Superconductivity in Hydrides Doped with Main Group Elements Under Pressure

Total Page:16

File Type:pdf, Size:1020Kb

Superconductivity in Hydrides Doped with Main Group Elements Under Pressure Nov. Supercond. Mater. 2017; 3:14–22 Review Article Open Access Andrew Shamp and Eva Zurek* Superconductivity in Hydrides Doped with Main Group Elements Under Pressure DOI 10.1515/nsm-2017-0003 mospheric conditions, such as SiH4 [3–10], GeH4 [11–14], Received November 5, 2016; accepted January 18, 2017 and AlH3 [15–17]. He also pointed out that a second com- ponent, which can be seen as an impurity, may potentially Abstract: A priori crystal structure prediction techniques reduce the pressure required to metallize hydrogen [18]. have been used to explore the phase diagrams of hydrides Pressure can affect which combinations of elements of main group elements under pressure. A number of novel form stable phases, and the chemical compositions of phases with the chemical formulas MHn, n > 1 and M = these phases. Therefore, building on Ashcroft’s proposals, Li, Na, K, Rb, Cs; MHn, n > 2 and M= Mg, Ca, Sr, Ba; HnI density functional theory (DFT) calculations were carried with n > 1 and PH, PH2, PH3 have been predicted to be out to predict the structures of hydrides with stoichiome- stable at pressures achievable in diamond anvil cells. The tries that are not stable at atmospheric conditions, in the hydrogenic lattices within these phases display a num- δ− − − hopes of uncovering hitherto unknown superconductors ber of structural motifs including H2 ,H ,H3, as well as [19]. Since then, numerous theoretical studies have been one-dimensional and three-dimensional extended struc- performed that investigate the phase diagrams of hydro- tures. A wide range of superconducting critical tempera- gen doped with the electropositive alkali metals or al- tures, Tcs, are predicted for these hydrides. The mecha- kaline earth metals [20–34], as well as the electronega- nism of metallization and the propensity for superconduc- tive element iodine [35, 36] under pressure. Experimen- tivity are dependent upon the structural motifs present in tal work on the hydrides of lithium and sodium confirmed these phases, and in particular on their hydrogenic sub- that species with unique stoichiometries such as NaH and lattices. Phases that are thermodynamically unstable, but 3 NaH can be synthesized in diamond anvil cells, but the dynamically stable, are accessible experimentally. The ob- 7 phases that have been reported to date do not exhibit su- served trends provide insight on how to design hydrides perconductivity [21, 37]. Nonetheless, as summarized in that are superconducting at high temperatures. this short review, the aforementioned theoretical explo- Keywords: superconductivity, hydrides, high pressure, rations have: revealed that rich structural variety may be density functional theory, materials prediction found in the hydrogenic sublattices, suggested a number of ways that hydrogen may be metalized via doping, and 1 Introduction shown that the propensity for superconductivity is linked to the nature of the hydrogenic motifs. In a seminal work Ashcroft proposed that because the hy- Recent experimental studies carried out by Drozdov, p drogen is “chemically precompressed” in solids composed Eremets, and Troyan on hydrides containing a -block ele- of the group 14 hydrides, less physical pressure would be ment have yielded exciting results. It was shown that when T required to metallize them as compared to pure hydro- hydrides of sulfur were prepared at ≥ 300 K they be- T gen [1, 2]. Moreover, he hypothesized that these phases come superconducting with a critical temperature, c, of have the potential to be superconducting at high temper- 203 K at 150 GPa [38], and at 207 GPa compressed phos- T atures. Ashcroft’s predictions led to a plethora of theoreti- phine yielded a c of 103 K [39]. Theoretical studies, which cal, and a few experimental, studies that searched for su- have shown that the superconductivity observed in Ref. perconductivity in hydrides that are known to exist at at- [38] arises primarily from an H3S phase [40–55] whose structure has been recently confirmed experimentally [56], will not be described within this short review. We will, however, discuss the results of first principles calculations Andrew Shamp: Department of Chemistry, State University of New carried out for the hydrides of phosphorus [57–59]. Impor- York at Buffalo, Buffalo, NY 14260-3000, USA *Corresponding Author: Eva Zurek: Department of Chemistry, tantly, these studies revealed that the phases made in ex- State University of New York at Buffalo, Buffalo, NY 14260-3000, periment are not necessarily the thermodynamic minima, USA, E-mail: [email protected] © 2017 Andrew Shamp and Eva Zurek, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Superconductivity in Hydrides Doped with Main Group Elements Under Pressure Ë 15 * and that a mixture of