Crystal Structures and Properties of Iron Hydrides at High Pressure

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Structures and Properties of Iron Hydrides at High Pressure Crystal Structures and Properties of Iron Hydrides at High Pressure Niloofar Zarifi,y Tiange Bi,y Hanyu Liu,z,{ and Eva Zurek∗,y yDepartment of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA zInnovation Center for Computational Physics Method and Software, College of Physics, Jilin University, Changchun 130012, China {State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China E-mail: [email protected] arXiv:1809.08323v1 [cond-mat.supr-con] 21 Sep 2018 1 Abstract Evolutionary algorithms and the particle swarm optimization method have been used to predict stable and metastable high hydrides of iron between 150-300 GPa that have not been discussed in previous studies. Cmca FeH5, P mma FeH6 and P 2=c FeH6 contain hydro- genic lattices that result from slight distortions of the previously predicted I4=mmm FeH5 and Cmmm FeH6 structures. Density functional theory calculations show that neither the I4=mmm nor the Cmca symmetry FeH5 phases are superconducting. A P 1 symmetry FeH7 phase, which is found to be dynamically stable at 200 and 300 GPa, adds another member to the set of predicted nonmetallic transition metal hydrides under pressure. Two metastable phases of FeH8 are found, and the preferred structure at 300 GPa contains a unique 1-dimensional hydrogenic lattice. 2 Introduction The composition and structure that hydrides of iron may assume under pressure has long been of interest to geoscientists. Seismic models suggest that the Earth’s core consists of iron alloyed with nickel and numerous light elements, one of which is suspected to be hydrogen.1 More recently, however, it was proposed that such systems may be a route towards high density bulk atomic hy- drogen.2 The allure of high temperature superconductivity in compressed high hydrides3–6 has been heightened with the discovery of superconductivity below 203 K in a sample of hydrogen sulfide that was compressed to 150 GPa,7 and most recently in studies of the lanthanum/hydrogen 8,9 system . Very high Tc values have been theoretically predicted for many high hydrides includ- 10 11 12 ing CaH6 (235 K at 150 GPa), ScH9 (233 K at 300 GPa), YH6 (264 K at 120 GPa), and 13 LaH10 (286 K at 210 GPa). Moreover, a number of hydrides with intriguing stoichiometries have 14 15 16 recently been synthesized under pressure including LiH6, NaH7, and LaH10. Under pressure the solubility of iron in hydrogen increases17 yielding phases with Fe:H ratios that approach 1:1,18,19 which undergo a number of pressure induced structural phase transitions.20 Evolutionary crystal structure searches coupled with density functional theory (DFT) calculations for FexHy (x; y = 1−4) at 100-400 GPa found a number of unique (meta)stable structures, includ- 21 ing FeH3 in the P m3¯m and P m3¯n spacegroups, as well as P 21=m FeH4. A further theoretical study that focused on the FeH4 stoichiometry found the following sequence of phase transitions: 22 P 213 ! Imma ! P 21=m at 109 and 242 GPa. The superconducting critical temperature, Tc, of the only metallic phase, Imma FeH4, was estimated as being 1.7 K at 110 GPa. Recently, variable-composition evolutionary searches up to 150 GPa found a number of hitherto unknown stable high hydrides of iron including P 4=mmm Fe3H5, I4=mmm Fe3H13, I4=mmm FeH5, and 23 FeH6 with Cmmm and C2=m symmetries. The theoretical study of Bazhanova and co-workers21 inspired experiments by Pepin´ et. al. that resulted in the first synthesis of the higher hydrides of iron under pressure.24 A ferromagnetic I4=mmm FeHx phase with x ∼ 2 formed at 67 GPa, and at 86 GPa further hydrogen uptake yielded a nonmagnetic P m3¯m FeH3 phase. DFT calculations showed that both of the synthesized 3 phases were metallic. Three years later the same group synthesized FeH5 via a direct reaction 2 between iron and H2 above 130 GPa in a laser-heated diamond anvil cell. Powder X-ray diffrac- tion and Rietveld refinement determined that the lattice likely possesses I4=mmm symmetry at 130 GPa. It is composed of layers of quasicubic FeH3 units and atomic hydrogen whose H-H distances resembled those found in bulk atomic hydrogen.2 DFT calculations coupled with evolu- tionary searches verified that I4=mmm FeH5 was thermodynamically stable from 85 GPa up to 23 at least 150 GPa. I4=mmm FeH5 was estimated to be superconducting below ∼50 K around 23,25 23 150 GPa, and the Tc of Cmmm FeH6 was estimated as being 43 K at 150 GPa. However, recent calculations have questioned the conclusions of Refs.,23,25 failing to find superconductivity 26 within I4=mmm FeH5. Herein, we have carried out structure prediction via an evolutionary algorithm (EA) as well as the particle swarm optimization (PSO) technique to