolutionary Perspective Robert L
    170 commentary Evolution, Medicine, and Public Health [2016] pp. 170–176 doi:10.1093/emph/eow014 Mouse models of human disease An evolutionary perspective Robert L. Perlman* Department of Pediatrics, The University of Chicago, 5841 S. Maryland Ave, MC 5058, Chicago, IL 60637, USA *E-mail: [email protected] Received 31 December 2015; revised version accepted 12 April 2016 ABSTRACT The use of mice as model organisms to study human biology is predicated on the genetic and physio- logical similarities between the species. Nonetheless, mice and humans have evolved in and become adapted to different environments and so, despite their phylogenetic relatedness, they have become very different organisms. Mice often respond to experimental interventions in ways that differ strikingly from humans. Mice are invaluable for studying biological processes that have been conserved during the evolution of the rodent and primate lineages and for investigating the developmental mechanisms by which the conserved mammalian genome gives rise to a variety of different species. Mice are less reliable as models of human disease, however, because the networks linking genes to disease are likely to differ between the two species. The use of mice in biomedical research needs to take account of the evolved differences as well as the similarities between mice and humans. KEYWORDS: allometry; cancer; gene networks; life history; model organisms transgenic, knockout, and knockin mice, have If you have cancer and you are a mouse, we can provided added impetus and powerful tools for take good care of you. Judah Folkman [1] mouse research, and have led to a dramatic increase in the use of mice as model organisms.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Laboratory Animal Management: Rodents
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/2119 SHARE Rodents (1996) DETAILS 180 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-04936-8 | DOI 10.17226/2119 CONTRIBUTORS GET THIS BOOK Committee on Rodents, Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council FIND RELATED TITLES SUGGESTED CITATION National Research Council 1996. Rodents. Washington, DC: The National Academies Press. https://doi.org/10.17226/2119. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Rodents i Laboratory Animal Management Rodents Committee on Rodents Institute of Laboratory Animal Resources Commission on Life Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C.1996 Copyright National Academy of Sciences. All rights reserved. Rodents ii National Academy Press 2101 Constitution Avenue, N.W. Washington, D.C. 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • Species List: Mammals
    Appendix 10 - Species list: Mammals Mammal species recorded in the Garden Route National Park. Sources: Crawford (1981 & 1982); De Graaff (1974); Grindley (1985). Hanekom et al. (1987); Hanekom unpubl.; Hanekom & Bower (1992); Herzig-Straschil & Robison (1978); McIlleron (2002); Pretorius et al. (1980); Riley unpubl.; Robinson (1976); SANParks unpublished data; Von Breitenbach (1974); Whitfield et al. (1983); Species numbers follow Skinner & Chimimba (2005). * Alien species not indigenous to South Africa No. Scientific Name Common Name CHRYSOCHLORIDAE 9 Chlorotalpa duthieae Duthie’s golden mole 14 Amblysomus corriae (iris) Fynbos (Zulu) golden mole ORYCTEROPODIDAE 27 Orycterus afer Aardvark PROCARVIIDAE 28 Procavia capensis Rock hyrax ELEPHANTIDAE 31 Loxodonta africana African savannah elephant LEPORIDAE 34 Lepus saxatilis Scrub hare BATHYERGIDAE 40 Bathyergus suillus Cape dune molerat 42 Cryptomys hottentotus African molerat 45 Georychus capensis Cape molerat HYSTRICIDAE 46 Hystrix africaeaustralis Cape porcupine MYOXIDAE 57 Graphiurus ocularis Spectacled dormouse 59 Graphiurus murinus Woodland dormouse MURIDAE 62 Acomys subspinosus Cape spiny mouse 65 Rhabdomys pumilio Four-striped grass mouse 73 Grammomys dolichurus Woodland thicket rat 79 Mus minutoides Pygmy mouse 82 Mastomys natalensis Natal multimammate mouse 85 Myomyscus verreauxii Verreaux’s mouse Rattus rattus* Black rat Rattus norvegicus* Brown rat 98 Otomys irroratus Vlei rat 116 Dendromus mesomelas Brant's climbing mouse 117 Dendromus mystacalis Chestnut climbing mouse CERCOPITHECIDAE
    [Show full text]
  • Dispersal of Semi-Fleshy Fruits to Rock Crevices by a Rock-Restricted Rodent
    Research Letter Page 1 of 5 Dispersal of semi-fleshy fruits to rock crevices by a AUTHORS: rock-restricted rodent Joseph D.M. White1 Jeremy J. Midgley1 Seed dispersal allows successive generations of plants to be mobile in space and time. Heeria argentea’s AFFILIATION: unusual fruit and its ubiquity in extremely rocky habitats, suggests that this tree requires a specialist 1 Department of Biological disperser. We therefore investigated the dispersal ecology of H. argentea and Hartogiella schinoides. Sciences, University of Cape Town, Cape Town, We found M. namaquensis rapidly removed H. argentea and H. schinoides fruits, moving them short South Africa distances within and between rock outcrops, and consumed only the pericarps. Birds were observed consuming H. schinoides, but not H. argentea fruits, suggesting M. namaquensis is its sole, specialist CORRESPONDENCE TO: disperser. Most H. argentea seeds (65%) with removed pericarps germinated successfully, while intact Joseph White fruits did not. We show rock outcrops represent fire refugia, allowing H. argentea trees to grow to large sizes, with small stems and a co-occurring, wind-dispersed tree, Widdringtonia nodiflora found away EMAIL: [email protected] from these sites. This rodent–tree mutualism is perhaps the clearest global example of directed dispersal and shows that these endemic trees are highly adapted for survival in the southwestern Cape habitat and DATES: are not tropical relicts. Received: 16 May 2017 Revised: 11 Sep. 2017 Significance: Accepted: 12 Oct. 2017 • The fruits of rock-restricted Cape trees are directly dispersed by rock rats to rock outcrops. This is the first description of rodent dispersal of fleshy fruits in South Africa.
    [Show full text]
  • A Haplotype Map for the Laboratory Mouse
    NEWS AND VIEWS Sample size dictates inference dogma collection, rather than to data generation or ent experimental approaches provides insight The technical revolution that made the cur- analysis. The open question is whether the com- into mechanism and helps specify the genetic rent data boom possible has matured; genetics munity of funding agencies, peer reviewers and model. In fact, genomic convergence is a spe- laboratories now routinely generate millions of regulatory bodies will be prepared to encourage cific embodiment of the concept of ‘consilience genotypes per day. However, more data can be a and support the assembly of subjects and mate- of inductions’, formulated by William Whewell problem when we do not have the discipline to rials needed to accomplish these goals. in the 1840s11, which says that valid inductions apply the scientific method. Replication is also will be supported by data from many different a problem when working with effects so small Candidate gene success experimental approaches. that replication success could not be reasonably Rather than being discovered initially through a Although they benefit greatly from the expected, even if the marker is associated with genome-wide scan of hundreds of thousands of impressive acceleration provided by genome- the disease. genetic markers, which is now the rage, IL7R is wide scans, virtually all genetic association Larger sample size is the mantra of the hour. a candidate gene that refused to quit. Certainly, disease studies ultimately become candidate Experimentalists and funding agencies no longer the first paper on IL7R polymorphisms in mul- gene projects. Additional susceptibility genes in scoff at theoretical analyses showing that thou- tiple sclerosis7 would not have satisfied the strin- multiple sclerosis—siblings of HLA-DRB2, IL7R sands of cases and controls are needed to dem- gent replication criteria advocated by a recent and, probably, IL2RA4—might now stand above onstrate modest genetic associations (Fig.
    [Show full text]