The Journal of Organic Chemistry 1972 Volume.37 No.5

Total Page:16

File Type:pdf, Size:1020Kb

The Journal of Organic Chemistry 1972 Volume.37 No.5 VOLUM E 37 MARCH 10, 1972 NUMBER 5 J O C E A H THE JOURNAL OF Organic C h e m i s t r y * PUBLISHED BIWEEKLY BY THE AMERICAN CHEMICAL SOCIETY t h e j o u r n a l o f O rganic Chem istry Published, biweekly by the American Chemical Society at 20th and Northampton Streets, Easton, Pennsylvania EDITOR-IN-CHIEF: FREDERICK D. GREENE Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 SENIOR EDITORS W e h n e r H e r z J a m e s A. M o o r e M a r t i n A. S c h w a r t z Florida State University University of Delaware Florida State University Tallahassee, Florida Newark, Delaware Tallahassee, Florida ASSISTANT EDITOR: T h e o d o r a W. G r e e n e BOARD OF EDITORS R o n a l d C . D . B r e s l o w C h a r l e s H . D e P u y J a m e s A. M a r s h a l l E d w a r d C . T a y l o r J o s e p h F . B u n n e t t J a c k J. F o x J a m e s C . M a r t i n D a v i d J . T r e c k e r C l i f f o r d A. B u n t o n R o b e r t J. H ig h e t G e o r g e A. O l a h E d w i n F . U l l m a n M ic h a e l P . C a v a E a r l S . H u y s e r L e o A. P a q u e t t e E d g a r W . W a r n h o f f O r v i l l e L . C h a p m a n W a l t e r L w o w s k i H o w a r d E . S im m o n s K e n n e t h B . W i b e r g G e r h a r d L . C l o s s EX-OFFICIO MEMBERS: G e o r g e H. C o l e m a n , Wayne state University JEREMIAH P. F r e e m a n , University of Notre Dame (Secretary-Treasurer of the Division of Organic Chemistry of the American Chemical Society) MANAGER, EDITORIAL PRODUCTION: C h a r l e s R. B e r t s c h Editorial Production Office, American Chemical Society, 20th and Northampton Sts., Easton, Pennsylvania 18042 © Copyright, 1972, by the American Chemical Society. partment, American Chemical Society, 1155 Sixteenth St., Published biweekly by the American Chemical Society at N.W., Washington, D. C. 20036. Such notification should 20th and Northampton Sts., Easton, Pa. 18042. Second- include both old and new addresses and postal ZIP number. class postage paid at Washington, D. C., and at additional Please send an old address label, if possible. Allow 4 weeks mailing offices. for change. Production Staff: Manager, Editorial Production, Subscriptions should be renewed promptly, to avoid a C h a r l e s R. B e r t s c h ; Production Editor, E i l e e n S e g a l ; break in your series. Orders should be sent to the Sub­ Assistant Editor, F e r n S . J a c k s o n ; Editorial Assistants, scription Service Department, American Chemical Society, A n d r e w J. D’A m e l io and D e b o r a h K. M i l l e r . 1155 Sixteenth St., N.W., Washington, D. C. 20036. Advertising Office: Century Communication Corporation, 142 East Ave., Norwalk, Conn. 06851. Subscription rates for 1972: $20.00 per volume to mem­ bers of the ACS and $60.00 per volume to all others. Those The American Chemical Society and the Editors of The interested in becoming members should write to the Ad­ Journal of Organic Chemistry assume no responsibility for missions Department, American Chemical Society, 1155 the statements and opinions advanced by contributors. Sixteenth St., N.W., Washington, D. C. 20036. Add Business and Subscription Information $5.00 per subscription for Canada and countries belonging Correspondence concerning business matters should be