find the most stable structures of FeHn (n = 5 − 8) at 150, 200 and 300 GPa. A number of stable or metastable phases that have not been previously discussed are found. Importantly, in agreement with Heil et al.,26 but in disagreement 23,25 with previous reports, we do not find superconductivity in either I4=mmm FeH5 nor in a newly predicted Cmca FeH5 phase. These two dynamically stable, nearly isoenthalpic FeH5 geometries are related by a slight structural distortion that decreases the PV term, but increases the energetic term to the enthalpy of the Cmca geometry as compared to the I4=mmm arrangement. Metastable FeH6, FeH7 and FeH8 phases that could potentially be accessed experimentally are found, and the peculiarities of their structures and electronic structures are discussed. Computational Details The search for stable high pressure structures with FeHn (n = 5 − 8) stoichiometries was carried out using the XTALOPT 27 evolutionary algorithm (EA) (releases 1028 and 1129), and the particle swarm optimization (PSO) algorithm as implemented in the CALYPSO30 code. EA runs were carried out employing simulation cells with 2-8 formula units (FU) at 150, 200 and 300 GPa. 4 In the EA search duplicate structures were detected via the XTALCOMP algorithm.31 PSO runs were performed using cells containing up to 4 FU at 150, 200 and 300 GPa. The lowest enthalpy structures from each search were relaxed in a pressure range from 150 to 300 GPa. Geometry optimizations and electronic structure calculations were performed in the framework of density functional theory (DFT) as implemented in the Vienna Ab Initio Simulation Package (VASP)32,33 with the gradient-corrected exchange and correlation functional of Perdew-Burke- Ernzerhof (PBE).34 The projector augmented wave (PAW) method35 was used to treat the core states, and a plane-wave basis set with an energy cutoff of 600 eV was employed for precise optimizations. The H 1s1 and Fe 2s22p63d74s1 electrons were treated explicitly in all of the cal- culations. The k-point grids were generated using the Γ-centered Monkhorst-Pack scheme, and the number of divisions along each reciprocal lattice vector was chosen such that the product of this number with the real lattice constant was 30 A˚ in the structure searches, and 60-80 A˚ otherwise. Tests carried out on I4=mmm and Cmca FeH5 showed that the k-meshes and energy cutoffs used yielded relative enthalpies that were converged to within ∼0.1 meV/atom . The magnetic moment was calculated for select phases. It was found to be zero, in agreement with previous studies, which found that the high hydrides of iron become nonmagnetic above 100 GPa,23 and that the magnetic 36 moment of I4=mmm FeH2 drops to zero by about 140 GPa. Phonon band structures were calculated using the supercell approach,37,38 or DFT perturbation theory.39 In the former, Hellmann-Feynman forces were calculated from a supercell constructed by replicating the optimized structure wherein the atoms had been displaced, and dynamical matrices were computed using the PHONOPY code.40 The Quantum Espresso (QE)41 program was used to obtain the dynamical matrix and electron-phonon coupling (EPC) parameters. H and Fe pseudopo- tentials, obtained from the QE pseudopotential library, were generated by the Vanderbilt ultrasoft method42 with a 1s1 configuration for H and a 3s23p63d6:54s14p0 valence configuration for Fe. These are the same pseudopotentials used in Ref.25 The PBE generalized gradient approximation was employed. Tests were carried out to confirm that the values calculated for I4=mmm FeH5 at 200 GPa were in agreement with results obtained using PBE-PAW Troullier-Martins potentials43 5 generated by the “atomic” code44 with valence configurations of 1s1 for H and 3s23p63d64s2 for Fe. The critical superconducting temperature, Tc, was estimated using the Allen-Dynes modified McMillan equation,45 where the renormalized Coulomb potential, µ∗, was assumed to be 0.1. Fur- ther details about the dependence of the results on the Gaussian broadening used, as well as the k and q meshes employed, are provided in the SI. Results and Discussion Superconductivity in FeH5? Fig. 1 plots the enthalpies of formation, ∆HF , of the most stable FeHn (n = 5 − 8) compounds that were found via crystal structure prediction (CSP) techniques at 150, 200 and 300 GPa. In a few cases, as discussed in more detail below, the enthalpies of two or more structures differed by only a few meV/atom. Phonon calculations, see Figures S3 and S4 in the SI, were carried out to confirm the dynamic stability of the predicted structures. The phases whose ∆HF lie on the convex hull are thermodynamically stable, whereas those that do not are metastable. At all of the pressures considered only FeH5 lay on the convex hull, regardless of whether the zero-point energy (ZPE) was included in the enthalpy or not.
