sustainability Article Tri-tert-butyl(n-alkyl)phosphonium Ionic Liquids: Structure, Properties and Application as Hybrid Catalyst Nanomaterials Daria M. Arkhipova 1,2,* , Vadim V. Ermolaev 2 , Vasili A. Miluykov 2 , Farida G. Valeeva 2, Gulnara A. Gaynanova 2, Lucia Ya. Zakharova 2, Mikhail E. Minyaev 1 and Valentine P. Ananikov 1 1 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia;
[email protected] (M.E.M.);
[email protected] (V.P.A.) 2 Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia;
[email protected] (V.V.E.);
[email protected] (V.A.M.);
[email protected] (F.G.V.);
[email protected] (G.A.G.);
[email protected] (L.Y.Z.) * Correspondence:
[email protected] Abstract: A series of sterically hindered tri-tert-butyl(n-alkyl)phosphonium salts (n-CnH2n+1 with n = 1, 3, 5, 7, 9, 11, 13, 15, 17) was synthesized and systematically studied by 1H, 13C, 31P NMR spec- troscopy, ESI-MS, single-crystal X-ray diffraction analysis and melting point measurement. Formation and stabilization palladium nanoparticles (PdNPs) were used to characterize the phosphonium ionic liquid (PIL) nanoscale interaction ability. The colloidal Pd in the PIL systems was described with TEM and DLS analyses and applied in the Suzuki cross-coupling reaction. The PILs were proven to be suit- able stabilizers of PdNPs possessing high catalytic activity. The tri-tert-butyl(n-alkyl)phosphonium salts showed a complex nonlinear correlation of the structure–property relationship.