Molecular Weight Control in Emulsion Polymerization by Catalytic Chain Transfer : Aspects of Process Development

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Weight Control in Emulsion Polymerization by Catalytic Chain Transfer : Aspects of Process Development Molecular weight control in emulsion polymerization by catalytic chain transfer : aspects of process development Citation for published version (APA): Smeets, N. M. B. (2009). Molecular weight control in emulsion polymerization by catalytic chain transfer : aspects of process development. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR642709 DOI: 10.6100/IR642709 Document status and date: Published: 01/01/2009 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 29. Sep. 2021 Molecular Weight Control in Emulsion Polymerization by Catalytic Chain Transfer Aspects of Process Development Niels Mathieu Barbara Smeets A catalogue record is available from the Eindhoven University of Technology Liberary ISBN: 978-90-386-1802-9 © 2009, Niels Mathieu Barbara Smeets This research was financially supported by the Foundation of Emulsion Polymerization (SEP) and the European Graduate School (EGS). Cover design: Niels M.B. Smeets and Paul Verspaget Printed at the Universiteitsdrukkerij , Eindhoven University of Technology Molecular Weight Control in Emulsion Polymerization by Catalytic Chain Transfer Aspects of Process Development PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op vrijdag 3 juli 2009 om 16.00 uur door Niels Mathieu Barbara Smeets geboren te Ermelo Dit proefschrift is goedgekeurd door de promotoren: prof.dr. A.M. van Herk en prof.dr. J. Meuldijk Copromotor: dr.ir. J.P.A. Heuts “Je moet hoog mikken want de pijl daalt onder het vliegen” “Shoot for the moon and even if you miss you’ll land amongst the stars” † Huub Vromans Table of contents TABLE OF CONTENTS i SUMMARY iii SAMENVATTING v SAAMEVATTING vii CHAPTER 1: Introduction 2 Objective 3 Free radical polymerization 5 Emulsion polymerization 14 Process development in emulsion polymerization 20 Catalytic chain transfer 24 Scope of the thesis 36 References 37 CHAPTER 2: Catalyst partitioning in emulsion polymerization 42 Introduction 43 Results and Discussion 44 Conclusions 55 Experimental 56 Appendix 59 References 62 CHAPTER 3: Mass transport limitations in CCT emulsion polymerization 66 Introduction 67 Results and Discussion 69 Conclusions 81 Experimental 81 References 84 CHAPTER 4: Compartmentalization effects in CCT emulsion polymerization 88 Introduction 89 Results and Discussion 91 Conclusions 109 Experimental 109 References 112 i Table of contents CHAPTER 5: Effect of CCT on the emulsion polymerization kinetics 116 Introduction 117 Results and Discussion 118 Conclusions 137 Experimental 137 References 139 CHAPTER 6: Particle nucleation in batch and continuous CCT emulsion polymerization 144 Introduction 145 Results and discussion 147 Batch experiments 148 Continuous experiments in the PSPC 161 Conclusions 168 Experimental 169 References 173 CHAPTER 7: Process development in CCT emulsion polymerization 178 Introduction 179 Partitioning 182 Catalyst deactivation 185 Application in batch emulsion polymerization 192 Application in continuous emulsion polymerization 194 Concluding remarks 198 References 199 ACKNOWLEDGEMENTS 202 CURRICULUM VITAE 206 ii Molecular Weight Control in Emulsion Polymerization by Catalytic Chain Transfer Aspects of Process Development SUMMARY The molecular weight distribution (MWD), amongst others, governs the end use properties of polymeric materials, e.g., coatings. Robust molecular mass control is therefore a key issue in polymer production. Catalytic chain transfer (CCT) has proven to be a robust technique for the control of the MWD. In CCT the radical activity of a propagating polymer chain is transferred via the active cobalt complex to a monomer molecule. The catalytic nature of catalytic chain transfer agents (CCTA), combined with the high activity towards chain transfer allows for the use of very low amounts to achieve proper molecular weight control. This study aims at obtaining a thorough and fundamental understanding of the consequences of the heterogeneity of the emulsion polymerization reaction mixture for the application of CCT in a technical scale. The average molecular weight of the polymer formed can be predicted fairly accurately by the Mayo equation in bulk and solution polymerization, which relates the catalyst activity and the amount of catalytic chain transfer agent to the instantaneous number- average degree of polymerization. For emulsion polymerization an extended Mayo equation was derived which incorporates the effects of catalytic chain transfer agent partitioning. The lower apparent activity of these cobalt complexes observed in emulsion polymerization, when compared to bulk and solution polymerization, can be explained by the effects of partitioning. CCTA partitioning is a crucial parameter governing the performance of CCT in emulsion polymerization. The emulsion