Recommended publications
  • Transition Metal Hydrides That Mediate Catalytic Hydrogen Atom Transfers
    Transition Metal Hydrides that Mediate Catalytic Hydrogen Atom Transfers Deven P. Estes Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Deven P. Estes All Rights Reserved ABSTRACT Transition Metal Hydrides that Mediate Catalytic Hydrogen Atom Transfers Deven P. Estes Radical cyclizations are important reactions in organic chemistry. However, they are seldom used industrially due to their reliance on neurotoxic trialkyltin hydride. Many substitutes for tin hydrides have been developed but none have provided a general solution to the problem. Transition metal hydrides with weak M–H bonds can generate carbon centered radicals by hydrogen atom transfer (HAT) to olefins. This metal to olefin hydrogen atom transfer (MOHAT) reaction has been postulated as the initial step in many hydrogenation and hydroformylation reactions. The Norton group has shown MOHAT can mediate radical cyclizations of α,ω dienes to form five and six membered rings. The reaction can be done catalytically if 1) the product metalloradical reacts with hydrogen gas to reform the hydride and 2) the hydride can perform MOHAT reactions. The Norton group has shown that both CpCr(CO)3H and Co(dmgBF2)2(H2O)2 can catalyze radical cyclizations. However, both have significant draw backs. In an effort to improve the catalytic efficiency of these reactions we have studied several potential catalyst candidates to test their viability as radical cyclization catalysts. I investigate the hydride CpFe(CO)2H (FpH). FpH has been shown to transfer hydrogen atoms to dienes and styrenes. I measured the Fe–H bond dissociation free energy (BDFE) to be 63 kcal/mol (much higher than previously thought) and showed that this hydride is not a good candidate for catalytic radical cyclizations.
    [Show full text]
  • Superconductivity at ~70 K in Tin Hydride Snhx Under High Pressure
    Superconductivity at ~70 K in Tin Hydride SnHx under High Pressure F. Hong1, †, *, P.F. Shan1, 2, †, L.X. Yang 3, †, B.B. Yue 3, P.T. Yang 1, Z. Y. Liu1, J.P. Sun1, J.H. Dai1, H. Yu 1, 2, Y. Y. Yin1, X.H. Yu 1, 2, *, J.G. Cheng1, 2, *, and Z.X. Zhao1, 2 1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Center for High Pressure Science & Technology Advanced Research, Beijing, 100094, China †F. Hong, P.F. Shan and L.X. Yang have equal contribution. * Email: [email protected]; [email protected]; [email protected] (Dated: January 7, 2021) Abstract Various tin hydrides SnHx (x = 4, 8, 12, 14) have been theoretically predicted to be stable at high pressures and to show high-critical-temperature superconductivity with Tc ranging from about 70 to 100 K. However, experimental verifications for any of these phases are still lacking to date. Here, we report on the in-situ synthesis, electrical resistance, and synchrotron x-ray diffraction measurements of SnHx at 200 GPa. The main phase of the obtained sample can be indexed with the monoclinic C2/m SnH12 via ∼ comparison with the theoretical structural modes. A sudden drop of resistance and the systematic downward shift under external magnetic fields signals the occurrence of superconductivity in SnHx at Tc ≈ 70 K with an upper critical field μ0Hc2(0) ≈ 11.2 T, which is relatively low in comparison with other reported high-Tc superhydrides.
