Unite States, Patented Dec

Total Page:16

File Type:pdf, Size:1020Kb

Unite States, Patented Dec 3,l4,7l Unite States, Patented Dec. 26, 1961 1 2 Company); sulfonated coal types, such as Zeo Karb 3,014,871 (Permutit Company); nuclear sulfonic types such as NEW COWDUNDS AND LUBRICANT COMPGSi Amberlite IR-120 (Rohm and Haas Company) and TIUNS CONTAINING SAME Dowex 50 (Nalcite HCR) (Dow Chemical Company); .l'ames M. Fulton, Verona, Pa, and William E. Brown, Dallas, Tern, assignors to Gulf Research & Develop: 5 carboxylic acid types such as Alkalex (Research Products ment Company, Pittsburgh, Pa., a corporation of Dela Corporation), Amberlite IRC-SO (Rohm and Haas Com ware pany), Duolite CS-lOO (Chemical Process Company), No Drawing. Filed Sept. 17, I956, Ser. No. 610,417 Permutit 216 (Permutit Company), and Wofatit (I. G. 10 Claims. (Cl. 252-497) Farben Industrie—A.G.). Of these the alumino-silicate 10 ions are preferred. This invention relates to new compounds and to new Among the alumino-silicates which can be employed compositions of matter containing the same such as in preparing the above compounds can be mentioned clay lubricants, particularly greases. minerals of the montmorillonite group, such as montmor The new compounds of this invention can be de?ned illonite, saponite, nontronite, hectorite, and sauconite; as compounds whose anionic portion comprises a poly 15 the kaolin group such as kaolinite, nacrite, dickite, and meric anion having a base exchange capacity of at least halloysite; the hydrous mica group such as hydrobiotite, about 5 milliequivalents per 100 grams and whose cationic glauconite, illite, and bramallite; the chlorite group such portion comprises an onium precursor substituted onium as chlorite and chamosite; clay minerals not belonging to cation. the above groups such as vermiculite, attapulgite, and In preparing the new compounds any polymeric com 20 sepiolite; and mixed-layer varieties of the above minerals pound having a cationic base exchange capacity of at least and groups. about 5 and preferably about 20 to about 1000 milli The clay minerals de?ned above occur as minute, plate equivalents per 100 grams of polymeric compound can like, tube-like and/or ?ber-like particles having an ex be used. By “polymeric compound” we mean to include tremely large surface area compared to that of an equival any compound having a repeating structural unit such 25 ent quantity of a granular material such as sand. This as the combination of small size and great surface area results in a high surface energy with attendant unusual surface properties and extreme a?nity for surface-active agents. The structure of some of these clays, as for instance mont 30 morillonite, can be pictured as a stack of sheet-like three layer lattice units which are weakly bonded to each other and which are expanded in the “c” crystallographic direc tion by water or other substances which can penetrate be unit in sulfonated polystyrene cr0ss~linked with divinyl tween the sheets and separate them. 35 All clay minerals have ion-exchange properties. Thus, for example, montmorillonite has a cation-exchange cap pacity of from 90 to 130 milliequivalents per 100 grams of clay, illite from about 20 to 40 milliequivalents and kaolinite from about 5 to 15 milliequivalents. The proper ties of the clays vary widely with the cations occupying the base exchange positions or sites. A “base-exchange position or site” can be de?ned as an area, in this instance on a clay crystal, which has associated with it an ex changeable cation. Among the cations which are general 45 ly found on the base-exchange position or site can be mentioned sodium, potassium, calcium, manganese, iron, hydrogen, etc. The ions are believed to be held to the clay surface by ionic forces. Of the alumino silicates which are particularly effective in obtaining the new compounds of this invention are montmorillonite and illite. In