phases could yield the observed su- the H2 σu-orbitals, which become partially filled [19]. As perconductivity. a consequence, these systems are already good metals at These studies highlight that new hydrogen-rich ma- 1 atm (but they are not stable). This mechanism of metal- terials, some of which may have a Tc higher than those lization yields phases with a high density of states (DOS) previously thought possible for Bardeen-Cooper-Schrieffer at the Fermi level, EF. (BCS)-type superconductors, can be attained under pres- 2. At 1 atm the volume of the R3¯m-LiH6 unit cell was sure, and they have reinvigorated the search for high- calculated to be a factor of two smaller than an optimized + temperature superconductivity in high-pressure hydrides. H6 lattice because ionic attraction between Li and three −1/3 (H2) molecules leads to “Madelung precompression”. 2 How to Metallize with an However, this method of precompression was only effec- tive at low pressures because the presence of the Li+ core Electropositive Element yielded a structure with a volume larger than that of ele- mental H2 at high pressures. Therefore, this metallization A number of chemical trends have been observed for com- mechanism is likely only effective for ionic compounds pressed alkali metal and alkaline earth polyhydrides [33]. that undergo pressure-induced band gap closure at rela- The pressure at which the polyhydrides were calculated tively low pressures. to become stable with respect to decomposition into the 3. The valence electrons of the electropositive element “classic” hydride (of MH or MH2 stoichiometry) and H2 de- can be transferred to a single hydrogen atom yielding a hy- − creases with decreasing ionization potential of the dopant dridic hydrogen, H , within a lattice of H2 molecules, as metal. For example, whereas LiHn phases are thermody- in the Pm-NaH9 structure illustrated in Fig. 1(b) [26]. Be- − namically stable above 100 GPa, CsHn structures are ac- cause an H impurity donor band forms between the H2 * cessible above 2 GPa. The stoichiometries of the thermo- σg- and σu-levels, the band gap of this system is smaller at dynamically stable polyhydrides, eg. those which com- 1 atm than in elemental H2. Therefore, phases possessing prised the convex hull, possessed an odd number of hy- H− should undergo metallization due to band broadening drogen atoms if the dopant atom was from Group I, and an and overlap at lower pressures than those required to met- even number it was from Group II. The only exception to allize pure hydrogen. However, calculations have shown this trend was lithium, wherein LiH2, LiH6, and LiH8 were that the DOS at EF in the metalized systems is generally found to be thermodynamically stable. In general, past a quite low. − δ− threshold pressure the hydrogen content in the structure It has been proposed that the formation of H vs. H2 with the most negative enthalpy of formation, ∆HF, de- molecules depends upon the number of formal “effectively creased with increasing pressure for the alkali metal poly- added electrons” donated from the electropositive element hydrides, whereas for the alkaline earth polyhydrides it in- to the hydrogenic sublattice [22]. Because these electrons * creased. Thus, it is likely that at very high pressures the fill the antibonding σu-orbitals in H2, the H–H bond elon- mole % ratio of hydrogen found in the structure that corre- gates. If the filling is large enough (for example because sponds to the lowest point on the convex hull will be larger the H:M ratio is low) this bond is expected to break, form- in the alkaline earth polyhydrides than in the alkali metal ing hydridic hydrogens. − polyhydrides. 4. Because H is a soft base it can interact with H2, − Whereas “chemical precompression” can be em- an extremely weak acid, to form H3, the simplest example ployed to metallize covalent hydrides at pressures lower of a three–center four–electron (3c-4e) bond. Calculations than those required for elemental hydrogen, different ways carried out with a variant of the configuration interaction ionic − to metallize become important for hydrides. We have (CI) method have shown that H3 is asymmetric with H–H found five mechanisms that hasten band gap closure, and distances measuring 0.75 and 2.84 Å, and the barrier be- four of these are explicitly illustrated schematically in Fig. tween the two possible minima is symmetric, with H–H 1. Which route is taken depends upon the nature of the hy- distances measuring ∼1.06 Å [60]. Symmetric and asym- − drogenic motifs present in the lattice, and this in turn is metric H3 motifs have been observed in polyhydrides con- governed by the nature of the dopant element. In the para- taining Na [21], K [28], Rb [27], Cs [29], Sr [23, 32] and Ba graphs that follow these five approaches are described by [31]: one example is the RbH5 phase illustrated in Fig. 1(c) way of example. [27]. In these species metallization occurs via the pressure 1.