    [Show full text]
  • In Search for Near-Room-Temperature Superconducting Critical Temperature of Metal Superhydrides Under High Pressure: a Review
    Journal of Metals, Materials and Minerals, Vol. 30, No. 2, pp. 31-41, 2020 In search for near-room-temperature superconducting critical temperature of metal superhydrides under high pressure: A review Udomsilp PINSOOK* Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, THAILAND *Corresponding author e-mail: [email protected] Received date: Abstract 6 May 2020 An overview and the latest status of the superconductivity of metal superhydrides Revised date: 15 May 2020 under high pressure are discussed in this review article. The searching for near-room- Accepted date: temperature superconductors have been one of the most enthusiastic fields in physics. 10 June 2020 This is because of several key factors in both theoretical and experimental sides. By advanced experiment innovation, pressure exceeded that of the earth’s core can be generated in laboratories. This allows scientists to explore new physics of materials Keywords: Superconductors under high pressure. In the synergy form, the theoretical calculation gives accountable Metal superhydrides predictions on the structural and electronic properties which can be served as a Near-room-temperature practical map for experimentalists. In this review, I also give a brief overview on the Critical temperature existing theory of superconductivity which leads to the calculation of the High pressure superconducting critical temperature, 푇 . The key element for calculating 푇 is stemmed from the so-called spectral function, which can now be evaluated from the density functional theory. In order to obtain insight information and gain deeper understanding, I model the spectral function with a simple constant function. This analysis gives a powerful suggestion on the way to search for a higher value of 푇.
    [Show full text]
  • Transition Metal Hydrides
    Transition Metal Hydrides Biomimetic Studies and Catalytic Applications Jesper Ekström Stockholm University © Jesper Ekström, Stockholm 2007 ISBN 978-91-7155-539-7 Printed in Sweden by US-AB, Stockholm 2007 Distributor: Department of Organic Chemistry ‘Var som en anka brukade min mamma alltid säga. Håll dig lugn på ytan, och paddla utav bara helvete därunder.’ Michael Caine Abstract In this thesis, studies of the nature of different transition metal-hydride com- plexes are described. The first part deals with the enantioswitchable behav- iour of rhodium complexes derived from amino acids, applied in asymmetric transfer hydrogenation of ketones. We found that the use of amino acid thio amide ligands resulted in the formation of the R-configured product, whereas the use of the corresponding hydroxamic acid- or hydrazide ligands selec- tively gave the S-alcohol. Structure/activity investigations revealed that the stereochemical outcome of the catalytic reaction depends on the ligand mode of coordination. In the second part, an Fe hydrogenase active site model complex with a la- bile amine ligand has been synthesized and studied. The aim of this study was to find a complex that efficiently catalyzes the reduction of protons to molecular hydrogen under mild conditions. We found that the amine ligand functions as a mimic of the loosely bound ligand which is part of the active site in the hydrogenase. Further, an Fe hydrogenase active site model complex has been coupled to a photosensitizer with the aim of achieving light induced hydrogen production. The redox properties of the produced complex are such that no electron transfer from the photosensitizer part to the Fe moiety occurs.
    [Show full text]
  • Chemical Templates That Assemble the Metal Superhydrides
    Chemical templates that assemble the metal superhydrides Yuanhui Sun California State University Northridge Maosheng Miao ( [email protected] ) California State University, Northridge https://orcid.org/0000-0001-9486-1204 Article Keywords: chemical bonding, superconductors, computational chemistry Posted Date: January 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-130093/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Chemical templates that assemble the metal superhydrides Yuanhui Sun and Maosheng Miao* Department of Chemistry and Biochemistry, California State University Northridge, CA USA *Email: [email protected] 5 The recent incessant discoveries of high-pressure hydrides totally altered our road map toward finding room temperature superconductors. Especially, metal superhydrides consisting of hydrogen covalent networks that resemble metallic hydrogen are favorable candidates for improving Tc and lowering pressure. However, the dissociation of H2 and the 10 formation of H covalent network in superhydrides need a large chemical driving force that remains unexplained. Our high-throughput calculations show that, after removing H atoms, the remaining metal lattices exhibit unusual electron occupations at the interstitial regions, which matches excellently to the H lattice like a template. Furthermore, H lattices consist of 3D aromatic building units that are greatly stabilized by chemical templates of 15 metals close to s-d boarder. This theory can help predicting ternary superhydrides that may form at lower pressure. Among many remarkable physical and chemical properties of hydrogen, its capability of achieving superconducting state at or above room temperature has received intensive attention in 1–3 20 condensed matter studies for many decades.
