Unique EBA Codes of the Previous Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Unique EBA Codes of the Previous Analysis Appendix 3: Unique EBA Codes of the Previous Analysis APPENDIX 3: Unique EBA codes of the previous analysis NIQUE codes were assigned to EBAs during Unique New EBA New EBA name Uthe course of the project, 1988–1997, and first code number appeared in print in Putting biodiversity on the map B10 038 Colombian East Andes (ICBP 1992). However, because of changes to the B11 065 Orinoco-Negro white-sand forests B12 040 Colombian inter-Andean slopes analysis—including the splitting and combining of B13 039 Colombian inter-Andean valleys some EBAs, and the dropping and adding of others— B14+B15* 041 Chocó that coding no longer reflects geography. For this B16 031 Galápagos Islands 042 Northern Central Andes B17* book new EBA numbers have therefore been as- {043 Central Andean páramo signed in a geographical sequence. The following list B18 044 Ecuador–Peru East Andes shows the relationship between the unique codes and B19+B23* 066 Upper Amazon–Napo lowlands these new numbers so that comparisons can be made B20+B26* 045 Tumbesian region 046 Southern Central Andes B21* with ICBP (1992) and with material published subse- {043 Central Andean páramo quent to it (some unique codes were assigned after B22 048 Marañón valley the publication of ICBP 1992: such changes are B23+B19* 066 Upper Amazon–Napo lowlands B24 047 Andean ridge-top forests marked * and are explained fully in Appendix 4, B25 049 North-east Peruvian cordilleras p. 781). B26+B20* 045 Tumbesian region B27+B31* 051 Peruvian high Andes Unique New EBA New EBA name B28 050 Junín puna code number B29 053 Peruvian East Andean foothills B30 068 South-east Peruvian lowlands A01 001 California B31+B27* 051 Peruvian high Andes A02 003 Guadalupe Island B32 052 Peru–Chile Pacific slope A03 002 Baja California B33 055 Bolivian and Peruvian upper yungas A04 006 Sierra Madre Occidental and 054 Bolivian and Peruvian lower yungas B34* trans-Mexican range {057 Bolivian and Argentine yungas A05 005 North-west Mexican Pacific slope B35+B37* 056 Bolivian and Argentine high Andes A06 010 Northern Sierra Madre Oriental B36* — dropped A07 011 North-east Mexican Gulf slope B37+B35* 056 Bolivian and Argentine high Andes A08 007 Central Mexican marshes B38* — dropped 015 Yucatán peninsula coastal scrub A09* B39 058 Sierras Centrales of Argentina {016 Cozumel Island B40 059 Juan Fernández Islands A10 004 Socorro Island 060 Central Chile 012 Southern Sierra Madre Oriental B41* A11* {061 Chilean temperate forests {008 Balsas region and interior Oaxaca B42 062 Southern Patagonia A12 009 Sierra Madre del Sur B43 067 Amazon flooded forests A13 014 Isthmus of Tehuantepec B44* — dropped A14 018 North Central American highlands B45 069 Fernando de Noronha A15 017 North Central American Pacific slope B46 070 North-east Brazilian caatinga A16 019 Central American Caribbean slope B47 071 Atlantic slope of Alagoas and A17 021 South Central American Pacific slope Pernambuco A18 020 Costa Rica and Panama highlands B48 072 Deciduous forests of Bahia A19 023 Darién lowlands B49 074 Deciduous forests of Minas Gerais and A20 024 Darién highlands Goiás A21 022 Cocos Island B50 073 Central Brazilian hills and tablelands 025 Cuba A22* B51+B52* 075 Atlantic forest lowlands {026 Bahamas B53+B54* 076 Atlantic forest mountains A23 027 Jamaica B55 077 Argentine Mesopotamian grasslands A24 028 Hispaniola B56* 063 Rio Branco gallery forests A25 029 Puerto Rico and the Virgin Islands B57* 057 Bolivian and Argentine yungas A26 030 Lesser Antilles B58* 061 Chilean temperate forests A27* 008 Balsas region and interior Oaxaca B59* — dropped A28* 026 Bahamas B60* 043 Central Andean páramo A29* 016 Cozumel Island C01 120 Madeira and the Canary Islands A30* 013 Los Tuxtlas and Uxpanapa C02 078 Cape Verde Islands B01* — dropped C03 