preparing the compounds of this invention an acid or a salt of the polymeric anion de?ned above, preferably ' an acid or a salt of an alumino-silicate, is preferably re unit in a sulfonated phenol-formaldehyde resin, 55 acted with an onium precursor substituted onium com "SiaA14O1s(HzO) l2—x0x(_) pound by the substitution for the polymeric compound cation of the cation of the onium precursor substituted where x is a number between one and 12, as in mont onium compound. Another method for preparing the morillonite, Si4Al4Om(OH)8_xOXX<~), where x is a num new compounds involves mixing with the acids of the ber between one and 8, as in kaolinite or halloysite, etc. 60 mentioned polymeric anion the onium precursor of the Included among the anions which can constitute the onium-precursor substituted onium compound. anionic portion of the new compounds of our invention By “onium ion” we mean to include such ions as de are the alumino-silicate ions, natural and synthetic, ?ned in Hackh’s Chemical Dictionary, third edition, page such as montmorillonite and Permutit, Decalso and Zeo 594: “A group of organic compounds [ions] of the Dur (Permutit Company), and organic resinous anionic 65 matrices such as phenolic methylene sulfonic acid types type RXl-Iy, which are isologs of ammonium and con tain the element X in its highest positive valence, as which go under such trade names as Amberlite IR~100, Amberlite lR-lOS (Rohm and Haas Company, Dowex 30 X is pentavalent: (Nalcite MX) (Dow Chemical Company), Duolite C~3 Ammonium, --NH4 (Chemical Process Company), lonac C—2OO (American 70 Phosphonium, R.PH4 Cyanamid Company), Wofatit P, Wofatit K, Wofatit KS Arsonium, >R.AsH4 (1. G. Farben Industrie—A.G.), Zeo Rex (Permutit Stibonium, R.SbH¢ 3,014,871 3 X is tetravalent: monohydrochloride. The monohydrochloride can then Oxonium, ROI-I3 be reacted in aqueous solution wtih montmorillonite to Sulfonium, R.SH3 give aminoethylammonium montmorillonite. Selenonium, RSeI-Is The preparation of compounds embraced by the pres Stannonium, R.SnI-I3 ent invention can be illustrated by the following exam X is trivalent: ples. Iodonium, R.IH2 EXAMPLE I They may also be considered as addition compounds Crude Wyoming bentonite was dispersed in distilled [ions] cf. oxonium, carbonium, stibonium, -inium, -yli water at a concentration of 10 to 15 grams per liter and um.” By “onium compound” we mean to include the puri?ed by sedimentation for 15 hours. The material combination of an onium ion with a cation such as chlo remaining in suspension (equivalent spherical diameter ride, bromide, sulfate, etc. Byv “onium precursor” we less than 2.6”.) was siphoned ed and used to prepare the mean a compound from which an onium ion would be reaction product described below. The monohydrochlo formed by the addition thereto of at least one proton, ride salt of “Duomeen-T” (Armour Chemical Company, as for example from ammonia would be formed am 15 R—NH—CH2—CH2~CH2—NH2, where R is a mixture monium by the addition of a proton. of straight chain hydrocarbons of average molecular Any onium precursor substituted onium compound can weight of 247 derived from tallow) was prepared by add be reacted with the de?ned polymeric compound to form ing sufficient hydrochloric acid to reach the ?rst equiv the desired new compounds of this invention. For best alence point of the titration (pl-1:35) which corre results, however, we prefer to employ onium precursor sponds to neutralization of the secondary nitrogen. substituted onium compounds having no carbon atoms, Gravimetric analysis of the clay suspension showed that as in hydrazino, to as many as 100 carbon atoms in the the clay content was 13.8 grams per liter. A two-fold molecule. While R in the above formulae is preferably excess of “Duomeen T” monohydrochloride (on the basis an onium precursor substituted alkyl group having about of one gram of clay equals one milliequivalent