Recommended publications
  • Superconductivity at ~70 K in Tin Hydride Snhx Under High Pressure
    Superconductivity at ~70 K in Tin Hydride SnHx under High Pressure F. Hong1, †, *, P.F. Shan1, 2, †, L.X. Yang 3, †, B.B. Yue 3, P.T. Yang 1, Z. Y. Liu1, J.P. Sun1, J.H. Dai1, H. Yu 1, 2, Y. Y. Yin1, X.H. Yu 1, 2, *, J.G. Cheng1, 2, *, and Z.X. Zhao1, 2 1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Center for High Pressure Science & Technology Advanced Research, Beijing, 100094, China †F. Hong, P.F. Shan and L.X. Yang have equal contribution. * Email: [email protected]; [email protected]; [email protected] (Dated: January 7, 2021) Abstract Various tin hydrides SnHx (x = 4, 8, 12, 14) have been theoretically predicted to be stable at high pressures and to show high-critical-temperature superconductivity with Tc ranging from about 70 to 100 K. However, experimental verifications for any of these phases are still lacking to date. Here, we report on the in-situ synthesis, electrical resistance, and synchrotron x-ray diffraction measurements of SnHx at 200 GPa. The main phase of the obtained sample can be indexed with the monoclinic C2/m SnH12 via ∼ comparison with the theoretical structural modes. A sudden drop of resistance and the systematic downward shift under external magnetic fields signals the occurrence of superconductivity in SnHx at Tc ≈ 70 K with an upper critical field μ0Hc2(0) ≈ 11.2 T, which is relatively low in comparison with other reported high-Tc superhydrides.
    [Show full text]
  • In Search for Near-Room-Temperature Superconducting Critical Temperature of Metal Superhydrides Under High Pressure: a Review
    Journal of Metals, Materials and Minerals, Vol. 30, No. 2, pp. 31-41, 2020 In search for near-room-temperature superconducting critical temperature of metal superhydrides under high pressure: A review Udomsilp PINSOOK* Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, THAILAND *Corresponding author e-mail: [email protected] Received date: Abstract 6 May 2020 An overview and the latest status of the superconductivity of metal superhydrides Revised date: 15 May 2020 under high pressure are discussed in this review article. The searching for near-room- Accepted date: temperature superconductors have been one of the most enthusiastic fields in physics. 10 June 2020 This is because of several key factors in both theoretical and experimental sides. By advanced experiment innovation, pressure exceeded that of the earth’s core can be generated in laboratories. This allows scientists to explore new physics of materials Keywords: Superconductors under high pressure. In the synergy form, the theoretical calculation gives accountable Metal superhydrides predictions on the structural and electronic properties which can be served as a Near-room-temperature practical map for experimentalists. In this review, I also give a brief overview on the Critical temperature existing theory of superconductivity which leads to the calculation of the High pressure superconducting critical temperature, 푇 . The key element for calculating 푇 is stemmed from the so-called spectral function, which can now be evaluated from the density functional theory. In order to obtain insight information and gain deeper understanding, I model the spectral function with a simple constant function. This analysis gives a powerful suggestion on the way to search for a higher value of 푇.