084 Upper Guinea forests B02 064 Tepuis C04 086 Cameroon mountains B03 032 Caripe–Paria region C05 085 Cameroon and Gabon lowlands B04 033 Cordillera de la Costa Central C06 083 Príncipe B05* — dropped C07 082 São Tomé B06 034 Cordillera de Mérida C08 087 Western Angola B07 035 Caribbean Colombia and Venezuela 079 Tristan Islands C09* B08 036 Santa Marta mountains {080 Gough Island B09 037 Nechí lowlands C10 122 Caucasus 779 Endemic Bird Areas of the World Unique New EBA New EBA name Unique New EBA New EBA name code number code number C11 121 Cyprus E04 152 Negros and Panay C12 119 Mesopotamian marshes E05 153 Cebu C13 118 South-west Arabian mountains E06 156 Palawan C14 117 Socotra E07+E08* 154 Mindanao and the Eastern Visayas C15 116 North Somali mountains E09 155 Sulu archipelago C16 115 Central Ethiopian highlands E10 157 Bornean mountains C17 114 South Ethiopian highlands E11 158 Sumatra and Peninsular Malaysia C18 112 Central Somali coast E12 159 Enggano C19 107 Eastern Zaïre lowlands E13 160 Java and Bali forests C20 106 Albertine Rift mountains E14 161 Javan coastal zone C21 109 Kenyan mountains E15 162 Northern Nusa Tenggara C22 108 Serengeti plains E16 163 Sumba C23 111 East African coastal forests E17 164 Timor and Wetar C24 105 Tanzania–Malawi mountains E18 165 Banda Sea Islands C25* — dropped E19 167 Sangihe and Talaud C26 104 Eastern Zimbabwe mountains E20+E21* 166 Sulawesi C27 092 South-east African coast E22 168 Banggai and Sula Islands C28 091 Southern African grasslands E23 169 Buru C29 088 Cape fynbos E24 170 Seram C30 100 Granitic Seychelles E25 171 Northern Maluku C31 099 Aldabra E26 172 West Papuan lowlands C32+C33* 098 Comoro Islands E27 173 West Papuan highlands C34 093 West Malagasy dry forests E28 174 Geelvink Islands C35 094 East Malagasy wet forests E29 175 North Papuan mountains C36 095 East Malagasy wetlands E30 176 North Papuan lowlands C37 096 West Malagasy wetlands E31 177 Adelbert and Huon ranges C38 097 South Malagasy spiny forests E32+E33* 178 Central Papuan mountains C39 101 Réunion 180 Trans-Fly E34* C40 102 Mauritius {179 South Papuan lowlands C41 103 Rodrigues E35 188 Christmas Island C42* — dropped E36 187 North-west Australia C43* 113 Jubba and Shabeelle valleys E37 181 Cape York C44* 090 Lesotho highlands E38 182 Queensland wet tropics C45* 110 Pemba E39 186 South-west Australia C46* 089 South African forests E40 184 South-east Australia C47* 080 Gough Island E41 183 Eastern Australia C48* 081 Annobón E42 185 Tasmania D01 127 Taklimakan Desert E43* — dropped D02 128 Western Himalayas E44* 179 South Papuan lowlands D03* — dropped F01 189 Mariana Islands D04 123 Western Ghats F02 191 Yap Islands D05 124 Sri Lanka F03 190 Palau D06 134 Eastern Tibet F04 192 East Caroline Islands D07 133 Southern Tibet F05 193 Admiralty Islands D08+D10* 130 Eastern Himalayas F06 194 St Matthias Islands D09 131 Assam plains F07 195 New Britain and New Ireland D10+D08* 130 Eastern Himalayas F08 196 D’Entrecasteaux and Trobriand Islands D11 135 Qinghai mountains F09 197 Louisiade archipelago D12 137 Central Sichuan mountains F10+F11* 198 Solomon group D13 138 West Sichuan mountains F12 199 Rennell and Bellona D14 140 Chinese subtropical forests F13 200 Vanuatu and Temotu D15 139 Yunnan mountains F14 201 New Caledonia D16 132 Irrawaddy plains F15 203 Samoan Islands D17 125 Andaman Islands F16 202 Fiji D18 126 Nicobar Islands F17 205 Norfolk Island D19 143 Annamese lowlands F18 204 Lord Howe Island D20 142 Hainan F19 206 North Island of New Zealand D21 145 Da Lat plateau F20 207 South Island of New Zealand D22 144 South Vietnamese lowlands F21 208 Auckland Islands D23 136 Shanxi mountains F22 209 Chatham Islands D24 141 South-east Chinese mountains F23 216 Laysan Island D25 149 Taiwan F24 217 Central Hawaiian Islands 148 Nansei Shoto F25 218 Hawai’i D26* {146 Izu Islands F26 212 Marquesas Islands D27 147 Ogasawara Islands F27 213 Society Islands D28* 129 Central Himalayas F28 214 Tuamotu archipelago D29* 146 Izu Islands F29 210 Southern Cook Islands E01+E02* 151 Luzon F30 215 Henderson Island E03 150 Mindoro F31* 211 Rimatara 780.