    [Show full text]
  • Superconductivity of Hydrogen-Rich Metal Hydride Li5moh11 Under High Pressure
    Title Superconductivity of hydrogen-rich metal hydride Li5MoH11 under high pressure Author(s) Dezhong, Meng Citation Issue Date Text Version ETD URL https://doi.org/10.18910/70772 DOI 10.18910/70772 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University Superconductivity of hydrogen-rich metal hydride Li5MoH11 under high pressure DEZHONG MENG SEPTEMBER 2018 Superconductivity of hydrogen-rich metal hydride Li5MoH11 under high pressure A dissertation submitted to THE GRADUATE SCHOOL OF ENGINEERING SCIENCE OSAKA UNIVERSITY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN ENGINEERING BY DEZHONG MENG SEPTEMBER 2018 Abstract Hydrogen was predicted to show metallic behavior and even a possible high- temperature superconductor under sufficient pressurization [1]. Further calculations predicted that pure hydrogen showed atomic phase under > 500 GPa and became a superconductor with the transition temperature (Tc) of 300-350 K [2]. While the high pressure is beyond the present experimental conditions, it is predicted that some hydrogen- rich compounds could be metallic and superconductive under comparable lower pressure than that of pure hydrogen due to the chemically pre-compressed from relative heavier elements [3]. In fact, sulfur hydride (H2S), one of the hydrogen-rich compounds was recently reported to be a superconductor with a high Tc of 203 K under 150 GPa [4], which strongly motivates the superconductor research in hydrogen-rich compounds. Transition metals could combine with hydrogen atoms to form the close-packed structures with a signally rich variety of hydrogen coordination modes. One of the hydrogen-rich metal hydride BaReH9 with 9 hydrogen atoms in the unit cell showed superconductivity at a pressure above 100 GPa with a maximum Tc near 7 K [5].
    [Show full text]
  • Studies on Catalytic Mechanism of [Fe]- Hydrogenase from Methanogenic Archaea Based on Crystal Structures
    Studies on catalytic mechanism of [Fe]- hydrogenase from methanogenic archaea based on crystal structures DISSERTATION zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg Vorgelegt von Gangfeng Huang aus Shaoxing, China Marburg/Lahn, Deutschland, 2019 Die Untersuchungen zur vorliegenden Arbeit wurden in der Zeit von September 2015 bis Juni 2019 am Max-Planck-Institut für terrestrische Mikrobiologie in Marburg/Lahn unter der Leitung von Dr. Seigo Shima durchgeführt. Vom Fachbereich Biologie der Philipps-Universität in Marburg/Lahn als Dissertation angenommen am: Erstgutachter: Dr. Seigo Shima Zweitgutachter: Prof. Dr. Johann Heider Tag der mündlichen Prüfung: ERKLÄRUNG Hiermit versichere ich, dass ich meine Dissertation mit dem Titel "Studies on catalytic mechanism of [Fe]-hydrogenase from methanogenic archaea based on crystal structures " selbständig und ohne unerlaubte Unterstützung angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Die Dissertation wurde weder in der jetzigen noch in einer ähnlichen Form bei einer anderen Hochschule eingereicht und hat keinen sonstigen Prüfungszwecken gedient. Marburg, den 03.2019 Gangfeng Huang Publications Part of this dissertation was published as below: 1. Huang G, Wagner T, Ermler U, Bill E, Ataka K, Shima S. Dioxygen sensitivity of [Fe]-hydrogenase in the presence of reducing substrates. Angew. Chem. Int. Ed. 2018, 57: 4917-4920. 2. Wagner T*, Huang G*, Ermler U, Shima S. How [Fe]-hydrogenase from Methanothermobacter is protected against light and oxidative stress. Angew. Chem. Int. Ed. 2018, 57: 15056-15059. 3. Huang G*, Wagner T*, Wodrich M, Ataka K, Bill E, Ermler U, Hu X, Shima S.