base ex one to about 100 carbon atoms in the molecule, R can 25 change capacity) was added to 21 liters of clay suspen be aryl, alkaryl, aralkyl, cycloalkyl, cycloalkaryl, etc. sion. After mixing thoroughly on a shaker, the resultant having about one to about 100 carbon atoms. The num curdy precipitate was allowed to stand in contact with ber of onium precursors, the same or different, which can the supernatant solution for three days to ensure com be present on the onium compound is at least one and plete reaction. The precipitate was ?ltered off and is dependent, to an extent, by the length of the onium Washed with distilled water until a clear ?ltrate with a compound itself. Thus, when the onium compound is of negative chloride test (AgNO3) was obtained. This ma long length, many onium precursors can be accommo terial was dried to produce friable, off-white granules dated. In general, the number of onium precursors sub which were used to make a grease. stituted on the onium compound can be as much as ?fty EXAMPLE II or more. Among the compounds which can be employed 35 to form the anionic portion of the new compounds of A two-fold of hydrazine chloride is added to the this invention are Z-amino-ethylammonium montmoril clay suspension of Example I. After mixing thoroughly lonite, Z-aminoethylammonium Amberlite IR-lOO, sodi on a shaker, the resultant precipitate is allowed to stand um calcium 2-aminoethylammonium montmorillonite, in contact with the supernatant solution for three days to sodium calcium Z-aminoethylammonium Zeo Dur, 2 ensure complete reaction. The precipitate is ?ltered oil aminoethylarnmonium dodecylammonium bentonite, 2 and washed with distilled water until a clear ?ltrate with aminoethylammonium dodecylammonium Dowex 30, 3 a negative chloride test (AgNO3) is obtained, after which arnino-n-butylphosphonium illite, 3t-amino-n-butylphos the material is dried for subsequent use.
Recommended publications
  • Preparation of Inorganic–Organic Composites As Acid–Base Catalysts Using Hca2nb3−Xta Xo10 and Quaternary JCS-Japan Onium Salts
    Journal of the Ceramic Society of Japan 128 [1] 51-55 2020 -Japan DOI http://doi.org/10.2109/jcersj2.19119 JCS NOTE Preparation of inorganic­organic composites as acid­base catalysts using HCa2Nb3¹xTaxO10 and quaternary onium salts Masataka OGASAWARA1,³, Takuto BAN2, Kanji SAITO1,3 and Sumio KATO1 1 Graduate School of Engineering Science, Department of Materials Science, Akita University, 1–1 Tegata gakuen-machi, Akita 010–8502, Japan 2 Graduate School of Engineering and Resource Science, Department of Applied Chemistry, Akita University, 1–1 Tegatagakuen-machi, Akita 010–8502, Japan 3 Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2–8–26 Nishiwaseda, Shinjuku-ku, Tokyo 169–0054, Japan Inorganic­organic composites have been prepared using Dion­Jacobson-type layered perovskite compounds as base catalysts. Dodecyltributylphosphonium bromide (C12TBPBr), dodecyltriphenylphosphonium bromide (C12TPPBr), or dodecyltrimethylammonium chloride (C12TMACl) were used as the organic species of the + + + inorganic­organic composite. It was suggested that C12TBP ,C12TPP ,orC12TMA were intercalated by ion- + exchange with interlayer H of HCa2Nb3O10. The acid­base reaction was evaluated by consecutive deacetalization­Knoevenagel reactions. The product of the second-step reaction of the inorganic­organic composite catalysts was obtained, which suggested that the composites were acid­base bifunctional materials. For composites prepared using HCa2Nb3¹xTaxO10 (x = 1, 2, and 3) as inorganic species, the base catalytic activity decreased with decreasing fraction of organic species. Therefore, the hydrophobicity of the layered compounds affected the catalytic activity of the composite. Various catalysts should be prepared using reported layered perovskite-type compounds having various compositions. ©2020 The Ceramic Society of Japan.