Recommended publications
  • Regional Sources of Precipitation in the Ethiopian Highlands Regionala Källor Till Nederbörden I Det Etiopiska Höglandet
    Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2015: 2 Regional Sources of Precipitation in the Ethiopian Highlands Regionala källor till nederbörden i det Etiopiska höglandet Elnaz Ashkriz DEPARTMENT OF EARTH SCIENCES INSTITUTIONEN FÖR GEOVETENSKAPER Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2015: 2 Regional Sources of Precipitation in the Ethiopian Highlands Regionala källor till nederbörden i det Etiopiska höglandet Elnaz Ashkriz Copyright © Elnaz Ashkriz and the Department of Earth Sciences, Uppsala University Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2015 Sammanfattning Regionala källor till nederbörden i det Etiopiska höglandet Elnaz Ashkriz Denna uppsats undersöker ursprunget till den stora mängd nederbörd som faller i det etiopiska höglandet. Med Moisture transport into the Ethiopian Highlands av Ellen Viste och Asgeir Sorteberg (2011) som grund syftar denna uppsats till att jämföra samma data men genom att titta på ett mycket kortare intervall för att se vad som försummas när undersökningar på större skalor utförs. Medan undersökningen av Viste och Sorteberg (2011) fokuserar på de två regnrikaste månaderna, juli och augusti under elva år, 1998-2008, så fokuserar denna uppsats enbart på juli år 2008. Syftet med denna uppsats var att se vart nederbörden till det Etiopiska höglandet kommer ifrån under juli månad 2008. För att undersöka detta så har man valt att titta på parametrar såsom horisontell- och vertikal vindriktning på olika höjder samt fukt- innehållet i dessa vindar. Som grund för undersökningen så har denna uppsats, likt Vistes och Sortebergs, använt ERA-Interim data.
    [Show full text]
  • Genetic Adaptation to High Altitude in the Ethiopian Highlands
    Scheinfeldt et al. Genome Biology 2012, 13:R1 http://genomebiology.com/2012/13/1/R1 RESEARCH Open Access Genetic adaptation to high altitude in the Ethiopian highlands Laura B Scheinfeldt1, Sameer Soi1, Simon Thompson1, Alessia Ranciaro1, Dawit Woldemeskel2, William Beggs1, Charla Lambert1,3, Joseph P Jarvis1, Dawit Abate2, Gurja Belay2 and Sarah A Tishkoff1,4* Abstract Background: Genomic analysis of high-altitude populations residing in the Andes and Tibet has revealed several candidate loci for involvement in high-altitude adaptation, a subset of which have also been shown to be associated with hemoglobin levels, including EPAS1, EGLN1, and PPARA, which play a role in the HIF-1 pathway. Here, we have extended this work to high- and low-altitude populations living in Ethiopia, for which we have measured hemoglobin levels. We genotyped the Illumina 1M SNP array and employed several genome-wide scans for selection and targeted association with hemoglobin levels to identify genes that play a role in adaptation to high altitude. Results: We have identified a set of candidate genes for positive selection in our high-altitude population sample, demonstrated significantly different hemoglobin levels between high- and low-altitude Ethiopians and have identified a subset of candidate genes for selection, several of which also show suggestive associations with hemoglobin levels. Conclusions: We highlight several candidate genes for involvement in high-altitude adaptation in Ethiopia, including CBARA1, VAV3, ARNT2 and THRB. Although most of these genes have not been identified in previous studies of high-altitude Tibetan or Andean population samples, two of these genes (THRB and ARNT2) play a role in the HIF-1 pathway, a pathway implicated in previous work reported in Tibetan and Andean studies.