    [Show full text]
  • Chemical Templates That Assemble the Metal Superhydrides
    Chemical templates that assemble the metal superhydrides Yuanhui Sun California State University Northridge Maosheng Miao ( [email protected] ) California State University, Northridge https://orcid.org/0000-0001-9486-1204 Article Keywords: chemical bonding, superconductors, computational chemistry Posted Date: January 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-130093/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Chemical templates that assemble the metal superhydrides Yuanhui Sun and Maosheng Miao* Department of Chemistry and Biochemistry, California State University Northridge, CA USA *Email: [email protected] 5 The recent incessant discoveries of high-pressure hydrides totally altered our road map toward finding room temperature superconductors. Especially, metal superhydrides consisting of hydrogen covalent networks that resemble metallic hydrogen are favorable candidates for improving Tc and lowering pressure. However, the dissociation of H2 and the 10 formation of H covalent network in superhydrides need a large chemical driving force that remains unexplained. Our high-throughput calculations show that, after removing H atoms, the remaining metal lattices exhibit unusual electron occupations at the interstitial regions, which matches excellently to the H lattice like a template. Furthermore, H lattices consist of 3D aromatic building units that are greatly stabilized by chemical templates of 15 metals close to s-d boarder. This theory can help predicting ternary superhydrides that may form at lower pressure. Among many remarkable physical and chemical properties of hydrogen, its capability of achieving superconducting state at or above room temperature has received intensive attention in 1–3 20 condensed matter studies for many decades.
    [Show full text]
  • Superconductivity of Hydrogen-Rich Metal Hydride Li5moh11 Under High Pressure
    Title Superconductivity of hydrogen-rich metal hydride Li5MoH11 under high pressure Author(s) Dezhong, Meng Citation Issue Date Text Version ETD URL https://doi.org/10.18910/70772 DOI 10.18910/70772 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University Superconductivity of hydrogen-rich metal hydride Li5MoH11 under high pressure DEZHONG MENG SEPTEMBER 2018 Superconductivity of hydrogen-rich metal hydride Li5MoH11 under high pressure A dissertation submitted to THE GRADUATE SCHOOL OF ENGINEERING SCIENCE OSAKA UNIVERSITY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN ENGINEERING BY DEZHONG MENG SEPTEMBER 2018 Abstract Hydrogen was predicted to show metallic behavior and even a possible high- temperature superconductor under sufficient pressurization [1]. Further calculations predicted that pure hydrogen showed atomic phase under > 500 GPa and became a superconductor with the transition temperature (Tc) of 300-350 K [2]. While the high pressure is beyond the present experimental conditions, it is predicted that some hydrogen- rich compounds could be metallic and superconductive under comparable lower pressure than that of pure hydrogen due to the chemically pre-compressed from relative heavier elements [3]. In fact, sulfur hydride (H2S), one of the hydrogen-rich compounds was recently reported to be a superconductor with a high Tc of 203 K under 150 GPa [4], which strongly motivates the superconductor research in hydrogen-rich compounds. Transition metals could combine with hydrogen atoms to form the close-packed structures with a signally rich variety of hydrogen coordination modes. One of the hydrogen-rich metal hydride BaReH9 with 9 hydrogen atoms in the unit cell showed superconductivity at a pressure above 100 GPa with a maximum Tc near 7 K [5].