    [Show full text]
  • Pdf 290.76 K
    Iranica, Vol. 14, No. 4, pp 297{302 Scientia c Sharif University of Technology, August 2007 y-Supp orted Quaternary Ammonium and Cla Cations in Triphase Catalysis and Phosphonium E ect of Cosolvent in Catalytic Activity the 1 1 1 B.L. Cutts D. Dutko and S. Khazaeli , Shab estary , N. this research, a naturally o ccurring clay mineral, hectorite, was used as the supp ort for several In ry ammonium and phosphonium cations to measure and compare their catalytic activity quaterna a triphase catalytic system. The intercalation of the catalysts in the clay has the advantage in easy catalyst recovery; the catalyst can b e removed by a simple separation technique, such of ltration or centrifugation, up on completion of the reaction. The rate of conversion of n- as yl bromide to n-butyl chloride was measured in the presence of two classes of phase transfer but Quaternary ammonium and quaternary phosphonium cations. The rate of the reaction catalyst: as measured for the biphase reactions (no supp orting clay) and for the triphase catalytic system w supp orting clay). The results have shown that quaternary phosphonium catalysts ar e (with more reactive than the corresponding quaternary ammonium catalysts. It wa s also somewhat that the intercalated catalysts could be used several times b efore losing their catalytic found y. Also, a remarkable increase in catalytic activity has b een observed using a co-solvent. activit wever, it app ears that there is a limit for the co-solvent concentration to b e e ective. Ho Based on this technique, synthetic metho ds phases.
    [Show full text]
  • Onium Method for Extraction and Spectrophotometric Determination of Zn (Ii) and Co (Ii)
    IMPACT: Journal of Research in Applied, Natural and Social Sciences (IMPACT: JRANSS) ISSN(E): Applied; ISSN(P): Applied Vol. 1, Issue 2, Dec 2015, 41-54 © Impact Journals ONIUM METHOD FOR EXTRACTION AND SPECTROPHOTOMETRIC DETERMINATION OF ZN (II) AND CO (II) SHAWKET KADHIM JAWAD & JIHAN RAZZAQ MUSLIM Department of Chemistry, College of Education for Girls, Iraq ABSTRACT UV-Vis. spectrum for complexes of Zn (II) and Co (II) extracted according to onium system from acidic HCL solution by use 2,4-dimethylpentan-3-one (2,4-DMP) as onium complex was (262nm) for Zn(II) but onium complex for Co(II) was (243nm), this method show need 0.5M HCL for extraction Zn 2+ and 0.8M HCL for Co 2+ , as well giving obey to Beer-Lambert relation at the (1-20µg) for Zn 2+ and (1-50µg) for Co 2+ . The onium complex extracted have structure + - + - H(H 2O)(2,4-DMP) 3 ;HZnCl 4 , H(H 2O)(2,4-DMP) 3 ;HCoCl 4 . This method obey to Beer-Lambert relation at the range (1-20µg) for Zn 2+ ε=16893.56L.mol -1.cm -1, D.L=6.33×10 -6µg/Ml, RSD%=0.0069µg/Ml, Sandell’s sensitivity=3.87×10 - 9µg/cm 2 and (5-50µg) for Co 2+ , ε=8918.77L.mol -1.cm -1, D.L=3.38×10 -5 µg/Ml, RSD%=0.00664µg/Ml, Sandell’s sensitivity=7.33×10 -9µg/cm 2. As well as this research involved many studies and apply for determination Zn 2+ and Co 2+ in different samples.