    [Show full text]
  • MUST KNOW Geography
    AP World History Ms. Avar File: Geography MUST KNOW Geography Description You must understand Geography to effectively study world history. Practice and learn the skills in your Geography 101 packet (given to you the first week of school), know the location of world regions and sub regions and be able to identify and locate key nations, landforms and bodies of water listed on this sheet. POLTICAL MAPS Instructions: Neatly locate, outline in color and label ALL of the following countries on your Continent Political maps. Use the world map at end of your textbook, Google Maps and/or worldatlas.com (search by continent) AFRICA North Africa Algeria Egypt East Ethiopia Kenya Libya Morocco Africa Madagascar Somalia Tunisia Sudan Tanzania West Africa Chad Benin Ghana Equatorial Cameroon Rwanda Mali Mauritania Senegal Africa Uganda Sudan Niger Nigeria Central African Republic Togo Cote D’Ivoire Democratic Republic of the Congo Southern Africa Angola Botswana Zimbabwe Zambia Republic of South Africa Mozambique ASIA East Asia Japan China SE Asia Cambodia Indonesia Vietnam North Korea South Korea Myanmar (Burma) Malaysia Thailand Taiwan Mongolia Philippines Singapore Laos South Asia Afghanistan Bangladesh SW Asia / Iran Iraq Turkey India Pakistan Middle East Jordan Israel Nepal Syria Saudi Arabia Central Asia Kazakhstan EUROPE Western France Germany Ireland Eastern Hungary Poland Europe Portugal Spain Switzerland Europe Romania Russia England/Great Britain/United Kingdom “U.K.” Ukraine Serbia Austria Czech Republic Northern Finland Norway Southern
    [Show full text]
  • Place Names: an Analysis of Published Materials
    DOCUMENT RESUME ED 319 675 SO 020 925 AUTHOR Anderson, Paul S. TITLE Seeking a Core of Wo' -'d Regional Geography Place Names: An Analysis of Published Materials. PUB DATE 14 Oct 89 NOTE 18p.; Paper presentel at the Annual Meeting of the National Council for Geographic Education (Hershey, PA, October 11-14, 1989). Updated April 1990. PUB TYPE Speeches/Conference Papers (150) -- Reference Materials - Geographic Materials (133) -- Information Analyses (070) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS Elementary Secondary Education; *Geographic Location; *Geography Instruction; *Minimum Competencies; *Physical Geography IDENTIFIERS Place Names ABSTRACT Knowing place names is not the essence of geography, but some knowledge of names of geographical locations is widely considered to be basic information. Whether used in general cultural literacy, lighthearted Trivial Pursuit, educational sixth grade social studies, or serious debates on world events, place names and their locations are assumed to be known. At the college level of world regional geography courses, five books with lists of place names are in print by geographers: Fuson; MacKinnon; Pontius and Woodward; DiLisio; and Stoltman. Those five sources plus place name lists by P.S. Anderson and from Hirsch reveal similarities and diversities in their content. A core list of place names is presented with several cross-classifications by region, type of geographic feature, and grade level of students. The results reveal a logical progression of complexity that could assist geography educators to increase student learning and avoid duplication of efforts. There will never be complete agreement about any listing of the core geographical place names, but the presented lists are intended to stimulate discussion along constructive avenues.
