20.Bruce A. Bohm.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

20.Bruce A. Bohm.Pdf The Geography of Phytochemical Races Bruce A. Bohm The Geography of Phytochemical Races 1 3 Dr. Bruce A. Bohm 3685 West 15th Avenue Vancouver, British Columbia V6R 2Z6 Canada e-mail: [email protected] ISBN: 978-1-4020-9051-6 e-ISBN: 978-1-4020-9052-3 Library of Congress Control Number: 2008934053 © 2009 Springer Science+Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfi lming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover design: Boekhorst Design BV Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com This book is dedicated to Wilfred (Wilf) B. Schofi eld, Emeritus Professor of Botany, University of British Columbia, bryologist extraordinaire, indomitable fi eld botanist for whom the force of gravity is a mere inconvenience, scholar, teacher, colleague, and, above all, good friend. Acknowledgments I thank many workers, too numerous to list, who have provided reprints, preprints, and general information on the subject of chemical races. Special thanks go to Prof. Dr. Tod Stuessy, Institut für Botanik, Universität Wien, for his help with the literature on this and other projects, and for encouragement and support over the years. I am also very grateful to Prof. Dr. Eckhard Wollenweber, Institut für Botanik der TU Darmstadt, for his friendship and collegiality over the years, for access to unpublished data, and for rendering the Abstract in German, thus saving everyone from having to suffer my abuse of his beautiful language. I also thank Mapthemat- ics Ltd. of Renton, Washington who assisted me in acquiring the mapping program Geocart Version 2.6 with which the maps in this review were prepared. vii Abstract The discovery of chemical races was one of the important outcomes of the “chemo- taxonomic age,” providing systematists with another tool in the search for relation- ships. The subject was discussed in a few review articles at the time, but, by and large, receded into the background as more powerful techniques, generally referred to as molecular biology, came on stream. This review is an attempt to update the subject of chemical races by bringing together an assortment of examples from the literature where geographically distinct profi les in the occurrence of secondary metabolites have been described. The examples are sorted into several general categories, within which exam- ples are further arranged according to geographical areas. The fi rst major category involves disjunctions that occur more or less within continents, with some obvious exceptions such as some African taxa that not only occur primarily on the continent but are also represented on Madagascar or on the Canary Islands. The second cat- egory is similar to the fi rst, but specifi cally addresses distributions likely caused by retreat of glaciers. The third category treats intercontinental disjunctions; category four is similar, but treats examples characterized by wide disjunctions that do not fi t easily into the intercontinental group. Category four also includes several examples from the lichen chemistry literature. Category fi ve features disjunctions involving oceanic islands, while polar disjunctions are covered in the fi nal section. Inclusion of an example in a particular category is admittedly arbitrary. Exam- ples in the postglacial group, for instance, could just as easily have been included within the continental group, but were given special consideration because most of the workers involved with those taxa discussed their results in terms of refugia and postglacial migration. Some taxa appear under two or more categories. For example, some taxa within Chrysosplenium are disjunct between Asia and North America, others between North America and Europe, and still others between Asia and South America. At closer focus, one fi nds sectional disjunctions between eastern and western North America, and in one case, populational differences within a species. Unfortunately, few systems have been examined this thoroughly, as will be noted in several places below. In a few cases, information obtained from macromolecular methods is included where such data might have a bearing on interpretation of how a given secondary metabolic profi le could have come about. Specifi cally, it is possible to speculate on ix x Abstract which biosynthetic step in a given pathway might have been eliminated or altered in the establishment of a new chemical profi le. Examples involve a wide assortment of chemical types, and range from the sim- plest approach—a comparison of chromatograms—to application of cladistic meth- odology to complex sets of chemical structural data. Equally wide is the sampling of the plant kingdom, with examples including lichens, bryophytes, ferns, fl ower- ing plants, and