    [Show full text]
  • The 1986 Most-Cited Chemistry Articles
    Current CX3mrnerits” EUGENE GARFIELD INSTITUTE FOR SCIENTIFIC INFO%JATIGW3 3501 MARKET ST. PHILADELPHIA, PA 19104 The 19S6 Most-Cited Chemistry Articles: Enzymes in Organic Synthesis and Odd-Cluster Soot Up, While Superconductivity Disappears (For Now) Number 27 jll!y 8, 1991 Current Contents Q readers are generally aware of our amual series listing papers that have been “most-cited” in the last two or three years. For reasons that have been dis- cussed frequently,I the “immediacy” of most hot papers in chemistry can lag by more than a year behind those in physics or the life sciences. The essay that follows should have appeared last year, shortly after the appearance of the 1989 Science Citation Index @. However, in publishing it now, we are able to include supplemental informa- tion on the status of the citations to these papers for the years 1989 and 1990. The delay in publishing this putative list of Cita- tion Classics @ in chemistry demonstrates more forcefully the characteristic delay mentioned above. The most-cited paper on the list received 99 citations by the end of Zvi Sza@m 1988. By the end of 1990, it had received an additional 138. term born out of a conversation I had with AS you can see, chemists, earth scientists, Robert K. Merton and Ihriet Zuckerrnan,3 and others are more than justified in envy- in 1980-a term that describes individuals, ing the prominence of life scientists in rank- “...who are peers of prizewinners in every ings that do not take this inherent delay fac- sense except that of having the award.”1 In tor into account.
    [Show full text]
  • Interplay of Hemilability and Redox Activity in Models of Hydrogenase Active Sites
    Interplay of hemilability and redox activity in models PNAS PLUS of hydrogenase active sites Shengda Dinga, Pokhraj Ghosha, Marcetta Y. Darensbourga, and Michael B. Halla,1 aDepartment of Chemistry, Texas A&M University, College Station, TX 77843 Edited by Brian M. Hoffman, Northwestern University, Evanston, IL, and approved October 6, 2017 (received for review June 12, 2017) The hydrogen evolution reaction, as catalyzed by two electro- the arrangement shown in Fig. 1B, finding a thiol proton nearby + + + catalysts [M(N2S2)·Fe(NO)2] ,[Fe-Fe] (M = Fe(NO)) and [Ni-Fe] a hydride accommodated in a bridge position between Ni and Fe (M = Ni) was investigated by computational chemistry. As nominal (17), remarkably predicted by density functional theory (DFT) models of hydrogenase active sites, these bimetallics feature two calculations two decades ago (9, 10). Thus, in both hydrogenases kinds of actor ligands: Hemilabile, MN2S2 ligands and redox-active, the hydride-protonation mechanism (HP, also known as het- nitrosyl ligands, whose interplay guides the H2 production mech- erolytic coupling) accounts for H2 production (3). anism. The requisite base and metal open site are masked in the Interestingly, while the major function of nitrogenase (N2-ase) is resting state but revealed within the catalytic cycle by cleavage of nitrogen fixation, it is known that a molecule of H2 is an obligatory – the MS Fe(NO)2 bond from the hemilabile metallodithiolate li- side product as one molecule of N isfixedintoNH (18). Four + 2 3 gand. Introducing two electrons and two protons to [Ni-Fe] pro- equivalents of electrons and four protons are required before the duces H2 from coupling a hydride temporarily stored on Fe(NO)2 H2 is released and the N2 is initially fixed (19, 20); this is Nature’s (Lewis acid) and a proton accommodated on the exposed sulfur of creative mechanism whereby the N2-ase active site can build up – the MN2S2 thiolate (Lewis base).