polymerization reaction system has some important consequences for the application of CCT. The absolute number of polymer particles in an emulsion polymerization very often exceeds the number of CCTA molecules, which implies that fast CCTA transport is required for proper molecular weight control. Partitioning of the CCTA in emulsion polymerization allows for fast transport via the aqueous phase. However, this is not the only transport mechanism in emulsion polymerization. This transport even occurs for a very sparingly water soluble CCTA, which also shows proper molecular weight control, suggesting that a CCTA (or other very hydrophobic species) iii can be transported by a shuttle mechanism. CCTA transport can be limited by the increasing viscosity of the polymer particles as the weight fraction of polymer is increasing. The high viscosity of the polymer particles can affect the rate of entry and exit of the CCTA. This results in compartmentalization behavior and a discrete distribution of CCTA molecules over the polymer particles, which is represented by a multimodal molecular weight distribution. The efficiency of chain transfer also severely changes throughout the course of an emulsion polymerization, which is governed by the polymer volume fraction in the polymer particles. The application of catalytic chain transfer also affects the course of the emulsion polymerization. Aqueous phase chain transfer, as a consequence of partitioning, affects the entry rate of radicals as well as the chemical nature of those radicals. This results in an extended nucleation period and as a consequence a broader particle size distribution, lower rates of polymerization throughout the entire course of the polymerization and possibly a loss of colloidal stability. Monomeric radicals, originating from the CCT process, can readily desorb from the polymer particles to the aqueous phase. This monomeric radical desoption, i.e. exit, results in a decrease in the rate of polymerization, relatively small polymer particles and a narrow particle size distribution. The reduced rate of entry in combination with the increased rate of exit results in a decrease of the average number of radicals per particle and consequently a decrease in the rate of polymerization. CCT mediated emulsion polymerizations obey Smith-Ewart Case 1 kinetics. Application of CCT in continuous emulsion polymerization was demonstrated in a pulsed sieve plate column (PSPC), which combines low net flow rates with limited axial mixing. For a very sparingly water soluble CCTA batch performance was approximately observed in the PSPC. For more water soluble CCTAs deviation from batch performance were observed. The observed differences could originate from CCTA backmixing. The results presented in this thesis illustrate the potential of CCT as a powerful technique for molecular weight control in emulsion polymerization. The
Recommended publications
  • Cationic/Anionic/Living Polymerizationspolymerizations Objectives
    Chemical Engineering 160/260 Polymer Science and Engineering LectureLecture 1919 -- Cationic/Anionic/LivingCationic/Anionic/Living PolymerizationsPolymerizations Objectives • To compare and contrast cationic and anionic mechanisms for polymerization, with reference to free radical polymerization as the most common route to high polymer. • To emphasize the importance of stabilization of the charged reactive center on the growing chain. • To develop expressions for the average degree of polymerization and molecular weight distribution for anionic polymerization. • To introduce the concept of a “living” polymerization. • To emphasize the utility of anionic and living polymerizations in the synthesis of block copolymers. Effect of Substituents on Chain Mechanism Monomer Radical Anionic Cationic Hetero. Ethylene + - + + Propylene - - - + 1-Butene - - - + Isobutene - - + - 1,3-Butadiene + + - + Isoprene + + - + Styrene + + + + Vinyl chloride + - - + Acrylonitrile + + - + Methacrylate + + - + esters • Almost all substituents allow resonance delocalization. • Electron-withdrawing substituents lead to anionic mechanism. • Electron-donating substituents lead to cationic mechanism. Overview of Ionic Polymerization: Selectivity • Ionic polymerizations are more selective than radical processes due to strict requirements for stabilization of ionic propagating species. Cationic: limited to monomers with electron- donating groups R1 | RO- _ CH =CH- CH =C 2 2 | R2 Anionic: limited to monomers with electron- withdrawing groups O O || || _ -C≡N -C-OR -C- Overview of Ionic Chain Polymerization: Counterions • A counterion is present in both anionic and cationic polymerizations, yielding ion pairs, not free ions. Cationic:~~~C+(X-) Anionic: ~~~C-(M+) • There will be similar effects of counterion and solvent on the rate, stereochemistry, and copolymerization for both cationic and anionic polymerization. • Formation of relatively stable ions is necessary in order to have reasonable lifetimes for propagation.
