Cobalt(II)-Mediated Alternating Radical Copolymerization of Tert-Butyl 2-Trifluoromethylacrylate with Vinyl Acetate

Total Page:16

File Type:pdf, Size:1020Kb

Cobalt(II)-Mediated Alternating Radical Copolymerization of Tert-Butyl 2-Trifluoromethylacrylate with Vinyl Acetate polymers Article Bis(formylphenolato)cobalt(II)-Mediated Alternating Radical Copolymerization of tert-Butyl 2-Trifluoromethylacrylate with Vinyl Acetate Sanjib Banerjee 1,† ID , Ekaterina V. Bellan 2, Florence Gayet 2, Antoine Debuigne 3, Christophe Detrembleur 3, Rinaldo Poli 2,4,* ID , Bruno Améduri 1 ID and Vincent Ladmiral 1,* ID 1 Institut Charles Gerhardt Montpellier, University of Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France; [email protected] (S.B.); [email protected] (B.A.) 2 Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, CNRS, UPS, INPT, 205 route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France; [email protected] (E.V.B.); fl[email protected] (F.G.) 3 Center for Education and Research on Macromolecules (CERM), University of Liege, CESAM Research Unit, Sart-Tilman B6a, 4000 Liege, Belgium; [email protected] (A.D.); [email protected] (C.D.) 4 Institut Universitaire de France, 1, rue Descartes, 75231 Paris CEDEX 05, France * Correspondence: [email protected] (R.P.); [email protected] (V.L.) † Present address: Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India. Received: 7 November 2017; Accepted: 7 December 2017; Published: 12 December 2017 Abstract: The organometallic-mediated radical polymerization (OMRP) of vinyl acetate (VAc) and its OMR copolymerization (OMRcoP) with tert-butyl 2-trifluoromethylacrylate (MAF-TBE) mediated by Co(SAL)2 (SAL = 2-formylphenolato or deprotonated salicylaldehyde) produced relatively well-defined PVAc and poly(VAc-alt-MAF-TBE) copolymers at moderate temperature (<40 ◦C) in bulk. The resulting alternating copolymer was characterized by 1H-, 13C- and 19F-nuclear magnetic resonance (NMR) spectroscopies, and by size exclusion chromatography. The linear first-order kinetic plot, the linear evolutions of the molar mass with total monomer conversion, and the relatively low dispersity (Đ~1.55) of the resulting copolymers suggest that this cobalt complex provides some degree of control over the copolymerization of VAc and MAF-TBE. Compared to the previously investigated cobalt complex OMRP mediators having a fully oxygen-based first coordination sphere, this study emphasizes a few peculiarities of Co(SAL)2: a lower ability to trap radical chains as compared to Co(acac)2 and the absence of catalytic chain transfer reactions, which dominates polymerizations carried in the presence of 9-oxyphenalenone cobalt derivative. Keywords: alternating copolymers; cobalt complex; fluoropolymer; organometallic mediated radical polymerization; poly(vinyl acetate) 1. Introduction Fluoropolymers are unique materials, exhibiting outstanding properties, suitable for high-value added applications [1,2]. The incorporation of sequences of these polymers into a di- or multi-block [3] polymer architectures could lead to interesting materials of even greater value. Extensive research and development of different reversible deactivation radical polymerization (RDRP) techniques over the last two decades has enabled the facile synthesis of macromolecules with a high degree of complexity and well-defined architectures [4,5]. Although nitroxide-mediated radical polymerization (NMP) [6], atom transfer radical polymerization (ATRP) [7], iodine-transfer polymerization (ITP) [8–10] and reversible addition-fragmentation chain transfer (RAFT) polymerization [11–15] have been comparatively more studied, organometallic-mediated radical polymerization (OMRP) [16–20] has Polymers 2017, 9, 702; doi:10.3390/polym9120702 www.mdpi.com/journal/polymers Polymers 2017, 9, 702 2 of 11 Polymers 2017, 9, 702 2 of 11 