    [Show full text]
  • North Ethiopian Afro-Alpine Tree Line Dynamics and Forest- Cover Change Since the Early 20Th Century
    land degradation & development Land Degrad. Develop. 26: 654–664 (2015) Published online 13 October 2014 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ldr.2320 NORTH ETHIOPIAN AFRO-ALPINE TREE LINE DYNAMICS AND FOREST- COVER CHANGE SINCE THE EARLY 20TH CENTURY Miro Jacob1*, Amaury Frankl1, Hans Beeckman2, Gebrekidan Mesfin3, Marijn Hendrickx1, Etefa Guyassa1,4, Jan Nyssen1 1Department of Geography, Ghent University, Krijgslaan 281 (S8), 9000 Ghent, Belgium 2Royal Museum for Central Africa, Laboratory for Wood Biology and Xylarium, Leuvensesteenweg 13, 3080, Tervuren, Belgium 3Department of Civil Engineering, Mekelle University, P.O. Box 231, Mekelle, Ethiopia 4Department of Land Resource and Environmental Protection, Mekelle University, P.O. Box 231, Mekelle, Ethiopia Received: 14 March 2014; Revised: 14 August 2014; Accepted: 18 August 2014 ABSTRACT High-altitude forests are very important for local livelihood in the vulnerable environment of the densely populated tropical highlands. Humans need the ecosystem services of the forest and directly impact the forest through livestock herding, fire, and wood harvesting. Nev- ertheless, temperature-sensitive tree lines in the tropics are scarcely investigated in comparison with higher northern latitudes. In this study, the Erica arborea L. tree line is studied in a tropical mountain in the North Ethiopian highlands: Lib Amba of the Abune Yosef Mountain range (12°04′N, 39°22′E, 3993 m asl). The present tree line and forest cover was recorded by high-resolution satellite imagery from Google Maps and field data (2010–2013), while historical forest cover was studied from aerial photographs (1965–1982) and repeat photography (1917–2013). The aerial and satellite images were orthorectified and classified in forest/non-forest binary maps.
    [Show full text]
  • Central Region of the Sierra Madre Oriental Executive Summary
    CLIMATE CHANGE ADAPTATION PROGRAMME FOR THE CENTRAL REGION OF THE SIERRA MADRE ORIENTAL EXECUTIVE SUMMARY Climate change poses a growing threat to Mexico’s ecosystems and communities. Cou- pled with climate variability and socio-economic factors, such as changes in land use, it has adverse effects on ecosystems and livelihoods in rural communities. Regional and local planning tools are therefore required to implement climate change adaptation and mitigation strategies. One example is the Central Region of the Sierra Madre Oriental mountain range (RCSMO, for its initials in Spanish), whose biodiversity-rich ecosystems are vulnerable to climate change. This has an impact on local communities, because their livelihoods depend pri- marily on the area’s natural resources. Hence it is vitally important to assess the resilience of the ecosystems and the ability of local communities to cope with the effects of climate change. In 2010, the National Commission of Natural Protected Areas (CONANP) responded by developing the Climate Change Strategy for Protected Areas (ECCAP). The Climate Change Adaptation Programme for the Central Region of the Sierra Madre Oriental (PACC-RCSMO) is an essential part of this project. The area of intervention is ap- proximately 2.15 million hectares, covering parts of the states of Tamaulipas, San Luis Po- tosí, Hidalgo, Puebla and Veracruz and portions of three major river basins� which drain into the Gulf of Mexico (Pánuco, San Fernando-Soto la Marina and northern Veracruz). Four natural protected areas (NPAs) were established in the RCSMO region. Three of them are federal NPAs and the fourth NPA is set to be declared.