    [Show full text]
  • Controlled Radical Polymerization in the Dispersed Phase
    CONTROLLED RADICAL POLYMERIZATION IN THE DISPERSED PHASE by MARY E. THOMSON A thesis submitted to the Department of Chemical Engineering in conformity with the requirements for the degree of Doctor of Philosophy Queen's University Kingston, Ontario, Canada December, 2010 Copyright c Mary E. Thomson, 2010 Abstract Controlled radical polymerization (CRP) has emerged as a powerful method of creating polymers with tailored molecular architectures under mild reaction conditions. However, production of these polymers efficiently at an industrial scale will likely require them to be synthesized in the dispersed phase. Three types of CRP are explored, Atom Transfer Radical Polymerization (ATRP), Nitroxide Mediated Polymerization (NMP) and Catalytic Chain Transfer (CCT) to elucidate the intricacies of creating these novel polymer colloids. Compartmentalization in an ATRP dispersed phase system is explored theoretically to understand the effects of particle size and catalyst concentration on the polymerization. The results suggest that there is an optimal range of particle sizes where the rate of poly- merization is greater than that in an equivalent bulk system while maintaining both a lower PDI (polydispersity index) and higher livingness. All three factors are desirable in ATRP but generally cannot be achieved simultaneously in bulk. Compartmentalization manifests itself differently in CCT dispersed phase systems, where the segregation of the CCT agents into different polymer particles leads to multimodal molecular weight distributions. Control over the particle size is notoriously difficult for nitroxide mediated polymeriza- tion, as it is challenging to decouple an increase in the particle size with an increase in target molecular weight using a two stage emulsion polymerization approach.
    [Show full text]
  • Reversible Deactivation Radical Polymerization: State-Of-The-Art in 2017
    Chapter 1 Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017 Sivaprakash Shanmugam and Krzysztof Matyjaszewski* Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States *E-mail: [email protected]. This chapter highlights the current advancements in reversible-deactivation radical polymerization (RDRP) with a specifc focus on atom transfer radical polymerization (ATRP). The chapter begins with highlighting the termination pathways for acrylates radicals that were recently explored via RDRP techniques. This led to a better understanding of the catalytic radical termination (CRT) in ATRP for acrylate radicals. The designed new ligands for ATRP also enabled the suppression of CRT and increased chain end functionality. In addition, further mechanistic understandings of SARA-ATRP with Cu0 activation and comproportionation were studied using model reactions with different ligands and alkyl halide initiators. Another focus of RDRP in recent years has been on systems that are regulated by external stimuli such as light, Downloaded via CARNEGIE MELLON UNIV on August 17, 2020 at 15:07:44 (UTC). electricity, mechanical forces and chemical redox reactions. Recent advancements made in RDRP in the feld of complex See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. polymeric architectures, organic-inorganic hybrid materials and bioconjugates have also been summarized. Introduction The overarching goal of this chapter is to provide an overall summary of the recent achievements in reversible-deactivation radical polymerization (RDRP), primarily in atom transfer radical polymerization (ATRP), and also in reversible addition-fragmentation chain transfer (RAFT) polymerization, tellurium mediated © 2018 American Chemical Society Matyjaszewski et al.; Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies ACS Symposium Series; American Chemical Society: Washington, DC, 2018.
    [Show full text]
  • End-Functional Styrene-Maleic Anhydride Copolymers Via Catalytic
    Article pubs.acs.org/Macromolecules End-Functional Styrene−Maleic Anhydride Copolymers via Catalytic Chain Transfer Polymerization † ‡ † § § Gemma C. Sanders, , Robbert Duchateau, Ching Yeh Lin, Michelle L. Coote, † and Johan P. A. Heuts ,* † Laboratory of Polymer Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ‡ Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands § ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia *S Supporting Information ABSTRACT: Styrene−maleic anhydride copolymers have been successfully synthesized using catalytic chain transfer polymerization employing the low spin [bis(difluoroboryl)- dimethylglyoximato]cobalt(II) (COBF) complex. By partially replacing styrene with α-methylstyrene (while maintaining the amount of maleic anhydride at 50 mol %) over a range of ratios, it was shown that the rate of reaction and molar mass decreases with increasing α-methylstyrene content. The polymers were characterized using MALDI−ToF−MS and 1H−13C gHMQC NMR to determine the end groups, which in the presence of α-methylstyrene was an α-methylstyrene unit with a vinylic functionality. For styrene−maleic anhydride copolymers, the end group was determined to be predom- inantly maleic anhydride with a vinylic functionality. Considering the fact that in a styrene−maleic anhydride copolymerization the propagating radicals are predominantly of a styrenic nature, this was a very surprising result, suggesting that the maleic anhydride radicals undergo a chain transfer reaction, which is orders of magnitude faster than that of styrenic radicals. This conclusion was supported by high-level ab initio quantum chemical calculations, which showed that hydrogen abstraction from the maleic anhydride radical is 40 kJ/mol more exothermic than that from a styrene radical.