to the Postal Union, and $6.00 for all other countries. sent to the Subscription Service Department, American Single copies for current year: $3.00. Postage, single Chemical Society, 1155 Sixteenth St., N.W., Washington, copies: to Canada and countries in the Pan-American D. C. 20036. Union, $0.15; all other countries, $0.20. Rates for back Claims for missing numbers will not be allowed (1) if re­ issues from Volume 20 to date are available from the Special ceived more than 60 days from date of issue plus time Issues Sales Department, 1155 Sixteenth St., N.W., Wash­ normally required for postal delivery of journal and claim; ington, D. C. 20036. (2) if loss was due to failure to notify the Subscription This publication and the other ACS periodical publications Service Department of a change of address; or (3) if the are now available on microfilm. For information write to reason for the claim is that a copy is “ missing from files.” MICROFILM, Special Issues Sales Department, 1155 Six­ Change of address: Notify Subscription Service De- teenth St., N.W., Washington, D. C. 20036. Notice to Authors last printed in the issue of January 14, 1972 AMERICAN CHEMICAL SOCIETY, 1155 Sixteenth Street, N.W., Washington, D. C. 20036 Executive Director: F r e d e r i c k T . W a l l BOOKS AND JOURNALS DIVISION J o h n K C r u m J o s e p h H . K u n e y R u t h R e y n a r d Director Head, Business Operations Department Assistant to the Director JOCEA h 37(5) 683-804 (1972) THE JOURNAL OF Organic Chemistry V o l u m e 3 7 , N u m b e r 5 M a r c h 1 0 , 1 9 7 2 E. T . M c B e e ,* E. P. W e s s e l e r , 683 Hexachlorofulvene. I. Synthesis and D . L. C r a i n , R . H u r n a u s , a n d T . H o d g in s Reactions under Diels-Alder Conditions D a v i d B. K n i g h t ,* R a y L. H a r t l e s s , 688 Protonation and Deuteration of a n d D a v i d A . J a r v i s the Isopropenylcyclopentadienyl Anion. Trapping of the Isomeric Product Mixture D e w e y J. N o r t h in g t o n 693 Reaction of a n d W . M . J o n e s * 3,3-Dipheny 1-1,2-irares-b is (iV-nitrosourethano) cyclopropane with Methanolic Sodium Methoxide. Ring Opening between the Nitrogen Functions H . K . H a l l , J r .,* a n d R . C. J o h n s o n 697 3-Isopropyl-l,3-diazabicyclo [3.3.1 ]nonan-2-one, a Simple Bicyclic Urea with a Bridgehead Nitrogen Atom T h o m a s G ib s o n 700 Ring Expansion of Bicyclo [2.1.1 ]hexan-2-one and Related Compounds S t e f a n o M e r l i n o , G i o v a n n i L a m i , 703 The Crystal Structure of B r u n o M a c c h ia ,* F r a n c o M a c c h i a , l-(p-Bromophenyl)-l,2-epoxycyclohexane. a n d L u i g i M o n t i Evidence for Three-Ring Phenyl Pseudoconjugation D r u r y C a i n e ,* A n a M . A l e j a n d e , 706 Photochemical Rearrangements of Bicyclic K o M i n g , a n d W i l l i a m J. P o w e r s , III 6/5-Fused Cross-Conjugated Cyclohexadienones and Related Compounds H e l e n H . O n g a n d E v e r e t t L . M a y * 712 Photocyclizations. II. Synthesis of Iminoethanophenanthridine (Seven-Membered Ring) Homologs J. H o d g e M a r k g r a f * a n d 717 Strained Heterocyclic Systems. VI. R o b e r t J. K a t t Basicities of Some Quinoxalines R i c h a r d J. S u n d b e r g ,* 719 The o-Styrylnitrene Route to 2-Substituted Indoles. H e n r y F. R u s s e l l , Pyrolysis of o-Azidostyrenes W o o d f in V . L ig o n , J r ., a n d L o n g -S u L in G. J. M i k o l a n d J.