    [Show full text]
  • Inorganic Seminar Abstracts
    C 1 « « « • .... * . i - : \ ! -M. • ~ . • ' •» »» IB .< L I B RA FLY OF THE. UN IVERSITY Of 1LLI NOIS 546 1^52-53 Return this book on or before the Latest Date stamped below. University of Illinois Library «r L161— H41 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/inorganicsemi195253univ INORGANIC SEMINARS 1952 - 1953 TABLE OF CONTENTS 1952 - 1953 Page COMPOUNDS CONTAINING THE SILICON-SULFUR LINKAGE 1 Stanley Kirschner ANALYTICAL PROCEDURES USING ACETIC ACID AS A SOLVENT 5 Donald H . Wilkins THE SOLVENT PHOSPHORYL CHLORIDE, POCl 3 12 S.J. Gill METHODS FOR PREPARATION OF PURE SILICON 17 Alex Beresniewicz IMIDODISULFINAMIDE 21 G.R. Johnston FORCE CONSTANTS IN POLYATOMIC MOLECILES 28 Donn D. Darsow METATHESIS IN LIQUID ARSENIC TRICHLORIDE 32 Harold H. Matsuguma THE RHENI DE OXIDATION STATE 40 Robert L. Rebertus HALOGEN CATIONS 45 L.H. Diamond REACTIONS OF THE NITROSYL ION 50 M.K. Snyder THE OCCURRENCE OF MAXIMUM OXIDATION STATES AMONG THE FLUOROCOMPLEXES OF THE FIRST TRANSITION SERIES 56 D.H. Busch POLY- and METAPHOSPHATES 62 V.D. Aftandilian PRODUCTION OF SILICON CHLORIDES BY ELECTRICAL DISCHARGE AND HIGH TEMPERATURE TECHNIQUES 67 VI. £, Cooley FLUORINE CONTAINING OXYHALIDES OF SULFUR 72 E.H. Grahn PREPARATION AND PROPERTIES OF URANYL CARBONATES 76 Richard *• Rowe THE NATURE OF IODINE SOLUTIONS 80 Ervin c olton SOME REACTIONS OF OZONE 84 Barbara H. Weil ' HYDRAZINE BY ELECTROLYSIS IN LIQUID AMMONIA 89 Robert N. Hammer NAPHTHAZARIN COMPLEXES OF THORIUM AND RARE EARTH METAL IONS 93 Melvin Tecotzky THESIS REPORT 97 Perry Kippur ION-PAIR FORMATION IN ACETIC ACID 101 M.M.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,654,374 Arren Et Al
    US005654374A United States Patent (19) 11 Patent Number: 5,654,374 Arren et al. 45 Date of Patent: Aug. 5, 1997 54 CURABLE COMPOSITIONS CONTAINING Corbridge, “Phosphonium Salts.” Phosphorus, pp. 176-179, SLYL-FUNCTIONAL ONUM CURE Elsevier Scientific Publishing Company (1978). ACCELERATORS AND METHOD OF Carey et al., Advanced Organic Chemistry, Part B, 3rd ed., CURING USING SAME pp. 96-97, Plenum Press (1990). 75) Inventors: Dirk H. C. Arren, Borsbeek, Belgium; Rauhut et al., “The Free Radical Addition of Phosphines to William D. Coggio, Woodbury; Unsaturated Compounds”, Journal of Organic Chemistry, Douglas S. Parker, Afton, both of vol. 26, pp. 5138-5145 (1961). Minn. Pellon, "Reversibility in the Reaction of Phosphinyl Radi cals with Olefins", Journal of American Chemistry Society, 73) Assignee: Minnesota Mining and vol. 83, pp. 1915-1916 (1961). Manufacturing Company, St. Paul, Buckler et al., "Reactions of Phosphine with Aliphatic Minn. Aldehydes”, Journal of American Chemistry Society, vol. 83, pp. 168-173 (1961). (21) Appl. No.: 520,129 Langhans et al., "Synthese Primarer und Sekundarer Phos 22 Filed: Aug. 28, 1995 phane Durch Selektive Alkylierung von PH. Unter Phasen transferbedingungen”.Z. Naturforsch, vol. 45b, pp. 203-211 (51 int. C. m. C08F 8/100 (1990). 52 U.S. Cl. ....................... 525/326.3; 524/154; 524/186; Horváth et al., "Facile Catalyst Separation Without Water: 524/188: 524/236; 525/326.2 Fluorous Biphase Hydroformylation of Olefins' Science, 58. Field of Search ............................ 525/326.3, 326.2: vol. 266, pp. 72-75 (1994). 524/186, 188, 236, 154 Colvin, "Silanes as Reducing Agents' Silicon in Organic (56) References Cited Synthesis, pp.