polymerization [11–15] have been comparatively more studied, organometallic-mediated radical polymerization (OMRP) [16–20] has recently emerged as a potent RDRP technique for the recentlypolymerization emerged of as “less a potent activated RDRP monomers” technique for(LAMs) the polymerization, such as vinyl ofimidazolium “less activated salts monomers” [21,22] or (LAMs),vinyl amides such (such as vinyl as vinyl imidazolium pyrrolidone) salts [[23]21,22. Indeed,] or vinyl for amides these more (such difficult as vinyl monomers pyrrolidone), OMRP [23]. Indeed,and, in particular for these, morecobalt- difficultmediated monomers, radical polymerization OMRP and, (CMRP) in particular, [24] has cobalt-mediated proven very efficient, radical polymerizationopening synthetic (CMRP) routes [for24] homopolymers has proven very and efficient, block copolymers opening synthetic that could routes only for be homopolymers prepared with anda lower block level copolymers of control that or couldnot at only all by be preparedother RDRP with techniques. a lower level The of technique control or was not atpioneered all by other by RDRPWayland techniques. et al. [25] The using technique tetramesitylporphyrin was pioneered by for Wayland the controlled et al. [25 p]olymerization using tetramesitylporphyrin of acrylates, and for thesince controlled then several polymerization other CoII complexes of acrylates, with and different since then donor several atom other combinations CoII complexes and withcoordination different donorgeometries atom have combinations been reported. and coordination However, geometriesthe controlled have polymerization been reported. However,of LAMs theseems controlled so far polymerizationrestricted to complexes of LAMs seemssupported so far restrictedby chelating to complexes oxygen- supportedbased ligands, by chelating like the oxygen-based archetypic ligands,bis(acety likelacetonate)cobalt(II) the archetypic bis(acetylacetonate)cobalt(II) complex, Co(acac)2 (1a), first complex,introduced Co(acac) by Debuigne2 (1a), et first al. introduced[26] for the bycontrolled Debuigne polymerization et al. [26] for of the vinyl controlled acetate polymerization (VAc). To the ofbest vinyl of our acetate knowledge, (VAc). To investigations the best of our of knowledge,other CoII complexes investigations entirely of other supported CoII complexes by oxygen entirely atoms supportedin OMRP byhas oxygen, so far, atoms been limited in OMRP to has,the so1,1,1 far,-trifluoro been limited- and to the1,1,1,5,5,5 1,1,1-trifluoro--hexafluoropentan and 1,1,1,5,5,5-hexafluoropentan-2,4-dionates-2,4-dionates (1b and 1c) (1b[27]and, to1c )[27the], to2,2,6,6 the 2,2,6,6-tetramethylheptan-3,5-dionate-tetramethylheptan-3,5-dionate (1d) ([28]1d)[ and28] andto the to the 9-oxyphenalenone 9-oxyphenalenone derivative derivative ( (22))[ [29]29] (Scheme(Scheme1 1).). Scheme 1.1. SchematicSchematic representationsrepresentations of of the the cobalt(II) cobalt(II) complexes: complexes: bis(acetylacetonato)cobalt(II) bis(acetylacetonato)cobalt(II) (1a );(1a bis); (1,1,1-trifluoro-acetylacetonato)cobalt(II)bis (1,1,1-trifluoro-acetylacetonato)cobalt(II) (1b); bis(1,1,1,5,5,5-hexafluoropentan-2,4-dionato)-cobalt(II)(1b); bis(1,1,1,5,5,5-hexafluoropentan-2,4-dionato)- (cobalt(II)1c); bis(2,2,6,6-tetramethylheptan-3,5-dionato)cobalt(II) (1c); bis(2,2,6,6-tetramethylheptan-3,5-dionato)cobalt(II) (1d); bis(9-oxyphenalenonato)-cobalt(II) (1d); bis(9-oxyphenalenonato) (2),- and;cobalt(II) bis(2-formylphenolato)cobalt(II) (2), and; bis(2-formylphenolato)cobalt(II) (3). (3). We areare interestedinterested inin expandingexpanding thethe availableavailable arrayarray ofof cobalt(II)cobalt(II) complexescomplexes asas OMRPOMRP mediatorsmediators and toto understand understand how how the metalthe metal coordination coordination sphere sphere affects