    [Show full text]
  • Crystal Structures and Properties of Iron Hydrides at High Pressure
    Crystal Structures and Properties of Iron Hydrides at High Pressure Niloofar Zarifi,y Tiange Bi,y Hanyu Liu,z,{ and Eva Zurek∗,y yDepartment of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA zInnovation Center for Computational Physics Method and Software, College of Physics, Jilin University, Changchun 130012, China {State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China E-mail: [email protected] arXiv:1809.08323v1 [cond-mat.supr-con] 21 Sep 2018 1 Abstract Evolutionary algorithms and the particle swarm optimization method have been used to predict stable and metastable high hydrides of iron between 150-300 GPa that have not been discussed in previous studies. Cmca FeH5, P mma FeH6 and P 2=c FeH6 contain hydro- genic lattices that result from slight distortions of the previously predicted I4=mmm FeH5 and Cmmm FeH6 structures. Density functional theory calculations show that neither the I4=mmm nor the Cmca symmetry FeH5 phases are superconducting. A P 1 symmetry FeH7 phase, which is found to be dynamically stable at 200 and 300 GPa, adds another member to the set of predicted nonmetallic transition metal hydrides under pressure. Two metastable phases of FeH8 are found, and the preferred structure at 300 GPa contains a unique 1-dimensional hydrogenic lattice. 2 Introduction The composition and structure that hydrides of iron may assume under pressure has long been of interest to geoscientists. Seismic models suggest that the Earth’s core consists of iron alloyed with nickel and numerous light elements, one of which is suspected to be hydrogen.1 More recently, however, it was proposed that such systems may be a route towards high density bulk atomic hy- drogen.2 The allure of high temperature superconductivity in compressed high hydrides3–6 has been heightened with the discovery of superconductivity below 203 K in a sample of hydrogen sulfide that was compressed to 150 GPa,7 and most recently in studies of the lanthanum/hydrogen 8,9 system .
    [Show full text]
  • The 1986 Most-Cited Chemistry Articles
    Current CX3mrnerits” EUGENE GARFIELD INSTITUTE FOR SCIENTIFIC INFO%JATIGW3 3501 MARKET ST. PHILADELPHIA, PA 19104 The 19S6 Most-Cited Chemistry Articles: Enzymes in Organic Synthesis and Odd-Cluster Soot Up, While Superconductivity Disappears (For Now) Number 27 jll!y 8, 1991 Current Contents Q readers are generally aware of our amual series listing papers that have been “most-cited” in the last two or three years. For reasons that have been dis- cussed frequently,I the “immediacy” of most hot papers in chemistry can lag by more than a year behind those in physics or the life sciences. The essay that follows should have appeared last year, shortly after the appearance of the 1989 Science Citation Index @. However, in publishing it now, we are able to include supplemental informa- tion on the status of the citations to these papers for the years 1989 and 1990. The delay in publishing this putative list of Cita- tion Classics @ in chemistry demonstrates more forcefully the characteristic delay mentioned above. The most-cited paper on the list received 99 citations by the end of Zvi Sza@m 1988. By the end of 1990, it had received an additional 138. term born out of a conversation I had with AS you can see, chemists, earth scientists, Robert K. Merton and Ihriet Zuckerrnan,3 and others are more than justified in envy- in 1980-a term that describes individuals, ing the prominence of life scientists in rank- “...who are peers of prizewinners in every ings that do not take this inherent delay fac- sense except that of having the award.”1 In tor into account.
    [Show full text]
  • On Distribution of Superconductivity in Metal Hydrides Dmitrii V
    Dedicated to the 150th anniversary of Mendeleev’s periodic law On Distribution of Superconductivity in Metal Hydrides Dmitrii V. Semenok,1, * Ivan A. Kruglov,2, 3 Igor A. Savkin,4 Alexander G. Kvashnin,1, 2, * and Artem R. Oganov 1, 2, 5 1 Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia 2 Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia 3 Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia 4 Research Computer Center of Lomonosov Moscow State University, Moscow, Russia 5 International Center for Materials Discovery, Northwestern Polytechnical University, Xi’an 710072, China Corresponding authors *Alexander G. Kvashnin: [email protected] *Dmitrii V. Semenok: [email protected] ABSTRACT. Using the data on the superconducting critical temperature (TC) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum TC based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their TC. Results of the study of actinides and lanthanides show that they form highly symmetric superhydrides XH7-XH9. However, actinide hydrides do not exhibit high-temperature superconductivity (except Th-H system) and might not be considered as promising materials for experimental studies, as well as all dm-elements with m > 4, including hydrides of the noble elements.