    [Show full text]
  • Polymer-Supported Quaternary Onium Salts Catalysts Prepared Via Concentrated Emulsion Polymerization
    Polymer-supported quaternary onium salts catalysts prepared via concentrated emulsion polymerization L. Hong and E. Ruckenstein* Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA (Received 2 7 December 1990; accepted 24 July 7991) A concentrated emulsion has a very large volume fraction of dispersed phase (0.74-0.95 in this case) and the appearance of a gel. Three procedures based on concentrated emulsion polymerization are suggested for the preparation of polymer-supported quaternary onium salts. ( 1) Concentrated emulsions of vinylbenzyl chloride (VBC) in water are subjected to polymerization. The polymer resins thus obtained are composed of particles in the micrometre range. A large fraction of the pendant benzyl-chloride groups present in the poly(VBC) particles are converted to onium chloride by a quaternization reaction. (2) A small amount of VBC is added to a partially polymerized concentrated emulsion of styrene (containing a crosslinking agent) in water under vigorous stirring. The system is subsequently subjected to complete polymerization. The obtained polystyrene-poly(VBC) is found to consist of particles having a non-uniform poly (VBC) shell that covers a crosslinked polystyrene core. This polymer is then subjected to a quaternization reaction in order to generate a polymer substrate with bound quaternary onium chloride. (3) A concentrated emulsion of styrene in an aqueous solution of a quaternary onium chloride monomer is prepared. The onium chloride adsorbed on the surface of the dispersed phase polymerizes simultaneously with styrene when the concentrated emulsion is subjected to polymerization. The polymer-supported onium salts thus prepared were used as phase transfer catalysts in the alkylation of isopropylidene malonates.
    [Show full text]
  • Electrophilic and Free Radical Nitration of Benzene and Toluene with Various Nitrating Agents* (Aromatic Compounds/Selectivity) GEORGE A
    Proc. Natl. Acad. Sci. USA yol. 75, No. 3, pp. 1045-1049, March 1978 Chemistry Electrophilic and free radical nitration of benzene and toluene with various nitrating agents* (aromatic compounds/selectivity) GEORGE A. OLAH, HENRY C. LIN, JUDITH A. OLAH, AND SUBHASH C. NARANG Institute of Hydrocarbon Chemistry, Department of Chemistry, University of Southern California, Los Angeles, California 90007 Contributed by George A. Olah, September 29, 1977 ABSTRACT Electrophilic nitration of toluene and benzene RESULTS AND DISCUSSION was studied under various conditions with several nitrating systems. It was found that high ortlopara regioselectivity is With Nitronium Salts. Although we had previously exam- prevalent in all reactions and is independent of the reactivity ined competitive nitration using high-speed mixing (7), it was of the nitrating agent. The methyl group of toluene is predom- considered of interest to extend the studies by using more ad- inantly ortho-para directing under all reaction conditions. Steric vanced methods such as the mixing chamber of an efficient factors are considered to be important but not the sole reason Durrum-Gibson stopped-flow apparatus. Competitive nitra- for the variation in the ortho/para ratio. The results reinforce our earlier views that, in electrophilic aromatic nitrations with tions, with nitronium hexafluorophosphate in nitromethane, reactive nitrating agents, substrate and positional selectivities provided the data in Table 1. Whereas mixing still can be in- are determined in two separate steps. The first step involves a complete before reaction, with the nitration rates being very ir-aromatic-NO2 ion complex or encounter pair, whereas the fast (or reaching the encounter-controlled limit), the data seem subsequent step is of arenium ion nature (separate for the oftho, to indicate that, in the present system, both toluene and benzene meta, and para positions).