theaffects metal the controlling metal controlling ability, potentially ability, providingpotentially access providing to the access controlled to the polymerization controlled polymerization of new challenging of new monomers challenging such monomers as the fluorinated such as olefinsthe fluorinated [30,31]. Theolefins focus [30,31] of the. The present focus articleof the present is the assessment, article is the for assessment, the first time, for the of the first air-stable time, of the air-stable bis(2-formylphenolato)cobalt(II) complex (Co(SAL)2, 3, Scheme 1), where the bis(2-formylphenolato)cobalt(II) complex (Co(SAL)2, 3, Scheme1), where the 2-formylphenolate is the deprotonated2-formylphenolate form ofis salicylaldehyde.the deprotonated This form complex of salicylaldehyde. has already been This described complex in the has literature already [32 been,33] anddescribed is quite in easily the literature synthesized. [32,33] Its performancesand is quite ineasily the bulksynthesized. polymerization Its performances of VAc and in in the the bulk copolymerizationpolymerization of of VAcVAc and andtert -butylin the 2-trifluoromethylacrylate bulk copolymerization (MAF-TBE) of VAc are and evaluated tert-butyl here. The2-trifluoromethylacrylate combination of these (MAF two monomers-TBE) are evaluated was recently here. shown The combination to radically of polymerize these two inmonomers a strictly alternatingwas recently fashion shown (theirto radically reactivity polymerize ratios arein a essentiallystrictly alternating zero) [34 fashion] and to(their be reactivity well controlled ratios are by essentially zero) [34] and to be well controlled by Co(acac)2 [35]. Fluorinated copolymers containing Co(acac)2 [35]. Fluorinated copolymers containing 2-(trifluoromethyl)acrylic acid (MAF) and alkyl 2-trifluoromethacrylates2-(trifluoromethyl)acrylic (MAF-esters) acid (MAF) mayand alkyl have applications2-trifluoromethacrylates in molecularly (MAF
Recommended publications
  • Controlled Radical Polymerization in the Dispersed Phase
    CONTROLLED RADICAL POLYMERIZATION IN THE DISPERSED PHASE by MARY E. THOMSON A thesis submitted to the Department of Chemical Engineering in conformity with the requirements for the degree of Doctor of Philosophy Queen's University Kingston, Ontario, Canada December, 2010 Copyright c Mary E. Thomson, 2010 Abstract Controlled radical polymerization (CRP) has emerged as a powerful method of creating polymers with tailored molecular architectures under mild reaction conditions. However, production of these polymers efficiently at an industrial scale will likely require them to be synthesized in the dispersed phase. Three types of CRP are explored, Atom Transfer Radical Polymerization (ATRP), Nitroxide Mediated Polymerization (NMP) and Catalytic Chain Transfer (CCT) to elucidate the intricacies of creating these novel polymer colloids. Compartmentalization in an ATRP dispersed phase system is explored theoretically to understand the effects of particle size and catalyst concentration on the polymerization. The results suggest that there is an optimal range of particle sizes where the rate of poly- merization is greater than that in an equivalent bulk system while maintaining both a lower PDI (polydispersity index) and higher livingness. All three factors are desirable in ATRP but generally cannot be achieved simultaneously in bulk. Compartmentalization manifests itself differently in CCT dispersed phase systems, where the segregation of the CCT agents into different polymer particles leads to multimodal molecular weight distributions. Control over the particle size is notoriously difficult for nitroxide mediated polymeriza- tion, as it is challenging to decouple an increase in the particle size with an increase in target molecular weight using a two stage emulsion polymerization approach.