    [Show full text]
  • Living Free Radical Polymerization with Reversible Addition – Fragmentation
    Polymer International Polym Int 49:993±1001 (2000) Living free radical polymerization with reversible addition – fragmentation chain transfer (the life of RAFT) Graeme Moad,* John Chiefari, (Bill) YK Chong, Julia Krstina, Roshan TA Mayadunne, Almar Postma, Ezio Rizzardo and San H Thang CSIRO Molecular Science, Bag 10, Clayton South 3169, Victoria, Australia Abstract: Free radical polymerization with reversible addition±fragmentation chain transfer (RAFT polymerization) is discussed with a view to answering the following questions: (a) How living is RAFT polymerization? (b) What controls the activity of thiocarbonylthio compounds in RAFT polymeriza- tion? (c) How do rates of polymerization differ from those of conventional radical polymerization? (d) Can RAFT agents be used in emulsion polymerization? Retardation, observed when high concentra- tions of certain RAFT agents are used and in the early stages of emulsion polymerization, and how to overcome it by appropriate choice of reaction conditions, are considered in detail. Examples of the use of thiocarbonylthio RAFT agents in emulsion and miniemulsion polymerization are provided. # 2000 Society of Chemical Industry Keywords: living polymerization; controlled polymerization; radical polymerization; dithioester; trithiocarbonate; transfer agent; RAFT; star; block; emulsion INTRODUCTION carbonylthio compounds 2 by addressing the following In recent years, considerable effort1,2 has been issues: expended to develop free radical processes that display (a) How living is RAFT polymerization?
    [Show full text]
  • Polymer Chemistry
    Polymer Chemistry Properties and Application Bearbeitet von Andrew J Peacock, Allison Calhoun 1. Auflage 2006. Buch. XIX, 399 S. Hardcover ISBN 978 3 446 22283 0 Format (B x L): 17,5 x 24,5 cm Gewicht: 1088 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Biochemie > Polymerchemie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Produktinformation Seite 1 von 1 Polymer Chemistry Allison Calhoun, Andrew James Peacock Properties and Application ISBN 3-446-22283-9 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-22283-9 sowie im Buchhandel http://www.hanser.de/deckblatt/deckblatt1.asp?isbn=3-446-22283-9&style=Leseprobe 05.05.2006 2 Polymer Chemistry 2.1 Introduction In this chapter, we will see how polymers are manufactured from monomers. We will explore the chemical mechanisms that create polymers as well as how polymerization methods affect the final molecular structure of the polymer. We will look at the effect of the chemical structure of monomers, catalysts, radicals, and solvents on polymeric materials. Finally, we will apply our molecular understanding to the real world problem of producing polymers on a commercial scale. 2.2 Thermoplastics and Thermosets Thermoplastics consist of linear or lightly branched chains that can slide past one another under the influence of temperature and pressure.
    [Show full text]
  • Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications
    polymers Review Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications Xiangyu Tian 1 ID , Junjie Ding 1 ID , Bin Zhang 1 ID , Feng Qiu 2, Xiaodong Zhuang 2,3,* ID and Yu Chen 1,* 1 Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; [email protected] (X.T.); [email protected] (J.D.); [email protected] (B.Z.) 2 The State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China; [email protected] 3 Center for Advancing Electronics Dresden (CFAED) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany * Correspondence: [email protected] (X.Z.); [email protected] (Y.C.); Tel.: +86-021-6425-3765 (X.Z.) Received: 24 February 2018; Accepted: 12 March 2018; Published: 14 March 2018 Abstract: Reversible addition-fragmentation chain transfer (RAFT) is considered to be one of most famous reversible deactivation radical polymerization protocols. Benefiting from its living or controlled polymerization process, complex polymeric architectures with controlled molecular weight, low dispersity, as well as various functionality have been constructed, which could be applied in wide fields, including materials, biology, and electrology. Under the continuous research improvement, main achievements have focused on the development of new RAFT techniques, containing fancy initiation methods (e.g., photo, metal, enzyme, redox and acid), sulfur-free RAFT system and their applications in many fields.