    [Show full text]
  • Chapter 2 – Acids & Bases Dr.Gergens
    Chapter 2 - Acids & Bases Dr. Gergens – SD Mesa College Mantra – We say ACID, and as Citizens of Science we say … Ammork & HClindy: Nano, Nano … Particle Demonstration A. “I am Ammork from Ammonium Hydroxide. I smell like fish. I am a little unstable. Greetings, I leave in pieces." 1 NH4OH (aq) ------> NH3 (g) + H2O (l) NH4OH aqueous aqueous solution Ammork solution B. “Hi, I am HClindy. I am bubbly …. out of a solution of HCl (aq) I turn blue litmus paper red, acid 1 HCl (aq) ------> HCl (g) + H O (l) 2 HCl aqueous solution HClindy aqueous solution C. “And together, we are Ammork & HClindy” Nano, Nano 1 NH3 (g) + 1 HCl (g) ------> particles NH4OH HCl aqueous aqueous solution solution Ammork & HClindy: Nano, Nano … Particle Demonstration A. “I am Ammork from Ammonium Hydroxide. Greetings, I leave in peaces." B. Nano Particle Demonstration - What are those particles forming in mid-air ???? 1 NH3 (g) + 1 HCl (g) ------> C. Draw the Lewis Dot for each substance • ICAO on each substance • follow all rules for drawing Lewis Dot structure • indicated full and partial charges D. Law of Electrostatics, Opposites Attract & FONClBrISCH E. Complete the reaction: • atoms • electrons • formal charges • ALL must balance • opposites attract F. Draw an electron arrow push between substances to show chemical reactivity. 2 Acid-Base Trends, Conjugates, and Reactions Dr. Gergens - SD Mesa College Periodic Trend ACIDS conjugate bases acidity increases basicity increases – – - - CH4 NH3 H2O H-F CH3 NH2 OH F – - - PH3 H2S H-Cl PH2 SH Cl acidity basicity increases
    [Show full text]
  • Synthetic Methods and Reactions*
    Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 100, Nos 2 & 3, April 1988, pp. 143-185. t~ Printed in India. Synthetic methods and reactions* G K SURYA PRAKASH and GEORGE A OLAH* Donald P and Katherine B Loker Hydrocarbon Research Institute, and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA Abstract. This review deals with the development of a series of reagents and reactions for organic synthesis using simple starting materials. A wide array of carbocationic and onium ion reagents, haiogenating agents, FriedeI-Crafts catalysts, metal-induced oxidation- reductions and silicon reagents were utilized in basic (unit) reactions, which serve as building blocks for general synthetic transformations. Keywords. Carbocations; onium ions; halogenating agents; Friedel-Crafts reactions; oxidizing agents; reducing agents; silicon reagents. Introduction Synthetic chemistry in general is directed either towards the preparation of specific molecules or towards the development of new reactions and reagents as well as improvement of existing methods. Over the years our group has been involved in developing selective reagents and methods for organic synthetic transformations using simple and inexpensive starting materials. The development of basic (unit) reactions are important as they serve as building blocks for all syntheses including those of complex target molecules such as natural products. In this review we give an account of our synthetic studies of recent years. In a short review it is not possible to give sufficient background for such a diverse and broad field or comparison with other existing methods and reactions. The reader should be aware of the large diversity of existing synthetic methods to which we hope to have made some useful contributions.
    [Show full text]
  • Fluoronium Ion in Solution
    Article Cite This: Acc. Chem. Res. XXXX, XXX, XXX−XXX pubs.acs.org/accounts Quest for a Symmetric [C−F−C]+ Fluoronium Ion in Solution: A Winding Path to Ultimate Success Maxwell Gargiulo Holl, Cody Ross Pitts, and Thomas Lectka* Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States CONSPECTUS: In this Account, we chronicle our tortuous but ultimately fruitful quest to synthesize a [C−F−C]+ fluoronium ion in solution, thus providing the last piece of the organic halonium ion puzzle. Inspiration for the project can be traced all the way back to the graduate career of the corresponding author, wherein the analogy between a [C−H− C]+ “hydrido” bridge and a hypothetical [C−F−C]+ bridge was first noted. The earliest attempt to construct a bicyclo[5.3.3]tridecane-based fluoronium ion (based on the analogous hydrido bridged cation) proved to be synthetically difficult. A subsequent ̈ attempt involving a 1,8-substituted naphthalene ring was theoretically naive in retrospect, and it resulted in a classical benzylic carbocation instead. A biphenyl-based substrate, although computationally sound, proved to be kinetically untenable. At last, after some tweaking (including a dead-end detour into a fluoraadamantane skeleton), we finally achieved success with a highly rigid, semicage precursor based on the decahydro-1,4:5,8- dimethanonaphthalene system. This strained substrate possessed a triflate leaving group to enhance its solvolytic reactivity. Detailed isotopic labeling and kinetic studies supported the generation of a symmetrical [C−F− C]+ bridge; interesting solution behavior allowed the manipulation of the rate-determining step for solvolysis depending on solvent nucleophilicity.