    [Show full text]
  • Reversible Deactivation Radical Polymerization: State-Of-The-Art in 2017
    Chapter 1 Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017 Sivaprakash Shanmugam and Krzysztof Matyjaszewski* Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States *E-mail: [email protected]. This chapter highlights the current advancements in reversible-deactivation radical polymerization (RDRP) with a specifc focus on atom transfer radical polymerization (ATRP). The chapter begins with highlighting the termination pathways for acrylates radicals that were recently explored via RDRP techniques. This led to a better understanding of the catalytic radical termination (CRT) in ATRP for acrylate radicals. The designed new ligands for ATRP also enabled the suppression of CRT and increased chain end functionality. In addition, further mechanistic understandings of SARA-ATRP with Cu0 activation and comproportionation were studied using model reactions with different ligands and alkyl halide initiators. Another focus of RDRP in recent years has been on systems that are regulated by external stimuli such as light, Downloaded via CARNEGIE MELLON UNIV on August 17, 2020 at 15:07:44 (UTC). electricity, mechanical forces and chemical redox reactions. Recent advancements made in RDRP in the feld of complex See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. polymeric architectures, organic-inorganic hybrid materials and bioconjugates have also been summarized. Introduction The overarching goal of this chapter is to provide an overall summary of the recent achievements in reversible-deactivation radical polymerization (RDRP), primarily in atom transfer radical polymerization (ATRP), and also in reversible addition-fragmentation chain transfer (RAFT) polymerization, tellurium mediated © 2018 American Chemical Society Matyjaszewski et al.; Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies ACS Symposium Series; American Chemical Society: Washington, DC, 2018.
    [Show full text]
  • End-Functional Styrene-Maleic Anhydride Copolymers Via Catalytic
    Article pubs.acs.org/Macromolecules End-Functional Styrene−Maleic Anhydride Copolymers via Catalytic Chain Transfer Polymerization † ‡ † § § Gemma C. Sanders, , Robbert Duchateau, Ching Yeh Lin, Michelle L. Coote, † and Johan P. A. Heuts ,* † Laboratory of Polymer Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ‡ Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands § ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia *S Supporting Information ABSTRACT: Styrene−maleic anhydride copolymers have been successfully synthesized using catalytic chain transfer polymerization employing the low spin [bis(difluoroboryl)- dimethylglyoximato]cobalt(II) (COBF) complex. By partially replacing styrene with α-methylstyrene (while maintaining the amount of maleic anhydride at 50 mol %) over a range of ratios, it was shown that the rate of reaction and molar mass decreases with increasing α-methylstyrene content. The polymers were characterized using MALDI−ToF−MS and 1H−13C gHMQC NMR to determine the end groups, which in the presence of α-methylstyrene was an α-methylstyrene unit with a vinylic functionality. For styrene−maleic anhydride copolymers, the end group was determined to be predom- inantly maleic anhydride with a vinylic functionality. Considering the fact that in a styrene−maleic anhydride copolymerization the propagating radicals are predominantly of a styrenic nature, this was a very surprising result, suggesting that the maleic anhydride radicals undergo a chain transfer reaction, which is orders of magnitude faster than that of styrenic radicals. This conclusion was supported by high-level ab initio quantum chemical calculations, which showed that hydrogen abstraction from the maleic anhydride radical is 40 kJ/mol more exothermic than that from a styrene radical.
    [Show full text]
  • Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications
    polymers Review Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications Xiangyu Tian 1 ID , Junjie Ding 1 ID , Bin Zhang 1 ID , Feng Qiu 2, Xiaodong Zhuang 2,3,* ID and Yu Chen 1,* 1 Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; [email protected] (X.T.); [email protected] (J.D.); [email protected] (B.Z.) 2 The State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; [email protected] 3 Center for Advancing Electronics Dresden (CFAED) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany * Correspondence: [email protected] (X.Z.); [email protected] (Y.C.); Tel.: +86-021-6425-3765 (X.Z.) Received: 24 February 2018; Accepted: 12 March 2018; Published: 14 March 2018 Abstract: Reversible addition-fragmentation chain transfer (RAFT) is considered to be one of most famous reversible deactivation radical polymerization protocols. Benefiting from its living or controlled polymerization process, complex polymeric architectures with controlled molecular weight, low dispersity, as well as various functionality have been constructed, which could be applied in wide fields, including materials, biology, and electrology. Under the continuous research improvement, main achievements have focused on the development of new RAFT techniques, containing fancy initiation methods (e.g., photo, metal, enzyme, redox and acid), sulfur-free RAFT system and their applications in many fields.