    [Show full text]
  • High-Temperature Superconductivity in Cerium Superhydrides
    High-Temperature Superconductivity in Cerium Superhydrides Wuhao Chen,1 Dmitrii V. Semenok,2 Xiaoli Huang,1,* Haiyun Shu4, Xin Li,1 Defang Duan,1 Tian Cui,3,1,* and Artem R. Oganov2 1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China 2 Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bld. 1 Moscow, Russia 121205 3 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China 4 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China *Corresponding authors’ e-mails: [email protected], [email protected] The discoveries of high-temperature superconductivity in H3S and LaH10 have excited the search for superconductivity in compressed hydrides. In contrast to rapidly expanding theoretical studies, high-pressure experiments on hydride superconductors are expensive and technically challenging. Here we experimentally discover superconductivity in two new phases, 푭풎ퟑ̅풎- CeH10 (SC-I phase) and P63/mmc-CeH9 (SC-II phase) at pressures that are much lower (<100 GPa) than those needed to stabilize other polyhydride superconductors. Superconductivity was evidenced by a sharp drop of the electrical resistance to zero, and by the decrease of the critical temperature in deuterated samples and in an external magnetic field. SC-I has Tc=115 K at 95 GPa, showing expected decrease on further compression due to decrease of the electron-phonon coupling (EPC) coefficient λ (from 2.0 at 100 GPa to 0.8 at 200 GPa). SC-II has Tc = 57 K at 88 GPa, rapidly increasing to a maximum Tc ~100 K at 130 GPa, and then decreasing on further compression.
    [Show full text]
  • Synthesis of Weaire–Phelan Barium Polyhydride
    pubs.acs.org/JPCL Letter Synthesis of Weaire−Phelan Barium Polyhydride Miriam Peña-Alvarez,* Jack Binns, Miguel Martinez-Canales, Bartomeu Monserrat, Graeme J. Ackland, Philip Dalladay-Simpson, Ross T. Howie, Chris J. Pickard, and Eugene Gregoryanz* Cite This: J. Phys. Chem. Lett. 2021, 12, 4910−4916 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: By combining pressures up to 50 GPa and temperatures of 1200 K, we synthesize the novel barium hydride, Ba8H46, stable down to 27 GPa. We use Raman spectroscopy, X-ray diffraction, and first-principles calculations to determine that this compound adopts a highly symmetric Pm3̅n structure with an unusual 53 :1 hydrogen-to-barium ratio. This singular 4 stoichiometry corresponds to the well-defined type-I clathrate geometry. This clathrate consists of a Weaire−Phelan hydrogen structure with the barium atoms forming a topologically close- packed phase. In particular, the structure is formed by H20 and H24 clathrate cages showing substantially weakened H−H interactions. Density functional theory (DFT) demonstrates that ff cubic Pm3̅n Ba8H46 requires dynamical e ects to stabilize the H20 and H24 clathrate cages. trongly electropositive elements can readily donate 260 K at around 200 GPa.10,11,24 However, despite laying claim − electrons (E → E+ +e) into antibonding orbitals of to the discovery of high-temperature superconductivity, this S − molecular hydrogen (H2), weakening the H H covalent bond. study along with other recent discoveries of other hydrogen- 12 ff It has been proposed that the combination of electropositive bearing systems with high Tc su er from another elements and high pressures should promote the dissociation thermodynamic parameter, namely, pressure.