Recommended publications
  • Amide Bond Formation and Peptide Coupling
    Tetrahedron 61 (2005) 10827–10852 Tetrahedron report number 740 Amide bond formation and peptide coupling Christian A. G. N. Montalbetti* and Virginie Falque Evotec, 112 Milton Park, Abingdon OX14 4SD, UK Received 2 August 2005 Available online 19 September 2005 Contents 1. Introduction ................................................................. 10828 2. Amide bond formation: methods and strategies ....................................... 10828 2.1. Acyl halides . .......................................................... 10829 2.1.1. Acyl chlorides .................................................... 10829 2.1.1.1. Acyl chloride formation ...................................... 10829 2.1.1.2. Coupling reactions with acyl chlorides ........................... 10831 2.1.1.3. Limitations of acyl chlorides .................................. 10831 2.1.2. Acyl fluorides .................................................... 10831 2.1.3. Acyl bromides .................................................... 10832 2.2. Acyl azides . .......................................................... 10832 2.3. Acylimidazoles using CDI ................................................. 10833 2.4. Anhydrides . .......................................................... 10834 2.4.1. Symmetric anhydrides .............................................. 10834 2.4.2. Mixed anhydrides .................................................. 10834 2.4.2.1. Mixed carboxylic anhydrides .................................. 10834 2.4.2.2. Mixed carbonic anhydrides ...................................
    [Show full text]
  • Psychedelic Resource List.Pdf
    A Note from the Author… The Psychedelic Resource List (PRL) was born in 1994 as a subscription-based newsletter. In 1996, everything that had previously been published, along with a bounty of new material, was updated and compiled into a book. From 1996 until 2004, several new editions of the book were produced. With each new version, a decrease in font size correlated to an increase in information. The task of revising the book grew continually larger. Two attempts to create an updated fifth edition both fizzled out. I finally accepted that keeping on top of all of the new books, businesses, and organizations, had become a more formidable challenge than I wished to take on. In any case, these days folks can find much of what they are looking for by simply using an Internet search engine. Even though much of the PRL is now extremely dated, it occurred to me that there are two reasons why making it available on the web might be of value. First, despite the fact that a good deal of the book’s content describes things that are no longer extant, certainly some of the content relates to writings that are still available and businesses or organizations that are still in operation. The opinions expressed regarding such literature and groups may remain helpful for those who are attempting to navigate the field for solid resources, or who need some guidance regarding what’s best to avoid. Second, the book acts as a snapshot of underground culture at a particular point in history. As such, it may be found to be an enjoyable glimpse of the psychedelic scene during the late 1990s and early 2000s.
    [Show full text]
  • Download Book Sacred Journeys As
    Sa cred Jour neys: ©2015, 2016, 2017 Artscience Im ages: authors and friends, com pany and press pic- tures, PhotoDisc, Corel, Wikipedia, Mindlift Beeldbankiers. Dis tri bu tion: Boekencoöperatie Nederland u.a. email: [email protected] www.boekcoop.nl www.boekenroute.nl (webshop) All rights re served, in clud ing dig i tal re dis tri bu tion and ebook First editiion: De cem ber 2015, Sec ond, ap pended edition April 2016 Third edition Jan. 2017 ISBN 9789492079091 pub lisher: Onderstroomboven Collectief im print: Artscience. Pa perback price € 6,95 Con tents 1 Pre fa ce 7 2 Tripping: the process 10 Journey to the dream 10 The pre pa ra ti on 11 Pha ses, gig gling 13 Iso la ti on, li mi na li ty, the dark 14 Peak 19 Sit ters: de sig na ted hel pers 22 The mys ti cal, re gres si on 26 Rebirth and de ath 27 The end of the trip: co ming down 28 Over sti mu la ti on 29 The af ter-ef fects 30 3 Set and Set ting 32 Agen da 33 Pla ce 34 With whom, with what? 34 Bon ding and trans fe ren ce 35 Dif fe rent ways of using 36 4 Pur po se 37 Dee per goals 38 Over co ming fear 40 To le ran ce 41 5 Ri tu als and Group ses sions 42 He a ling jour neys, mys ti cal in sights 44 Me di cal use 45 Re pe ti ti on, loops 46 Stages of a ritu al 49 Ri tes of pas sa ge: ini ti a ti on 50 Contact – alignment - group mind 52 Struc tu re amidst cha os 54 To copy an existing ritu al or to crea te somet hing new 54 6 Sanc tu a ry, safe spa ce 57 Sa fe ty first 57 Sa cred spa ce, tem po ra ry au to no mous zone 58 Hol ding spa ce and cir cle in te gri ty 61 7 His to ry