conifers. Although the study of conifer chemistry is often limited to simple compounds of widespread occurrence, we see that statistical analysis of quantitative data (GLC) provides a powerful means of assessing relationships, as well as the history of postglacial migrations. Application of statistical analysis to fl avonoid data has also revealed relationships in a few cases. Zusammenfassung Die Entdeckung chemischer Rassen war eines der wichtigsten Ergebnisse des “Zeitalters der Chemotaxonomie”, hat sie doch den Systematikern ein weiteres Werkzeug für die Suche nach Verwandtschaftsbeziehungen in die Hand gegeben. Das Thema wurde seinerzeit in mehreren Review-Artikeln diskutiert, aber nach und nach ist es gegenüber leistungsfähigeren Techniken, die allgemein unter dem Stichwort Molekularbiologie zusammengefaßt werden können, in den Hintergrund gerückt. Dieser Übersichtsartikel ist ein Versuch, das Thema Chemische Rassen zu aktualisieren, indem eine Zusammenstellung von Beispielen aus der Literatur gegeben wird, wo für pfl anzliche Sekundärstoffen geographisch distinkte Muster beschrieben wurden. Die Beispiele sind nach mehreren Kategorien geordnet und innerhalb dieser Kategorien nach geographischen Gebieten. Die erste Kategorie umfaßt Disjunk- tionen, die mehr oder weniger nur innerhalb eines Kontinents vorkommen. Sie umfaßt auch einige Ausnahmen, wie etwa afrikanische Sippen, die zwar vorwieg- end auf dem Kontinent, aber auch auf Madagaskar oder auf den Kanaren vertreten sind. Die zweite Gruppe ähnelt der ersten, betrifft aber speziell Verbreitungsmuster, die vermutlich durch den Rückzug von Gletschern bedingt sind. Die dritte Gruppe behandelt interkontinentale Disjunktionen. Die vierte Gruppe enthält Beispiele für weiträumige Disjunktionen, die nicht ohne weiteres in die interkontinentale Gruppe passen. Diese Gruppe enthält auch einige Beispiele aus der Literatur zur Flechtenche- mie. Gruppe fünf behandelt Disjunktionen, die vor allem die ozaenischen Inseln betreffen, während polare Disjunktionen im letzten Kapitel behandelt werden. Die Aufnahme eines Beispiels in eine bestimmte Gruppe ist zugegebenermaßen etwas willkürlich. So könnten etwa Beispiele aus der nach-eiszeitlichen Kategorie ebensogut in der kontinentalen Kategorie stehen. Hier wurde aber besonders berücksichtigt, daß die meisten Autoren, die sich mit solchen Sippen beschäftigen, Ihre Ergebnisse im Zusammenhang mit Rückzugsgebieten und nach-eiszeitlichen Wanderungen diskutieren. Einige Sippen erscheinen unter zwei oder mehr Kategorien. Manche Sippen innerhalb von Chrysosplenium beipielsweise sind disjunkt zwischen Asien und Nordamerika verbreitet, andere zwischen Nordamerika und Europa, wie- der andere zwischen Asien und Südamerika. Bei näherer Betrachtung fi ndet man Diskunktionen auf Sektionsebene zwischen dem östlichen und dem westlichen Teil Nordamerikas, und in einem Fall unterscheiden sich Populationen innerhalb einer Art. xi xii Zusammenfassung Leider wurden nur wenige Verwandtschaftskreise derart gründlich untersucht, wie an mehreren Stellen gezeigt werden wird. In einigen Fällen wurden Informationen aus makromolekularen Untersuchungen mit einbezogen, wenn diese Daten bei der Interpretation der Sekundärstoffmuster hilfreich sind. Insbesondere kann man Vermutungen darüber anstellen, welche Schritte eines bestimmten Biosynthesewegs beim Aufbau eines neuen Sekundärstoffmusters ausgefallen oder verändert worden sein könnten. Die Beispiele umfassen einen weiten Bereich Chemotypen, von einfachsten Fällen (Vergleich von Chromatogrammen) bis hin zur cladistischen Methodik für komplexe Sätze chemischer Merkmale. Ähnlich weit ist die Auswahl aus dem Pfl anzenreich; sie umfaßt Flechten, Moose, Farne, Angiospermen und Gymnospermen. Obwohl sich die chemischen Daten bei Koniferen oft auf einfache Verbindungen mit weitverbreitetem Vorkommen beschränken, werden wir doch sehen, daß statistische Analysen quantitativer Daten (GLC) ein wertvolles Hilfsmittel zur Aufdeckung von Verwandschaftsbeziehungen ebenso wie der nach-eiszeitlichen Wanderungen darstellen. Die Anwendung statistischer Analysen auf Flavonoid-Daten hat in einigen Fällen ebenfalls zur Klärung von Verwandschaftbeziehungen geführt. Contents 1 Introduction ..................................................................................................... 1 2 Examples Within Continents ......................................................................... 3 2.1 Africa (Including Madagascar) .................................................................3
Recommended publications
  • Exobasidium Darwinii, a New Hawaiian Species Infecting Endemic Vaccinium Reticulatum in Haleakala National Park