    [Show full text]
  • On Distribution of Superconductivity in Metal Hydrides T ⁎ ⁎ Dmitrii V
    Current Opinion in Solid State & Materials Science 24 (2020) 100808 Contents lists available at ScienceDirect Current Opinion in Solid State & Materials Science journal homepage: www.elsevier.com/locate/cossms On Distribution of Superconductivity in Metal Hydrides T ⁎ ⁎ Dmitrii V. Semenoka, , Ivan A. Kruglovb,c, Igor A. Savkind, Alexander G. Kvashnina,b, , Artem R. Oganova,b,e a Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia b Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia c Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia d Research Computer Center of Lomonosov Moscow State University, Moscow, Russia e International Center for Materials Discovery, Northwestern Polytechnical University, Xi’an 710072, China ARTICLE INFO ABSTRACT Dedicated to the 150th anniversary of Using the data on the superconducting critical temperature (TC) for a number of metal hydrides, we found a rule Mendeleev’s Periodic Law. that makes it possible to predict the maximum TC based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information Keywords: existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems USPEX, High-pressure at high pressures, and calculated their TC. The highest-temperature superconducting hydrides are formed by Superconducting hydrides metals in the “lability belt” roughly between 2nd and 3rd groups of the Periodic Table. Results of the study of Periodic Table actinoids and lanthanoids show that they form highly symmetric superhydrides XH7-XH9, but the increasing DFT Evolutionary algorithm number of d- and especially f-electrons affects superconducitivity adversely.
    [Show full text]
  • Synthesis of Sodium Polyhydrides at High Pressures
    ARTICLE Received 3 Dec 2014 | Accepted 17 Jun 2016 | Published 28 Jul 2016 DOI: 10.1038/ncomms12267 OPEN Synthesis of sodium polyhydrides at high pressures Viktor V. Struzhkin1, Duck Young Kim1,2, Elissaios Stavrou1,3, Takaki Muramatsu1, Ho-kwang Mao1,2, Chris J. Pickard4,5, Richard J. Needs6, Vitali B. Prakapenka7 & Alexander F. Goncharov1,8 The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials. 1 Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, District of Columbia 20015, USA. 2 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China. 3 Lawrence Livermore National Laboratory, Material Sciences Division, 7000 East Avenue, L-350, Livermore, CA 94550-9698, USA. 4 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK. 5 Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
    [Show full text]
  • Superconductivity up to 243 K in the Yttrium-Hydrogen System Under High
    ARTICLE https://doi.org/10.1038/s41467-021-25372-2 OPEN Superconductivity up to 243 K in the yttrium- hydrogen system under high pressure Panpan Kong 1,7, Vasily S. Minkov1,7, Mikhail A. Kuzovnikov2,7, Alexander P. Drozdov1, Stanislav P. Besedin1, Shirin Mozaffari 3, Luis Balicas 3, Fedor Fedorovich Balakirev 4, Vitali B. Prakapenka 5, Stella Chariton5, ✉ Dmitry A. Knyazev6, Eran Greenberg 5 & Mikhail I. Eremets 1 The discovery of superconducting H3S with a critical temperature Tc∼200 K opened a door to 1234567890():,; room temperature superconductivity and stimulated further extensive studies of hydrogen- rich compounds stabilized by high pressure. Here, we report a comprehensive study of the yttrium-hydrogen system with the highest predicted Tcs among binary compounds and dis- cuss the contradictions between different theoretical calculations and experimental data. We synthesized yttrium hydrides with the compositions of YH3,YH4,YH6 and YH9 in a diamond anvil cell and studied their crystal structures, electrical and magnetic transport properties, and isotopic effects. We found superconductivity in the Im-3m YH6 and P63/mmc YH9 phases with maximal Tcsof∼220 K at 183 GPa and ∼243 K at 201 GPa, respectively. Fm-3m YH10 with the highest predicted Tc > 300 K was not observed in our experiments, and instead, YH9 was found to be the hydrogen-richest yttrium hydride in the studied pressure and tem- perature range up to record 410 GPa and 2250 K. 1 Max-Planck-Institut für Chemie, Mainz, Germany. 2 Institute of Solid State Physics Russian Academy of Sciences, Chernogolovka, Moscow District, Russia. 3 National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA.
    [Show full text]