    [Show full text]
  • Molecular Weight Control in Emulsion Polymerization by Catalytic Chain Transfer : Aspects of Process Development
    Molecular weight control in emulsion polymerization by catalytic chain transfer : aspects of process development Citation for published version (APA): Smeets, N. M. B. (2009). Molecular weight control in emulsion polymerization by catalytic chain transfer : aspects of process development. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR642709 DOI: 10.6100/IR642709 Document status and date: Published: 01/01/2009 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Organometallic Mediated Radical Polymerization
    Edinburgh Research Explorer Organometallic mediated radical polymerization Citation for published version: Allan, LEN, Perry, MR & Shaver, MP 2012, 'Organometallic mediated radical polymerization', Progress in polymer science, vol. 37, no. 1, pp. 127-156. https://doi.org/10.1016/j.progpolymsci.2011.07.004 Digital Object Identifier (DOI): 10.1016/j.progpolymsci.2011.07.004 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Progress in polymer science Publisher Rights Statement: Copyright © 2011 Elsevier Ltd. All rights reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 This is the peer-reviewed author’s version of a work that was accepted for publication in Progress in Polymer Science. Changes resulting from the publishing process, such as editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at: http://dx.doi.org/10.1016/j.progpolymsci.2011.07.004 Cite as: Allan, L.
    [Show full text]
  • Complexes for Catalytic Chain Transfer
    中国科技论文在线 http://www.paper.edu.cn High Spin Co(II) Complexes for Catalytic Chain Transfer Polymerization of Methyl Methacrylate Luo Xiongxiong, Xu Shansheng, Wang Baiquan (College of Chemistry, Nankai University, TianJin 300071) Abstract: In this paper the first high spin cobalt (II) complexes system Co(PPh3)X2/AIBN for the chain transfer polymerization of MMA were developed. The chain transfer constant CT is low (1), and polymers with high molecular weight (up to 100000) and narrow polydispersities (ca 1.40) can be obtained. The molecular weight of polymers increases linearly with the ratio of monomer to initiator. So the molecular weight of polymer can be easily designed and achieved by adjusting the ratio of monomer to initiator. Keywords:Catalytic chain transfer polymerization; Cobalt; Methyl Methacrylate 0 Introduction Chain transfer catalysis in free radical polymerization has been established more than 30 years, since it was firstly discovered.[1,2] This type of polymerization is an efficient method to prepare narrow molecular weight distributions macromonomers, which can produce a wide variety of new materials such as block copolymers,[3] graft,[4] star,[5] telechelic polymers,[6] even hyperbranched polymers[4] for the automotive, paper, and coating industry.[4,7-9] The widely accepted mechanism of cobalt (II) mediated catalytic chain transfer is shown in Scheme 1.[4] Firstly, the cobalt (II) metalloradical abstracts a hydrogen atom from α-methyl group of the propagating polymeric radical, a polymer with vinyl end group and a cobalt (III) hydride are formed. In the second step, the cobalt (III) hydride transfers the hydrogen to the monomer to reinitiate a new chain radical, and a new polymer begins to grow.
