Constraining Uncertainty in the Timescale of Angiosperm Evolution and the Veracity of a Cretaceous Terrestrial Revolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Partial Flora Survey Rottnest Island Golf Course
PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge -
Appendix F3 Rare Plant Survey Report
Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5 -
Insights Into Comparative Genomics, Codon Usage Bias, And
plants Article Insights into Comparative Genomics, Codon Usage Bias, and Phylogenetic Relationship of Species from Biebersteiniaceae and Nitrariaceae Based on Complete Chloroplast Genomes Xiaofeng Chi 1,2 , Faqi Zhang 1,2 , Qi Dong 1,* and Shilong Chen 1,2,* 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; [email protected] (X.C.); [email protected] (F.Z.) 2 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected] (Q.D.); [email protected] (S.C.) Received: 29 October 2020; Accepted: 17 November 2020; Published: 18 November 2020 Abstract: Biebersteiniaceae and Nitrariaceae, two small families, were classified in Sapindales recently. Taxonomic and phylogenetic relationships within Sapindales are still poorly resolved and controversial. In current study, we compared the chloroplast genomes of five species (Biebersteinia heterostemon, Peganum harmala, Nitraria roborowskii, Nitraria sibirica, and Nitraria tangutorum) from Biebersteiniaceae and Nitrariaceae. High similarity was detected in the gene order, content and orientation of the five chloroplast genomes; 13 highly variable regions were identified among the five species. An accelerated substitution rate was found in the protein-coding genes, especially clpP. The effective number of codons (ENC), parity rule 2 (PR2), and neutrality plots together revealed that the codon usage bias is affected by mutation and selection. The phylogenetic analysis strongly supported (Nitrariaceae (Biebersteiniaceae + The Rest)) relationships in Sapindales. Our findings can provide useful information for analyzing phylogeny and molecular evolution within Biebersteiniaceae and Nitrariaceae. -
The Rust Fungi of Luzuriaga (Luzuriagaceae) with Description of a New Species, Puccinia Luzuriagae-Polyphyllae
Research Collection Journal Article The rust fungi of Luzuriaga (Luzuriagaceae) with description of a new species, Puccinia luzuriagae-polyphyllae Author(s): Berndt, Reinhard Publication Date: 2010 Permanent Link: https://doi.org/10.3929/ethz-b-000017585 Originally published in: Mycological Progress 9(1), http://doi.org/10.1007/s11557-009-0629-x Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Mycol Progress (2010) 9:125–130 DOI 10.1007/s11557-009-0629-x ORIGINAL ARTICLE The rust fungi of Luzuriaga (Luzuriagaceae) with description of a new species, Puccinia luzuriagae-polyphyllae Reinhard Berndt Received: 22 June 2009 /Revised: 4 September 2009 /Accepted: 7 October 2009 /Published online: 24 November 2009 # German Mycological Society and Springer 2009 Abstract Three species of rust fungi (Uredinales), Puccinia of Alstroemeriaceae which is restricted to the New World perforans, P. fuegiana (= Uromyces skottsbergii), and with its two genera Alstroemeria and Bomarea (Fay et al. Aecidium callixenis have been described on members of 2006, http://www.mobot.org/MOBOT/Research/Apweb/ Luzuriaga (Luzuriagaceae). Puccinia luzuriagae-polyphyllae orders/lilialesweb.htm; retrieved 16 March 2009). is added as a new species on Luzuriaga polyphylla from Three rust fungi are known on members of Luzuriaga: Chile. The rust had been confused hitherto with P. perforans Puccinia perforans Mont., P. fuegiana Lindq. (= Uromyces occurring on L. radicans. Both species differ from P. skottsbergii Jørst.) and Aecidium callixenis Berk. ex Syd. & fuegiana on L. marginata by the absence of a uredinial state P. -
Pared to Dicots, Including Greater Genome Size Variation and Grea
American Journal of Botany 99(9): 1501–1512. 2012. R IBOSOMAL DNA DISTRIBUTION AND A GENUS-WIDE PHYLOGENY REVEAL PATTERNS OF CHROMOSOMAL EVOLUTION 1 IN A LSTROEMERIA (ALSTROEMERIACEAE) J ULIANA C HACÓN 2,4 , A RETUZA S OUSA 2 , C ARLOS M. BAEZA 3 , AND S USANNE S. RENNER 2 2 Systematic Botany and Mycology, University of Munich, 80638 Munich, Germany; and 3 Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográfi cas, Universidad de Concepción, Casilla 160-C, Concepción, Chile • Premise of the study: Understanding the fl exibility of monocot genomes requires a phylogenetic framework, which so far is available for few of the ca. 2800 genera. Here we use a molecular tree for the South American genus Alstroemeria to place karyological information, including fl uorescent in situ hybridization (FISH) signals, in an explicit evolutionary context. • Methods: From a phylogeny based on plastid, nuclear, and mitochondrial sequences for most species of Alstroemeria , we se- lected early-branching (Chilean) and derived (Brazilian) species for which we obtained 18S-25S and 5S rDNA FISH signals; we also analyzed chromosome numbers, 1C-values, and telomere FISH signals (in two species). • Key results: Chromosome counts for Alstroemeria cf. rupestris and A. pulchella confi rm 2 n = 16 as typical of the genus, which now has chromosomes counted for 29 of its 78 species. The rDNA sites are polymorphic both among and within species, and interstitial telomeric sites in Alstroemeria cf. rupestris suggest chromosome fusion. • Conclusions: In spite of a constant chromosome number, closely related species of Alstroemeria differ drastically in their rDNA, indicating rapid increase, decrease, or translocations of these genes. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