    [Show full text]
  • When Black Plus White Equals Gray: the Nature of Variation in the Variable Seedeater Complex (Emberizinae: Sporophila)
    Volume 7 1996 No.2 ORNITOLOGIA NEOTROPICAL 7: 75-107, 1996 CiJ'The Neotropical Ornithological Society WHEN BLACK PLUS WHITE EQUALS GRAY: THE NATURE OF VARIATION IN THE VARIABLE SEEDEATER COMPLEX (EMBERIZINAE: SPOROPHILA) F. Gary Stiles Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado 7495, Bogotá D.C., Colombia. Resumen. Las afinidades taxon6micas del Espiguero Variable (Sporophila aurita) yel Espiguero Alifajeado (S. ameri- cana) han sido discutidos por más de 80 años. El descubrimiento de una zona de hibridizaci6n entre el primero y el Espiguero Gris (S. intermedia) -anteriormente no considerado como emparentado debido a que el plumaje definitivo del 0" es gris, no blanco y negro -me estimul6 a reexaminar esta cuesti6n. Mi hip6tesis de trabajo era que existiera una relaci6n estrecha entre todas estas formas. Esta hip6tesis fue apoyada por la gran similitud morfol6gica y las distribuciones casi perfectamente complementarias de todas ellas, la identificaci6n de otra zona de solapamiento y hibridizaci6n limitada, y por la existencia de variaci6n previamente ignorada dentro de la especie intermedia. Concluyo que S. intermedia es un miembro integral del llamado "complejo del Espiguero Variable", y que ésto constituye un grupo monofilético reconocible al nivel de superespecie.Los patrones de distri- buci6n geográfica y divergencia morfol6gica me permiten reconocer los siguientes cuatro aloespecies: S. corvina (Espiguero Variable); S. intermedia (Espiguero Gris); S. murallae (Espiguero del Caquetá); y S. americana (Espigue- ro Alifajeado). Con base en un análises cuantitativo de la variaci6n dentro de S. intermedia, llego a la conclusi6n de que la subespecie agustini no es reconocibre, como tampoco lo es S.
    [Show full text]
  • Chlorospingus Flavovirens Rediscovered, with Notes on Other Pacific Colombian and Cauca Valley Birds
    CHLOROSPINGUS FLAVOVIRENS REDISCOVERED, WITH NOTES ON OTHER PACIFIC COLOMBIAN AND CAUCA VALLEY BIRDS STEVEN L. HILTY ABSTRACT.--Aspecimen of the Yellow-green Bush Tanager collectedin 1972 was the first Colombianand third known specimensince the previoustwo taken in Ecuadorin 1935,and the specieshas not been reported since. Presentsnotes and new recordsof 36 other speciesfrom this region of high endemismon the westernslopes of the westernAndes.--Department of Ecologyand Evolutionary Biology, University of Arizona, Tucson,Arizona 85721. Accepted2 June 1975. THE Pacific slope of Colombia records the highest annual rainfall in the Western Hemisphere (Rumney 1968), yet the distribution of many birds in this unique region of high endemism is still known chiefly through early collections(e.g. Cassin 1860; Bangs 1908, 1910; Chapman 1917) and the extensive collectionsof Von Sheidern (fide Meyer de Schauensee)during 1938, 1940, 1941, 1945, and 1946. This and other information has been compiledby Meyer de Schauensee(1948-52, 1964, 1966, 1970). Recent papers by Haffer (1967a, 1967b), Miller (1966), Olivares (1957a, 1957b, 1958), and Ralph and Chaplin (1973) contributeto our knowledgeof Pacific Colom- bian avifauna but the status of many speciesis still poorly known. The data reported here were obtained during portions of 1972, 1973 and 1975, chiefly in the AnchicayJ Valley at low to moderate elevationson the west slopeof the westernAndes and in the upper Cauca Valley near Cali, Department of Valle. Llano Bajo, Aguaclara, Saboletas,Danubio, and La Cascada, mentioned in text, are small villagesalong the Old BuenaventuraRoad, southof Buenaventura. Yatacu• is a site administered by the Corporaci6n Aut6noma del Valle del Cauca (C.V.C.) in the upper Anchicay/t Valley above the confluenceof the Rio Digua and Rio An- chicay/t.