    [Show full text]
  • Controlled Radical Polymerization of Methyl Methacrylate and Styrene Mediated by a Cobalt(II)-Based Initiatior System
    Controlled Radical Polymerization of methyl methacrylate and styrene mediated by a cobalt(II)-based initiatior system Tiago F. Cruz,1 Clara S. B. Gomes,1 Pedro T. Gomes,1 J. C. Bordado1 1 DEQ, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, nº 1, 1049-001 Lisboa, Portugal; The role of cobalt(II) complexes containing 2-formylpyrrolyl chelating ligands and phosphine ligands combined with a bromo-alkyl ester, an alkyl bromide or an azo compound in the formation of suitable initiator systems for vinyl monomer controlled radical polymerization was studied. The formation of syndiotactic-rich (Pr>0.7) poly(methyl methacrylate) (PMMA) and atactic (Pr=0.49) poly(styrene) was achieved, in high yields, with higher reaction rates in the first case. 2 Polymerization of styrene was successfully controlled by the initiator system [Co{κ N,O-NC4H3-C(H)=O}2(PMe3)2] (1)/tert- butyl-α-bromoisobutyrate (2), at 50 and 70 ºC, whereas for methyl methacrylate (MMA) control was only possible below 50 ºC. Other sources of cobalt(II) were used, such as CoCl2(PMe3)2 and CoCl2(PPh3)2, the first being very active in the initiation of MMA, similar to the one observed in the previous case and able to control its polymerization below 50 ºC. The use of a coordinating solvent (THF) reduces the polymerization rate mediated by CoCl2(PMe3)2, but does not affect the polymerization rate in the case of complex 1. MALDI-TOF mass spectrometry pointed to a chain-end bromination of the poly(styrene) obtained in a controlled way, as opposed to poly(methyl methacrylate).
    [Show full text]
  • Iron Catalysts in Atom Transfer Radical Polymerization
    molecules Review Iron Catalysts in Atom Transfer Radical Polymerization Sajjad Dadashi-Silab and Krzysztof Matyjaszewski * Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(412)-268-3209 Academic Editor: Hans-Joachim Knölker Received: 11 March 2020; Accepted: 1 April 2020; Published: 3 April 2020 Abstract: Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP. Keywords: iron catalyst; ATRP; controlled radical polymerization; external stimuli 1. Introduction Reversible deactivation radical polymerization (RDRP) techniques have provided access to advanced polymers with precise control over molecular weight, dispersity, composition, and structure.
    [Show full text]
  • Bimetallic Catalytic Chain Transfer Agents for Molecular Weight Control in Free Radical Polymerization
    Europaisches Patentamt European Patent Office 2) Publication number: 3 222 619 B1 Dffice europeen des brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 03.04.91 @ Int. CI.5: C08F 2/38, C09D 125/00, C09D 133/00 © Application number: 86308788.8 @ Date of filing: 12.11.86 © Bimetallic catalytic chain transfer agents for molecular weight control in free radical polymerization. © Priority: 13.11.85 US 797476 (3) Proprietor: E.I. DU PONT DE NEMOURS AND 14.10.86 US 916926 COMPANY 1007 Market Street © Date of publication of application: Wilmington Delaware 19898(US) 20.05.87 Bulletin 87/21 @ Inventor: Janowicz, Andrew Henry © Publication of the grant of the patent: 120 Birch Knoll Road 03.04.91 Bulletin 91/14 Wilmington, DE 19810(US) © Designated Contracting States: BE DE FR GB IT NL © Representative: Jones, Alan John et al CARPMAELS & RANSFORD 43 Bloomsbury © References cited: Square GB-A- 1 033 161 London, WC1A 2RA(GB) JOURNAL OF POLYMER SCIENCE: POLYMER CHEMISTRY EDITION, vol. 19, 1981, pages 879-889, John Wiley & Sons, Inc., New York, US; N.S. ENIKOLOPYAN et al.: "Catalyzed chain transfer to monomer in free radical polymerization" CD G> CO cm CM CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person notice the Patent Office of to the European patent granted. Notice of opposition CL may give to European opposition Lll shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art.