    [Show full text]
  • The Bioorganometallic Chemistry of Iron and The
    THE BIOORGANOMETALLIC CHEMISTRY OF IRON AND THE DIATOMIC LIGANDS CO AND NO AS RELATED TO HYDROGENASE ACTIVE SITES AND DINITROSYL IRON COMPLEXES A Dissertation by RYAN DAVID BETHEL Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Marcetta Y. Darensbourg Committee Members, Michael B. Hall Tatyana I. Igumenova Paul A. Lindahl Head of Department, David H. Russell December 2014 Major Subject: Chemistry Copyright 2014 Ryan David Bethel 1 ABSTRACT The discovery of a diiron organometallic active site, found in the [FeFe]-Hydrogenase (H2ase) enzyme, has led to a revisiting of the classic organometallic chemistry involving the Fe-Fe bond and bridging ligands. This diiron site is connected to a mainstay of biochemistry, a redox active 4Fe4S cluster, and the combination of these units is undoubtedly connected to the enzyme’s performance. The regioselectivity of CO substitution on the diiron framework of the so-called parent model complex (μ- pdt)[Fe(CO)3]2, (pdt = propane-1,3-dithiolate), and its derivatives, informs on the interplay of electron density in the diiron core of the enzyme active site. The structural + isomers (μ-pdt)[Fe(NHC)(NO)(PMe3)][Fe(CO)3] and (μ-pdt)(μ- + CO)[Fe(NHC)(NO)][Fe(PMe3)(CO)2] , synthesized through CO substitution by opposing + nucleophilic (PMe3) and electrophilic (NO ) ligands provide insight into the reactivity of both irons as a function of their π-acidity. The intramolecular fluxional processes of a series of (μ-SRS)[Fe(CO)3]2 complexes allows + for the generation of an open site mimicking the structure of the H2ase where H binds in the catalytic cycle of H2 production.
    [Show full text]
  • On Distribution of Superconductivity in Metal Hydrides Dmitrii V
    Dedicated to the 150th anniversary of Mendeleev’s periodic law On Distribution of Superconductivity in Metal Hydrides Dmitrii V. Semenok,1, * Ivan A. Kruglov,2, 3 Igor A. Savkin,4 Alexander G. Kvashnin,1, 2, * and Artem R. Oganov 1, 2, 5 1 Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia 2 Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia 3 Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia 4 Research Computer Center of Lomonosov Moscow State University, Moscow, Russia 5 International Center for Materials Discovery, Northwestern Polytechnical University, Xi’an 710072, China Corresponding authors *Alexander G. Kvashnin: [email protected] *Dmitrii V. Semenok: [email protected] ABSTRACT. Using the data on the superconducting critical temperature (TC) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum TC based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their TC. Results of the study of actinides and lanthanides show that they form highly symmetric superhydrides XH7-XH9. However, actinide hydrides do not exhibit high-temperature superconductivity (except Th-H system) and might not be considered as promising materials for experimental studies, as well as all dm-elements with m > 4, including hydrides of the noble elements.
    [Show full text]
  • High-Temperature Superconductivity in Cerium Superhydrides
    High-Temperature Superconductivity in Cerium Superhydrides Wuhao Chen,1 Dmitrii V. Semenok,2 Xiaoli Huang,1,* Haiyun Shu4, Xin Li,1 Defang Duan,1 Tian Cui,3,1,* and Artem R. Oganov2 1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China 2 Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bld. 1 Moscow, Russia 121205 3 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China 4 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China *Corresponding authors’ e-mails: [email protected], [email protected] The discoveries of high-temperature superconductivity in H3S and LaH10 have excited the search for superconductivity in compressed hydrides. In contrast to rapidly expanding theoretical studies, high-pressure experiments on hydride superconductors are expensive and technically challenging. Here we experimentally discover superconductivity in two new phases, 푭풎ퟑ̅풎- CeH10 (SC-I phase) and P63/mmc-CeH9 (SC-II phase) at pressures that are much lower (<100 GPa) than those needed to stabilize other polyhydride superconductors. Superconductivity was evidenced by a sharp drop of the electrical resistance to zero, and by the decrease of the critical temperature in deuterated samples and in an external magnetic field. SC-I has Tc=115 K at 95 GPa, showing expected decrease on further compression due to decrease of the electron-phonon coupling (EPC) coefficient λ (from 2.0 at 100 GPa to 0.8 at 200 GPa). SC-II has Tc = 57 K at 88 GPa, rapidly increasing to a maximum Tc ~100 K at 130 GPa, and then decreasing on further compression.
    [Show full text]