    [Show full text]
  • Effect of Chain Transfer to Polymer in Conventional and Living Emulsion Polymerization Process
    processes Article Effect of Chain Transfer to Polymer in Conventional and Living Emulsion Polymerization Process Hidetaka Tobita ID Department of Materials Science and Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; [email protected]; Tel.: +81-776-27-8767 Received: 28 December 2017; Accepted: 5 February 2018; Published: 7 February 2018 Abstract: Emulsion polymerization process provides a unique polymerization locus that has a confined tiny space with a higher polymer concentration, compared with the corresponding bulk polymerization, especially for the ab initio emulsion polymerization. Assuming the ideal polymerization kinetics and a constant polymer/monomer ratio, the effect of such a unique reaction environment is explored for both conventional and living free-radical polymerization (FRP), which involves chain transfer to the polymer, forming polymers with long-chain branches. Monte Carlo simulation is applied to investigate detailed branched polymer architecture, including 2 the mean-square radius of gyration of each polymer molecule, <s >0. The conventional FRP shows a very broad molecular weight distribution (MWD), with the high molecular weight region conforming to the power law distribution. The MWD is much broader than the random branched 2 polymers, having the same primary chain length distribution. The expected <s >0 for a given MW is much smaller than the random branched polymers. On the other hand, the living FRP shows a much narrower MWD compared with the corresponding random branched polymers. Interestingly, 2 the expected <s >0 for a given MW is essentially the same as that for the random branched polymers. Emulsion polymerization process affects branched polymer architecture quite differently for the conventional and living FRP.
    [Show full text]
  • Kinetic Study of Coordinative Chain Transfer Polymerization of Ethylene by Neodymium Metallocene Catalysts
    Kinetic study of coordinative chain transfer polymerization of ethylene by neodymium metallocene catalysts Rodolfo André da Costa Fialho Ribeiro Thesis to obtain the Master of Science Degree in Chemical Engineering Supervisors Prof.ª Dr.ª Maria do Rosário Gomes Ribeiro Dr. Christophe Boisson Examination Committee Chairperson: Prof. Dr. Carlos Manuel Faria de Barros Henriques Supervisor: Prof.ª Dr.ª Maria do Rosário Gomes Ribeiro Member of the Committee: Prof. Dr. João Carlos Moura Bordado November 2015 This page was intentionally left blank. ii Abstract Ethylene polymerizations at 70-90ºC in toluene were performed using a combination of ∗ Cp2NdCl2Li(OEt2)2 (Cp* = C5Me5) or {Me2SiFlu2Nd(µ-BH4)[(µ-BH4)Li(THF)]}2 (Flu = C13H8) neodymium complexes with n-butyl-n-octyl-magnesium used as both alkylating and chain transfer agent. Kinetic studies were performed for the two catalytic systems by varying the Mg/Nd ratio, which is a critical parameter for polymerization control. Both systems were able to perform a controlled polymerization of ethylene and displayed the same phases on the kinetic profiles, reflecting the Coordinative Chain Transfer Polymerization mechanism. The effect of the polymerization temperature was studied for the determination of the propagation activation energy using the Arrhenius equation. A -1 ∗ value of 17.3 kcal.mol was obtained for the Cp2NdCl2Li(OEt2)2/n-butyl-n-octyl-magnesium system. The {Me2SiFlu2Nd(µ-BH4)[(µ-BH4)Li(THF)]}2/n-butyl-n-octyl-magnesium system did not display a linear Arrhenius plot and consequently the activation energy was not determined for this catalyst. Specific molar masses were targeted in order to evaluate the polymerization control efficiency.