    [Show full text]
  • D. M. Turner - Table of Contents
    Sssshhhh!! Don't blow our Cover!! file:///C|/Documents%20and%20Settings/All%20Users/Docume...r%20-%20the%20essential%20psychedelic%20guide/cover.html4/14/2004 9:40:08 PM D. M. Turner - Table of Contents TABLE OF CONTENTS Publication Information Foreword to the HTML Edition - by Forbidden Donut Introduction A Brief History of Psychedelics - From the Creation of Gods to the Demise of Psychedelic Reverence in Modern Times Psychedelic Safety - Understanding the Tools I - Traditional Psychedelics LSD - Molecule of Perfection Psilocybin Mushrooms - The Extraterrestrial Infiltration of Earth? Mescaline: Peyote & San Pedro Cactus - Shamanic Sacraments II - Empathogens Ecstasy - The Heart Opening Psychedelic 2C-B - The Erotic Empathogen III - Exotic Highs of a Connoisseur DMT - Candy for the Mind file:///C|/Documents%20and%20Settings/All%20Users/Doc...%20-%20the%20essential%20psychedelic%20guide/toc.html (1 of 2)4/14/2004 9:40:34 PM D. M. Turner - Table of Contents Harmala Alkaloids - Link to the Ancient Spirits Ketamine - The Ultimate Psychedelic Journey Multiple Combinations - Cosmic Synergism Further Explorations - Where do we go from Here? DMT ~ Water Spirit - A Magical Link Psychedelic Reality - CydelikSpace Bibliography Purchasing The Essential Psychedelic Guide Back Cover Text file:///C|/Documents%20and%20Settings/All%20Users/Doc...%20-%20the%20essential%20psychedelic%20guide/toc.html (2 of 2)4/14/2004 9:40:34 PM D. M. Turner - Publication Information The Essential Psychedelic Guide - By D. M. Turner First Printing - September 1994 Copyright ©1994 by Panther Press ISBN 0-9642636-1-0 Library of Congress Catalog registration in progress Printed in the United States of America Cover art by Nick Philip, SFX Lab Illustrations on pages 31, 41, 45, and 59 by P.B.M.
    [Show full text]
  • Asymmetric Synthesis of Α-N,N-Dialkylamino Alcohols by Transfer Hydrogenation of N,N-Dialkylamino Ketones
    Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 67 No. 6 pp. 717ñ721, 2010 ISSN 0001-6837 Polish Pharmaceutical Society ASYMMETRIC SYNTHESIS OF α-N,N-DIALKYLAMINO ALCOHOLS BY TRANSFER HYDROGENATION OF N,N-DIALKYLAMINO KETONES TOMASZ KOSMALSKI Department of Organic Chemistry, Collegium Medicum, Nicolaus Copernicus University, M. Curie-Sk≥odowska 9, 85-067, Bydgoszcz, Poland Keywords: β-amino alcohols, Noyori`s catalyst, asymmetric transfer hydrogenation (ATH) β-Amino alcohols are important physiological- instrument. MS spectra were recorded on an AMD ly active compounds (1, 2a,b), also used as ligands 604 spectrometer. Optical rotations were measured (3, 4), and precursors of oxazaborolidines (5). on an Optical Activity PolAAr 3000 automatic Various methods for their asymmetric synthesis, polarimeter. GC analyses were performed on a such as the reduction of α-functionalized ketones Perkin-Elmer Auto System XL chromatograph, with hydrides (6, 7), catalytic hydrogenation of HPLC analyses were performed on a Shimadzu LC- amino ketones (8), reduction with borane/oxaza- 10 AT chromatograph. Melting points were deter- borolidines (9, 10), and other approaches (11ñ13) mined in open glass capillaries and are uncorrected. have been developed. However, the existing meth- Elemental analyses were performed by the ods are not ideal. For example, chiral β-chloro Microanalysis Laboratory, Institute of Organic hydrins, obtained by the reduction of α-chloro Chemistry, Polish Academy of Sciences, Warszawa. ketones, can be transformed into β-amino alcohols Silica gel 60, Merck 230ñ400 mesh was used for by treatment with secondary amines, however, mix- preparative column chromatography. Macherey- tures of isomers are sometimes formed (14). Nagel Polygram Sil G/UV254 0.2 nm plates were Asymmetric transfer hydrogenation (15, 16) used for analytical TLC.