A Review on Presence of Oleanolic Acid in Natural Products
Natura Proda Medica, (2), April 2009 64 A review on presence of Oleanolic acid in Natural Products A review on presence of Oleanolic acid in Natural Products YEUNG Ming Fai Abstract Oleanolic acid (OA), a common phytochemical, is chosen as an example for elucidation of its presence in natural products by searching scientific databases. 146 families, 698 genera and 1620 species of natural products were found to have OA up to Sep 2007. Keywords Oleanolic acid, natural products, plants, Chinese medicine, Linnaeus system of plant classification Introduction and/or its saponins in natural products was carried out for Oleanolic acid (OA), a common phytochemical, is chosen elucidating its pressence. The classification was based on as an example for elucidation of its presence in natural Linnaeus system of plant classification from the databases of products by searching scientific databases. SciFinder and China Yearbook Full-text Database (CJFD). Methodology of Review Result of Review Literature search for isolation and characterization of OA Search results were tabulated (Table 1). Table 1 Literature review of natural products containing OA and/or its saponins. The classification is based on Angiosperm Phylogeny Group APG II system of plant classification from the databases of SciFinder and China Yearbook Full-text Database (CJFD). Family of plants Plant scientific names Position of plant to be Form of OA References isolated isolated Acanthaceae Juss. Acanthus illicifolius L. Leaves OA [1-2] Acanthaceae Avicennia officinalis Linn. Leaves OA [3] Acanthaceae Blepharis sindica Stocks ex T. Anders Seeds OA [4] Acanthaceae Dicliptera chinensis (Linn.) Juss. Whole plant OA [5] Acanthaceae Justicia simplex Whole plant OA saponins [6] Actinidiaceae Gilg. -
Survey of Birds on Namuli Mountain (Mozambique), November 2007, with Notes on Vegetation and Mammals
Survey of birds on Namuli Mountain (Mozambique), November 2007, with notes on vegetation and mammals Françoise Dowsett-Lemaire A report prepared for the Darwin Initiative, the Royal Botanic Gardens, Kew BirdLife International, Instituto de Investigação Agrária de Moçambique and Mount Mulanje Conservation Trust. Dowsett-Lemaire Misc. Report 60 (2008) Dowsett-Lemaire Misc. Rep. 60 (2008) -1- Birds of Namuli Mtn, Mozambique Survey of birds on Namuli Mountain (Mozambique), November 2007, with notes on vegetation and mammals Françoise Dowsett-Lemaire Summary Ornithological surveys were carried out on Namuli Mountain (peak 2419 m) from 14-27 November 2007. Most fo rest on Namuli is found above 1600 or 1700 m, to c. 1900 m (with scrubby forest to 2000 m or a little higher), with the largest block of Manho Forest (at least 1000 ha) spreading over the south-western slopes of the Muretha Plateau. Mid-altitude forest on the south-eastern slopes has been greatly reduced in recent decades by fires and clearance for agriculture. Other habitats include montane grassland (rather wet and peaty), small areas of montane shrubland, rocky outcrops and large granitic domes. The woody vegetation of the various forest types is described in some detail: the dominant emergents of Afromontane forest at 1600-1850 m are Faurea wentzeliana (new for Mozambique, at its sou thern limit of range) and Cryptocarya liebertiana , followed by Olea capensis . Albizia adianthifolia, Newtonia buchananii and Parinari excelsa are dominant in mid-altitude forest (1200-1450 m). Some notes on mammals observed are also included. The main base camp (15-24 November) was on Muretha Plateau at the altitude of 1860 m, in a mosaic of grass - land and small forest patches. -
Evolutionary Relationships in Afro-Malagasy Schefflera (Araliaceae) Based on Nuclear and Plastid Markers
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 Evolutionary relationships in Afro-Malagasy Schefflera (Araliaceae) based on nuclear and plastid markers Morgan Gostel Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Biology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/122 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Morgan Robert Gostel 2010 All Rights Reserved ii EVOLUTIONARY RELATIONSHIPS IN AFRO-MALAGASY SCHEFFLERA (ARALIACEAE) BASED ON NUCLEAR AND PLASTID MARKERS A thesis submitted in partial fulfillment of the requirements for the degree of M.S. Biology at Virginia Commonwealth University. by MORGAN ROBERT GOSTEL B.S. Biology, Virginia Commonwealth University, 2008 Director: DR. GREGORY M. PLUNKETT AFFILIATE RESEARCH PROFESSOR, DEPARTMENT OF BIOLOGY, VIRGINIA COMMONWEALTH UNIVERSITY AND DIRECTOR, CULLMAN PROGRAM FOR MOLECULAR SYSTEMATICS, THE NEW YORK BOTANICAL GARDEN Co-Director: DR. RODNEY J. DYER ASSOCIATE PROFESSOR, DEPARTMENT OF BIOLOGY Virginia Commonwealth University Richmond, Virginia July 2010 iii Acknowledgements I have been tremendously fortunate in my life to be taught by truly gifted teachers – assets that are simultaneously the most important and undervalued in our world. I would like to extend my deepest gratitude to my friend and advisor, Dr. Gregory M. Plunkett, who has taught me that patience and diligence together with enthusiasm are necessary to pursue what we are most passionate about and who has provided me with the most exciting opportunities in my life. -