    [Show full text]
  • Organometallic Mediated Radical Polymerization
    Edinburgh Research Explorer Organometallic mediated radical polymerization Citation for published version: Allan, LEN, Perry, MR & Shaver, MP 2012, 'Organometallic mediated radical polymerization', Progress in polymer science, vol. 37, no. 1, pp. 127-156. https://doi.org/10.1016/j.progpolymsci.2011.07.004 Digital Object Identifier (DOI): 10.1016/j.progpolymsci.2011.07.004 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Progress in polymer science Publisher Rights Statement: Copyright © 2011 Elsevier Ltd. All rights reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 This is the peer-reviewed author’s version of a work that was accepted for publication in Progress in Polymer Science. Changes resulting from the publishing process, such as editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at: http://dx.doi.org/10.1016/j.progpolymsci.2011.07.004 Cite as: Allan, L.
    [Show full text]
  • 1.1 Basic Polymer Chemistry 1.2 Polymer Nomenclature 1.3 Polymer
    1.1 Basic Polymer Chemistry 1.2 Polymer Nomenclature Polymers are the largest class of soft materials: over Polymer = 100 billion pounds of polymers made in US each year Monomer = Classification systems Polymer = Typical physical state? Mechanisms of chain growth Oligomer = Typical physical state? Polymerization = 1.3 Polymer Synthesis 1.4 Chain Growth Polymerization Two synthetic methods Addition polymerization Chain growth/addition polymerization One molecule adds to another with no net loss of atoms (high atom economy) Individual steps are typically rapid (msec, sec) Discrete steps Step growth polymerization Propagation rate >> termination rate What happens if the reaction runs longer? Do the chains get longer? Do you just get more chains? 1 1.5 Chain Growth Polymerization 1.6 Monomers for Chain Growth Addition polymerization Polymers form by… What’s in the polymerization mixture? Defining features Useful monomers for chain growth CH3 Cl CH2 CH CH CH Monomer Polymer H2C H2C H2C H2C ethylenepropylene styrene vinyl chloride nCH2 CH (CH2 CH)n X X O N X X C O O-CH3 CH2 O CH3 C HC C nCH2 CH (CH2 CH O)n CH C CH CH CH O H2C H2C 3 H2C H2C vinyl acetate methyl methacrylate butadiene acrylonitrile 1.7 Chain Growth Polymerization 2.1 Radical Polymerization Mechanisms to link monomers together Three steps to radical polymerization Radical Initiation Cationic (1) RO OR 2RO Anionic Transition metal catalysis (2) RO + H2C CH RO CH2 CH R R Propagation RO CH2 CH + H2C CH RO CH2 CH CH2 CH R R R R Termination 2 2.2 Radical
    [Show full text]
  • Hyperbranched Polymers with Step-Growth Chemistries from Transfer-Dominated Branching Radical Telomerisation (TBRT) of Divinyl Monomers Polymer Chemistry
    Volume 11 Number 48 28 December 2020 Polymer Pages 7575-7730 Chemistry rsc.li/polymers ISSN 1759-9962 PAPER Steve P. Rannard et al. Hyperbranched polymers with step-growth chemistries from transfer-dominated branching radical telomerisation (TBRT) of divinyl monomers Polymer Chemistry View Article Online PAPER View Journal | View Issue Hyperbranched polymers with step-growth chemistries from transfer-dominated branching Cite this: Polym. Chem., 2020, 11, 7637 radical telomerisation (TBRT) of divinyl monomers† Savannah R. Cassin,a,b Pierre Chambona,b and Steve P. Rannard *a,b The commercial synthesis of polymers is generally limited to two main mechanisms that are typically con- sidered to be mutually exclusive, namely step-growth and chain-growth polymerisation. This also defines the vast number of academic advances in macromolecular synthesis including the increasingly studied reversible deactivation radical polymerisation techniques (chain-growth) and complex polymer architec- tures such as dendrimers (step-growth). We report here a new synthetic strategy that utilises conventional free radical chain-growth chemistry, under modified telomerisation conditions, to form branched poly- Creative Commons Attribution 3.0 Unported Licence. mers containing chemistries conventionally formed under step-growth conditions. Telomerisation is typi- cally limited to small molecule synthesis and employs addition across the unsaturated bond of a substrate, whilst minimising intermolecular reaction between substrates. Through the careful manipulation of reac- Received 12th September 2020, tion conditions, we have created a ‘transfer dominated branching radical telomerisation’ mechanism that Accepted 15th November 2020 creates branched polymers containing step-growth motifs from multi-vinyl monomers, with molecular DOI: 10.1039/d0py01309a weights in excess of 1000 kg mol−1, using industrially relevant free radical chain-growth chemistry.
    [Show full text]