    [Show full text]
  • Solution Viscosity Behavior and Swelling Behavior of Polystyrene-Based Cationic Ionomers
    Polymer Journal, Vol. 28, No. I, pp 11-15 (1996) Solution Viscosity Behavior and Swelling Behavior of Polystyrene-Based Cationic Ionomers. Effects of Added Salts and Counterion Noritaka OHTANI,* Yukihiko INOUE, Yasumasa KANEKO, Akiko SAKAKIDA, Ichiro TAKEISHI, and Hiroshi FURUTANI Department of Materials Engineering & Applied Chemistry, Akita University, Akita 010, Japan (Received June 21, 1995) ABSTRACT: Dilute-solution viscosity was investigated for several polystyrene-based cationic ionomers in the presence of small salts. The results were compared with the swellability of the corresponding crosslinked ionomers. It was found that intra- and intermolecular aggregation among the ionic groups in nonpolar solvents was eliminated by the addition of the low-molecular quaternary salts, leading to increases in the solubility and the reduced viscosity of the linear ionomers as well as an increased swelling of the crosslinked ionomers. Polyelectrolyte behavior in polar organic solvents was suppressed by the minute addition of soluble salts, resulting in a decreased reduced viscosity of linear ionomers and a decreased swelling of crosslinked ionomers. These results are discussed in terms of the change in the intra- and intermolecular aggregation of quaternary salts of the ionomers. KEY WORDS Cationic Ionomers / Polystyrene-Based Ionomers / Solution Viscosity/ Quaternary Salts / Solvation / Aggregation of Ionic Groups / lonomers are a class of linear polymers containing a strongly influence the ionic aggregation even in polar relatively low level of ionic groups. The solution viscosi­ solvents. There are some quaternary salts that are soluble ty behavior of anionic ionomers has been extensive­ in nonpolar solvents. Therefore, it is very interesting to ly studied because of their importance as industrial investigate the influence of such salts on the ionic ag­ materials.
    [Show full text]
  • The Institute of Paper Chemistry
    The Institute of Paper Chemistry Appleton, Wisconsin Doctor's Dissertation Anodic Reactions of Simple Phenolic Compounds Frederick J. Vermillion, Jr. June, 1963 ANODIC REACTIONS OF SIMPLE PHENOLIC COMPOUNDS A thesis submitted by Frederick J. Vermillion, Jr. B.S. 1957, University of Maine M.S. 1958, University of Maine M.S. 1960, Lawrence College in partial fulfillment of the requirements of The Institute of Paper Chemistry for the degree of Doctor of Philosophy from Lawrence College, Appleton, Wisconsin June, 1963 TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 Previous Electrochemical Studies of Phenols 3 Acetonitrile as a Solvent for Electrochemical Studies 7 EXPERIMENTAL 9 Equipment 9 Voltammetry 9 Electrolysis 15 Millicoulometry 18 Chemicals 20 Acetonitrile 20 Supporting Electrolyte 22 Additives for Voltammetric Studies 23 Phenols and Other Electroactive Compounds 25 Electrode Pretreatment for Voltammetry 27 Voltammetric Procedure 29 Electrolysis of 2,6-Di-tert-butyl-p-cresol 31 Electrolysis of the Vanillinate Anion 33 VOLTAMMETRY: THEORY, AND ANALYSIS OF DATA 37 PHENOXONIUM ION MECHANISM IN ACETONITRILE 43 Detailed Studies on 2,6-Di-tert-butyl-p-cresol 43 Effect of Concentration 44 Effect of Hydrogen Ion Concentration 52 Buffered Solutions 55 Effect of Water and Methanol 57 Electrolysis 60 iii Discussion 67 Other Hindered Phenols 70 Correlation of Half-Wave Potentials 72 Mechanism of the Electrode Reaction 79 FREE RADICAL MECHANISM OF PHENOXIDE ANIONS IN ACETONITRILE 81 Hindered Phenols 81 Vanillinate Anion 83 Voltammetry
    [Show full text]