University of Birmingham How Deep Is the Conflict Between Molecular And
University of Birmingham How deep is the conflict between molecular and fossil evidence on the age of angiosperms? Coiro, Mario; Doyle, James A.; Hilton, Jason DOI: 10.1111/nph.15708 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Coiro, M, Doyle, JA & Hilton, J 2019, 'How deep is the conflict between molecular and fossil evidence on the age of angiosperms?', New Phytologist, vol. 223, no. 1, pp. 83-99. https://doi.org/10.1111/nph.15708 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility 14/01/2019 This is the peer reviewed version of the following article: Coiro, M. , Doyle, J. A. and Hilton, J. (2019), How deep is the conflict between molecular and fossil evidence on the age of angiosperms?. New Phytol. , which has been published in final form at doi:10.1111/nph.15708. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. -
An Update of Review on the Presence of Oleanolic Acid in Natural Products at Aug 2010
Natura Proda Medica, Prelimary, September 2010 11 A review on isolation of Oleanolic acid in Natural Products from 2007 to Aug 2010 An update of review on the presence of Oleanolic acid in Natural Products at Aug 2010 YEUNG Ming Fai Abstract Reviews on isolation of oleanolic acid (OA) in natural products were carried out. This elucidates the presence of oleanolic acid in natural products based on scientific findings. There are 158 families, 767 genera and 1710 species of natural products isolated OA up to Aug 2010. Keywords Oleanolic acid, natural products, plants, Chinese medicine, presence, isolation, Linnaeus system of plant classification Introduction Result of Review To elucidate the presence of oleanolic acid in natural Review results were collaborated and tabulated (Table 1). products based on scientific findings, reviews on isolation of oleanolic acid (OA) in natural products were carried out 1-2. Table 1 Review on isolation of oleanolic acid and/or its saponins in natural products. The classification is based on Angiosperm Phylogeny Group APG II system of plant classification from the databases of SciFinder and China Yearbook Full-text Database (CJFD). Family of plants Plant scientific names Position of plant to Form of OA be isolated isolated Acanthaceae Juss. Acanthus illicifolius L. Leaves OA Acanthaceae Avicennia officinalis Linn. Leaves OA Acanthaceae Blepharis sindica Stocks ex T. Anders Seeds OA Acanthaceae Dicliptera chinensis (Linn.) Juss. Whole plants OA Acanthaceae Justicia simplex Wholeplants OAsaponins Acanthaceae Gendarussa vulgaris Nees Aerial parts OA Actinidiaceae Gilg. et Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq. Leaves or stems OA Werderm. Actinidiaceae Actinidia deliciosa C. -
Plant of the Month
Plant of the Month - May by Allan Carr Geitonoplesium cymosum scrambling lily Pronunciation: guy-ton-o-PLEEZ-ee-um sy-MOW-sum HEMEROCALLIDACEAE Derivation: Geitonoplesium, from the Greek, geiton – a neighbour and plesio – near (because of its close affinity to the genus, Luzuriaga in which it was originally placed); cymosum, from the Greek, kyma – to swell, grow (presumably referring to the way in which a *cyme of flowers spreads outwards from the centre). Leaves, buds Buds, flower with native bee Leaves with raised mid vein Geitonoplesium is a monotypic genus (contains this single species) found in eastern Australia as well as Pacific Islands and Malaysia. Description: G. cymosum is a wiry twining climber often scrambling over itself. It is usually found in shaded positions and has fibrous roots and edible new growth. In eastern Australia it is found from north Qld down through eastern NSW to Vic. Leaves to 110 mm x 25 mm are alternate, shiny dark green above, paler below and have a distinct raised mid vein above several parallel longitudinal veins. Their shape can vary from *ovate to *lanceolate. Flowers to 15 mm across are borne in drooping *cymes of several white flowers with 6 petals and yellow *stamens from February to July. Fruits are black globular berries to 20 mm diameter with numerous waxy black seeds. This plant is very similar to Eustrephus latifolius (Plant of the Month - April) but can be easily identified by its leaves with an obvious raised mid vein, non-fringed flower petals or the black fruits. *ovate = shaped like an egg in outline, broadest near the base *lanceolate = shaped like a lance, about four times as long as it is wide and tapering to a point *cyme = a rounded arrangement of flowers where the flowers open from the centre first and spread outwards *stamen = one of the male organs of a flower consisting of a stalk (filament) and a pollen-bearer (anther) Habit with fruits .