    [Show full text]
  • Evolutionary History of the Genus Rhamdia (Teleostei: Pimelodidae) in Central America
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 172–189 www.academicpress.com Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America Anabel Perdices,a,b,* Eldredge Bermingham,a Antonia Montilla,b and Ignacio Doadriob a Smithsonian Tropical Research Institute, Apto. 2072, Balboa, Republic of Panama b Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid, Spain Received 11 June 2001; received in revised form 2 January 2002 Abstract We constructed phylogenetic hypotheses for Mesoamerican Rhamdia, the only genus of primary freshwater fish represented by sympatric species across Central America. Phylogenetic relationships were inferred from analysis of 1990 base pairs (bp) of mito- chondrial DNA (mtDNA), represented by the complete nucleotide sequences of the cytochrome b (cyt b) and the ATP synthase 8 and 6 (ATPase 8/6) genes. We sequenced 120 individuals from 53 drainages to provide a comprehensive geographic picture of Central American Rhamdia systematics and phylogeography. Phylogeographic analysis distinguished multiple Rhamdia mtDNA lineages, and the geographic congruence across evolutionarily independent Rhamdia clades indicated that vicariance has played a strong role in the Mesoamerican diversification of this genus. Phylogenetic analyses of species-level relationships provide strong support for the monophyly of a trans-Andean clade of three evolutionarily equivalent Rhamdia taxa: R. guatemalensis, R. laticauda, and R. ciner- ascens. Application of fish-based mitochondrial DNA clocks ticking at 1.3–1.5% sequence divergence per million years (Ma), suggests that the split between cis- and trans-Andean Rhamdia extends back about 8 Ma, and the three distinct trans-Andean Rhamdia clades split about 6 Ma ago.
    [Show full text]
  • Birding Tour
    2020 JANUARY 4TH – 12TH, 2020 [Birding Tour] DOMINICAN REPUBLIC (HISPANIOLA) - 'Caribbean's Best Birding' - three endemic families of birds! Both evolution and geography has been 'kind' to the Island of Hispaniola with more 300 species of birds; THREE ENDEMIC FAMILES; six endemic genera; TWENTY-NINE ENDEMIC BIRDS; and 25 endemic subspecies. This is the Caribbean's most important center of avian variety... a 'must-see' birder's destination. Tour Style [B] $3,495/pp [Tour Filled] FEBRUARY 29TH – MARCH 14TH, 2020 [Birding Tour] OAXACA - ‘The Endemics of Mexico’s Southern Highlands, Isthmus of Tehuantepec, & Sierra Los Tuxtlas, Vera Cruz’ More than 50 of Mexico’s endemics occur in Oaxaca’s ‘Southern Highlands.’ This is a stand-alone destination that should be embraced by every birder interested in seeing the key species of Mexico. Tour Style [C] $3,795/pp [Tour Filled] RED WARBLER (Race 'rowleyi' is a Mexican Endemic regularly seen in Oaxaca State) MARCH 16TH – 29TH, 2020 [Birding Tour] CENTRAL MEXICO - ‘Finest Birding Route in North America’ – 450 SPECIES/60 MEXICAN ENDEMICS FOR THE ROUTE Route includes: [1] West Mexican Pacific slope, [2] Sierra Madre del Sur de Guerrero, [3] Balsas River drainage, and [4] Transvolcanic Belt. Tour Style [C] $3,895/pp [Tour Filled] 2020 APRIL 19TH – MAY 3RD, 2020 [Birding Tour]; BULGARIA ‘Classic Spring Birding’ The 2018 Tour recorded 232 species; expect up to 22 warblers, 9 tits, 10 woodpeckers, 5 owls, and 24 raptors, vultures, and falcons. Rare migrant birds mostly arrive from East Africa or West Asia. Food is delightful, travel is easy, accommodations are cozy, and dozens of times each day the scenic countryside shouts ‘photo’.