    [Show full text]
  • Phytochemical Profiling of Coryphantha Macromeris
    molecules Article Phytochemical Profiling of Coryphantha macromeris (Cactaceae) Growing in Greenhouse Conditions Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Emmanuel Cabañas-García 1, Carlos Areche 2, Juan Jáuregui-Rincón 1 , Francisco Cruz-Sosa 3,* and Eugenio Pérez-Molphe Balch 1 1 Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, 20131 Aguascalientes, Mexico; [email protected] (E.C.-G.); [email protected] (J.J.-R.); [email protected] (E.P.-M.B.) 2 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile; [email protected] 3 Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa. Av. San Rafael Atlixco 186, Col. Vicentina C.P., 09340 Ciudad de México, Mexico * Correspondence: [email protected]; Tel.: +52-555-804-4600 (ext. 2846) Academic Editor: Brendan M Duggan Received: 25 January 2019; Accepted: 14 February 2019; Published: 15 February 2019 Abstract: Chromatographic separation combined with mass spectrometry is a powerful tool for the characterization of plant metabolites because of its high sensitivity and selectivity. In this work, the phytochemical profile of aerial and radicular parts of Coryphantha macromeris (Engelm.) Britton & Rose growing under greenhouse conditions was qualitatively investigated for the first time by means of modern ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-PDA-HESI-Orbitrap-MS/MS). The UHPLC-PDA-HESI-Orbitrap-MS/MS analysis indicated a high complexity in phenolic metabolites. In our investigation, 69 compounds were detected and 60 of them were identified. Among detected compounds, several phenolic acids, phenolic glycosides, and organic acids were found. Within this diversity, 26 metabolites were exclusively detected in the aerial part, and 19 in the roots.
    [Show full text]
  • Phosphonium Salts and P-Ylides Maurizio Selva,* Alvise Perosa and Marco Noe` DOI: 10.1039/9781782626930-00132
    Phosphonium salts and P-ylides Maurizio Selva,* Alvise Perosa and Marco Noe` DOI: 10.1039/9781782626930-00132 1 Introduction The present review is aimed at describing the state-of-the-art, for the period January–December 2014, of two pillar classes of phosphorus- containing compounds, the phosphonium salts and ylides. The import- ance of these derivatives is revealed by the very high number of references cited herein. For the Reader’s convenience, topics are organized to offer an introductory survey on the methods of preparation and charac- terisation of both types of compounds, followed by an analysis of appli- cative and curiosity driven research. A special section is devoted to phosphonium-based ionic liquids (PILs). 2 Phosphonium salts 2.1 Synthesis and characterisation The quaternisation of phosphines with electrophiles or Brønsted acids is doubtlessly the most typical and simple reaction for the preparation of phosphonium salts. The preparation of most phosphonium salts re- ported in the period surveyed by this review followed this approach. The structures of these compounds are summarised in Fig. 1. Mechanistic studies on the quaternisation reaction were performed by Salin and co-workers.1 They investigated the strong acceleration of the quaternization of triphenylphosphine using maleic and cis-aconitic acids as electrophiles. The kinetic effect was rationalized on the basis of spatial structures of the generated zwitterions. Rates and energy barriers of degenerate halide substitution on tetra- coordinate halophosphonium cations were measured using NMR tech- niques (VT and EXSY) and computational methods by Gilheany and coworkers.2 Experiments were in favour of a two-step mechanism for the formation of a pentacoordinate dihalophosphorane via backside attack followed by dissociation.