    [Show full text]
  • Developments in Reversible Deactivation Radical Polymerization
    Carlos Miguel Rocha Abreu Carlos Miguel Rocha Abreu Developments in Reversible Deactivation Radical Polymerization: Developments inDevelopments Reversible Deactivation Radical Polymerization: New Ecofriendly Catalytic Systems and New Ecofriendly Catalytic Systems and Vinyl Chloride (co)Polymerization Methods Vinyl Chloride (co)Polymerization Methods PhD Thesis in Chemical Engineering, supervised by Professor Doctor Jorge Fernando Jordão Coelho, Professor Doctor Arménio Coimbra Serra and Professor Doctor Krzysztof Matyjaszewski, submitted to the Department of Chemical Engineering, Faculty of Science and Technology, University of Coimbra OIMBRA C Agosto, 2017 E D NIVERSIDADE NIVERSIDADE U Carlos Miguel Rocha Abreu Developments in Reversible Deactivation Radical Polymerization: New Ecofriendly Catalytic Systems and Vinyl Chloride (co)Polymerization Methods Thesis submitted to the Faculty of Sciences and Technology of the University of Coimbra, to obtain the Degree of Doctor in Chemical Engineering. Coimbra 2017 Carlos Miguel Rocha Abreu Developments in Reversible Deactivation Radical Polymerization: New Ecofriendly Catalytic Systems and Vinyl Chloride (co)Polymerization Methods Thesis submitted to the Faculty of Sciences and Technology of the University of Coimbra, to obtain the Degree of Doctor in Chemical Engineering. Advisors: Prof. Dr. Jorge Fernando Jordão Coelho Prof. Dr. Arménio Coimbra Serra Prof. Dr. Krzysztof Matyjaszewski Host institutions: University of Coimbra Carnegie Mellon University Financing: Portuguese Foundation for Science and Technology (FCT) Doctoral degree grant: SFRH/BD/88528/2012 Coimbra 2017 Financial support: À minha mãe (in memoriam), Acknowledgments Acknowledgments O meu Muito Obrigado a todos aqueles que de modo directo ou indirecto contribuíram para o sucesso deste trabalho. Ao Professor Jorge Coelho, meu orientador científico. Agradeço por ter acreditado e confiado em mim desde o início, me ter motivado e concedido as melhores oportunidades ao longo dos últimos anos.
    [Show full text]
  • Pentacyanocobaltate\II\ Catalytic Chain Transfer Agents for Molecular
    Europaisch.es Patentamt (19 3 European Patent Office © Publication number: 0 229 481 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION @ Application number: 86309373.8 © Int. CI.3: C 08 F 2/38 C 08 F 20/12, C 09 D 3/80 © Date of filing: 02.12.86 © Priority: 03.12.85 US 804135 © Applicant: E.I. DU PONT DE NEMOURS AND COMPANY 14.10.86 US 916925 1007 Market Street Wilmington Delaware 19898IUS) © Date of publication of application: @ Inventor: Janowicz, Andrew Henry 22.07.87 Bulletin 87/30 120 Birch Knoll Road Wilmington Delaware 19810(US) © Designated Contracting States: BE DE FR GB IT NL © Representative: Jones, Alan John et al, CARPMAELS & RANSFORD 43 Bioomsbury Square London, WC1A2RAIGB) © Pentacyanocobaltate(ll) catalytic chain transfer agents for molecular weight control In free radical polymerization. ' © A process for preparing low molecular weight methcry- late polymer and copolymer with a pentacyanocobaltate(ll) catalytic chain transfer agent is disclosed. < 00 0) N N QL LU Croydon Printing Company Ltd. Pentacyanocobaltate( II ) Catalytic Chain Transfer Agents for Molecular ^ feight Control in Free Radical Polymerization 0 Background or tne invention Field of the Invention This invention relates to free radical polymerization processes employing chain transfer of agents for controlling the molecular weight polymer .5 and copolymer produced. Background of the Art Techniques for controlling the molecular weight of polymer and copolymer with chain transfer Problems agents are currently being developed. 20 associated with use of known chain transfer agents include undesirable odor, intense color, and broad molecular weight distribution in the resulting of polymer. Improved chain transfer agents are considerable interest to the chemical industry.
    [Show full text]