    [Show full text]
  • Regional Economic Adjustment Plan for Building Disaster Resilient Communities US Department of Commerce – Economic Development Administration Grant No
    Lower Rio Grande Valley Regional Economic Adjustment Plan For Building Disaster Resilient Communities US Department of Commerce – Economic Development Administration Grant No. 08-79-04390 Prepared for: Lower Rio Grande Valley Development Council Hurricane Dolly July 23, 2008 Prepared by: Program Manager: Daniel O. Rios, PE Senior Project Manager: Sharlotte L. Teague, PE Project Engineer: Mardoqueo Hinojosa, PE Engineering Assistant: Ryan Hall, EIT In association with: 2012 Bickerstaff Heath Delgado Acosta, LLP Civil Systems Engineering, Inc. Guzman & Muñoz Engineering and Surveying, Inc. L&G Consulting Engineers, Inc. Olivarri & Associates, Inc. Rigcatco Consulting TEDSI Infrastructure Group, Inc. September 28, 2012 LOWER RIO GRANDE VALLEY DEVELOPMENT COUNCIL Regional Economic Adjustment Plan for Building Disaster Resilient Communities September 2012 LOWER RIO GRANDE VALLEY DEVELOPMENT COUNCIL Regional Economic Adjustment Plan for Building Disaster Resilient Communities EDA Grant No. 08-79-04390 TABLE OF CONTENTS Page EXECUTIVE SUMMARY……………………………………………………………… e1~e6 SECTION 1 INTRODUCTION 1.1 BACKGROUND ………………………….………..………………………..……… -1 1.2 PLAN FRAMEWORK………..…………..……….………………………………….-1 1.3 OBJECTIVES IMPLEMENTED IN THE DEVELOPMENT OF THE PLAN … -2 1.4 TEXAS DEPARTMENT OF RURAL AFFAIRS………………………………. -2 SECTION 2 BASELINE CONSIDERATIONS 2.1 PROJECT STUDY AREA………...…..…………………….……..……. -3 2.2 JURISDICTIONAL INTEREST AND COOPERATION……………..… -4 2.3 OVERSIGHT, INPUT, AND EXPECTATIONS …………………...…… -5 2.3(a) Plan Development Oversight / Team…………………………...……
    [Show full text]
  • Plant Species and Functional Diversity Along Altitudinal Gradients, Southwest Ethiopian Highlands
    Plant Species and Functional Diversity along Altitudinal Gradients, Southwest Ethiopian Highlands Dissertation Zur Erlangung des akademischen Grades Dr. rer. nat. Vorgelegt der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth von Herrn Desalegn Wana Dalacho geb. am 08. 08. 1973, Äthiopien Bayreuth, den 27. October 2009 Die vorliegende Arbeit wurde in dem Zeitraum von April 2006 bis October 2009 an der Universität Bayreuth unter der Leitung von Professor Dr. Carl Beierkuhnlein erstellt. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Prüfungsausschuss 1. Prof. Dr. Carl Beierkuhnlein (1. Gutachter) 2. Prof. Dr. Sigrid Liede-Schumann (2. Gutachter) 3. PD. Dr. Gregor Aas (Vorsitz) 4. Prof. Dr. Ludwig Zöller 5. Prof. Dr. Björn Reineking Datum der Einreichung der Dissertation: 27. 10. 2009 Datum des wissenschaftlichen Kolloquiums: 21. 12. 2009 Contents Summary 1 Zusammenfassung 3 Introduction 5 Drivers of Diversity Patterns 5 Deconstruction of Diversity Patterns 9 Threats of Biodiversity Loss in the Ttropics 10 Objectives, Research Questions and Hypotheses 12 Synopsis 15 Thesis Outline 15 Synthesis and Conclusions 17 References 21 Acknowledgments 27 List of Manuscripts and Specification of Own Contribution 30 Manuscript 1 Plant Species and Growth Form Richness along Altitudinal Gradients in the Southwest Ethiopian Highlands 32 Manuscript 2 The Relative Abundance of Plant Functional Types along Environmental Gradients in the Southwest Ethiopian highlands 54 Manuscript 3 Land Use/Land Cover Change in the Southwestern Ethiopian Highlands 84 Manuscript 4 Climate Warming and Tropical Plant Species – Consequences of a Potential Upslope Shift of Isotherms in Southern Ethiopia 102 List of Publications 135 Declaration/Erklärung 136 Summary Summary Understanding how biodiversity is organized across space and time has long been a central focus of ecologists and biogeographers.
    [Show full text]