    [Show full text]
  • EEG and Behavioral Effects in Animals of Some Amphetamine Derivatives with Hallucinogenic Properties
    BEHAVIORAL BIOLOGY, 7, 401-414 (1972), Abstract No. 1-39R EEG and Behavioral Effects in Animals of Some Amphetamine Derivatives with Hallucinogenic Properties V. FLORIO, J. A. FUENTES, H. ZIEGLER and V. G. LONGO Laboratori di Chimica Terapeutica, Istituto Superiore di Sanita, Rome, Italy A study on the central effects of four methoxy-substituted ampheta- mines, of myristicin, and of macromerine has been carried out using rats, rabbits, and cats bearing chronically implanted electrodes. In the rat and in the rabbit the amphetamine derivatives gave rise to a syndrome consisting of a mixture of depression and excitation. Activation of the EEG occurred after small doses of all the drugs, while high doses induced the appearance of spikes and, in some instances, of a grand mal seizure. In the rat, neurovegetative disturbances (vasodilatation) and ejaculation were observed with some of the compounds. Myristicin and macromerine influenced only slightly the EEG and the behavior. The cats, which were trained to an instrumental reward discrimination response, proved to be the most sensitive animal to the effect of these substances. The four amphetamine derivatives, in appropriate dosage, blocked conditioned behavior and caused bizarre behavioral ("hallucinatory") patterns. The behavioral alterations were in- dependent from the modifications of the EEG. A clear-cut EEG activation has been observed only after DOM, while the other derivatives caused a mixed tracing and, with higher doses, synchronization. The correlation between the central activity of these compounds in the various animal species tested in these experiments and their hallucinogenic properties in man indicate that the conditioned cat is the best suited animal for research in this field, since a good relationship exists between the order of potency in disrupting the conditioned response and the human data.
    [Show full text]
  • 誌上発表(原著論文) Summaries of Papers Published in Other Journals(Original Papers)
    206 国立医薬品食品衛生研究所報告 第129号(2011) 誌上発表(原著論文) Summaries of Papers Published in Other Journals(Original Papers) Sugiyama, K., Muroi, M., Tanamoto, K., Nishijima, M., response mediator protein-2(CRMP-2 ; 61 kDa)de- Sugita-Konishi, Y. : Deoxynivalenol and nivalenol creased in the late stages of the disease, while the inhibit lipopolysaccharide-induced nitric oxide amount of its truncated form(56 kDa)increased to production by mouse macrophage cells comparable levels observed for the full-length form. Toxicol. Lett., 192, 150-154(2010) Detailed analysis by liquid chromatography-electrospray Deoxynivalenol(DON)and nivalenol(NIV),tricho- ionization-tandem mass spectrometry showed that the thecene mycotoxins, are secondary metabolites produced 56-kDa form(named CRMP-2-C)lacked the sequence by Fusarium fungi. Trichothecene mycotoxins cause from serine518 to the C-terminus, including the C- immune dysfunction, thus leading to diverse responses terminal phosphorylation sites important for the regula- to infection. The present study evaluated the effect of tion of axonal growth and axon-dendrite specification in DON and NIV on nitric oxide(NO)production by RAW developing neurons. The invariable size of the mRNA 264 cells stimulated with lipopolysaccharide(LPS). LPS- transcript in Northern blot analysis suggested that the induced NO production was reduced in the presence of truncation was due to post-translational proteolysis. these toxins. The transcriptional activation and expres- By overexpression of CRMP-2-C in primary cultured sion of inducible NO synthase(iNOS)by LPS were also neurons, we observed the augmentation of the develop- repressed by these toxins. DON or NIV inhibited LPS- ment of neurite branch tips to the same levels as for induced expression of interferon-beta(IFN-beta),which CRMP-2T514A/T555A, a non-phosphorylated mimic of plays an indispensable role in LPS-induced iNOS the full-length protein.
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Advanced Studies on the Synthesis of Organophosphorus Compounds
    ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DOTTORATO DI RICERCA IN SCIENZE CHIMICHE (XIX° ciclo) Area 03 Scienze Chimiche-CHIM/06 Chimica Organica Dipartimento di Chimica Organica “A. Mangini” Coordinatore: Chiar.mo Prof. Vincenzo Balzani Advanced Studies on the Synthesis of Organophosphorus Compounds Dissertazione Finale Presentata da: Relatore: Dott. ssa Marzia Mazzacurati Prof. Graziano Baccolini Co-relatore: Dott.ssa Carla Boga INDEX Index: Keywords…………………………………………………………….………….VII Chapter 1…………………………………………………………………………..3 GENERAL INTRODUCTION ON PHOSPHORUS CHEMISTRY 1.1 Organophosphorus Chemistry………………………………………………….4 1.1.1 Phosphines………………………………………………………………..5 1.1.2 Phosphonates……………………………………………………………..6 1.1.3 Phosphites………………………………………………………………...7 1.2 Uses of Organophosphorus Compounds………………………………………..7 1.2.1 Agricultural Application………………………………………………….8 1.2.2 Catalysis……………………………………………………………..…....9 1.2.3 Organophosphorus Conpounds in Medicine…………………………….11 1.2.4 Phosphorus in Biological Compounds…………………………………..12 1.3 References……………………………………………………………………..15 Chapter 2…………………………………………………………………………17 THE HYPERCOORDINATE STATES OF PHOSPHORUS 2.1 The 5-Coordinate State of Phosphorus……………………………………….17 2.2 Pentacoordinated structures and their non rigid character…………………….18 2.3 Permutational isomerization…………………………………………………..19 2.3.1 Berry pseudorotation……………………………………………………20 2.3.2 Turnstile rotation………………………………………………………..21 2.4 The 6-Coordinate State of Phosphorus……………………………………….22 2.5 References…………………………………………………………………......24 I Chapter
    [Show full text]
  • Tri-Tert-Butyl(N-Alkyl)Phosphonium Ionic Liquids: Structure, Properties and Application As Hybrid Catalyst Nanomaterials
    sustainability Article Tri-tert-butyl(n-alkyl)phosphonium Ionic Liquids: Structure, Properties and Application as Hybrid Catalyst Nanomaterials Daria M. Arkhipova 1,2,* , Vadim V. Ermolaev 2 , Vasili A. Miluykov 2 , Farida G. Valeeva 2, Gulnara A. Gaynanova 2, Lucia Ya. Zakharova 2, Mikhail E. Minyaev 1 and Valentine P. Ananikov 1 1 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia; [email protected] (M.E.M.); [email protected] (V.P.A.) 2 Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; [email protected] (V.V.E.); [email protected] (V.A.M.); [email protected] (F.G.V.); [email protected] (G.A.G.); [email protected] (L.Y.Z.) * Correspondence: [email protected] Abstract: A series of sterically hindered tri-tert-butyl(n-alkyl)phosphonium salts (n-CnH2n+1 with n = 1, 3, 5, 7, 9, 11, 13, 15, 17) was synthesized and systematically studied by 1H, 13C, 31P NMR spec- troscopy, ESI-MS, single-crystal X-ray diffraction analysis and melting point measurement. Formation and stabilization palladium nanoparticles (PdNPs) were used to characterize the phosphonium ionic liquid (PIL) nanoscale interaction ability. The colloidal Pd in the PIL systems was described with TEM and DLS analyses and applied in the Suzuki cross-coupling reaction. The PILs were proven to be suit- able stabilizers of PdNPs possessing high catalytic activity. The tri-tert-butyl(n-alkyl)phosphonium salts showed a complex nonlinear correlation of the structure–property relationship.
    [Show full text]