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Mycol Progress (2012) 11:361–371 DOI 10.1007/s11557-011-0751-4 ORIGINAL ARTICLE Exobasidium darwinii, a new Hawaiian species infecting endemic Vaccinium reticulatum in Haleakala National Park Marcin Piątek & Matthias Lutz & Patti Welton Received: 4 November 2010 /Revised: 26 February 2011 /Accepted: 2 March 2011 /Published online: 8 April 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Hawaii is one of the most isolated archipelagos Exobasidium darwinii is proposed for this novel taxon. This in the world, situated about 4,000 km from the nearest species is characterized among others by the production of continent, and never connected with continental land peculiar witches’ brooms with bright red leaves on the masses. Two Hawaiian endemic blueberries, Vaccinium infected branches of Vaccinium reticulatum. Relevant char- calycinum and V. reticulatum, are infected by Exobasidium acters of Exobasidium darwinii are described and illustrated, species previously recognized as Exobasidium vaccinii. additionally phylogenetic relationships of the new species are However, because of the high host-specificity of Exobasidium, discussed. it seems unlikely that the species infecting Vaccinium calycinum and V. reticulatum belongs to Exobasidium Keywords Exobasidiomycetes . ITS . LSU . vaccinii, which in the current circumscription is restricted to Molecular phylogeny. Ustilaginomycotina
    [Show full text]
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • Assessment Report on Tanacetum Parthenium (L.) Schultz Bip., Herba. Draft
    25 September 2019 EMA/HMPC/48716/2019 Committee on Herbal Medicinal Products (HMPC) Assessment report on Tanacetum parthenium (L.) Schultz Bip., herba Draft – Revision 1 Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC (traditional use) Herbal substance(s) (binomial scientific name of the plant, including plant part) Tanacetum parthenium (L.) Schultz Bip., herba Herbal preparation Powdered herbal substance Pharmaceutical form(s) Herbal preparation in solid dosage forms for oral use First assessment Rapporteur G Calapai Peer-reviewer B Kroes Revision Rapporteur A Assisi Peer-reviewer B Kroes Note: This draft assessment report is published to support the public consultation of the draft European Union herbal monograph on Tanacetum parthenium (L.) Schultz Bip., herba. It is a working document, not yet edited, and shall be further developed after the release for consultation of the monograph. Interested parties are welcome to submit comments to the HMPC secretariat, which will be taken into consideration but no ‘overview of comments received during the public consultation’ will be prepared on comments that will be received on this assessment report. The publication of this draft assessment report has been agreed to facilitate the understanding by Interested Parties of the assessment that has been carried out so far and led to the preparation of the draft monograph. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019.
    [Show full text]
  • Stone Corral-Josephine Peridotite Research Natural Area
    AN ECOLOGICAL SURVEY OF THE PROPOSED STONE CORRAL-JOSEPHINE PERIDOTITE RESEARCH NATURAL AREA (L.E. HORTON-DARLINGTONIA BOG RESEARCH NATURAL AREA) ON THE SIX RIVERS NATIONAL FOREST, DEL NORTE COUNTY, CALIFORNIA (Purchase Order # 40-9AD6-5-907) Todd KeeLer-Wolf December 1986 INTRODUCTION ACCESS SCIENTIFIC INTEREST JUSTIFICATIONS FOR ESTABLISHMENT RARE FLORA ENDEMIC TAXA UNDESCRIBED TAXA THE DARLINGTONIA BOG PORT ORFORD CEDAR GEOLOGY SOILS CLIMATE VEGETATION BOG FOREST RIPARIAN VEGETATION DWARF FOREST LOWER DWARF FOREST JEFFREY PINE WOODLAND DOUGLAS-FIR FOREST CANYON FOREST IMPACTS RECOMMENDATIONS LITERATURE CITED APPENDIX 1; VASCULAR PLANT LIST FIGURES INTRODUCTION The proposed Darlingtonia bog Research Natural Area, also knawn as the L.E. Horton RNA covers approximately 1305 acres of eastwardly-facing slopes above the North Fork of the Smith River in extreme northwestern California. The area lies just four miles from the Oregon border and includes portions of Sections 24, 25, and 36 T. 18 N. R. 11 W. (Latitude 41' 55' N., Longitude 124' W.) Elevations range from ca. 600 ft. along the North Fork of the Smith River to slightly over 2400 ft. along the ridgetop south of the Stone Corral site. Terrain is steep and rugged in most of the southern and central portions of the study area, but becomes more gradual in the northern portion (see location map). It is in this northern area that the Darlfngtonia bogs occur (discussed as bog forest in the vegetation section). In addition to the Darlingtonia bogs (Figure 1) the site contains several other vegetation types including dwarf forest, Jeffrey pine woodland, lower dwarf forest, canyon forest, Douglas-fir forest, and two types of riparian vegetation.
    [Show full text]
  • Opine Project
    BIOLOGICAL EVALUATION THREATENED, ENDANGERED, AND SENSITIVE PLANTS OPINE PROJECT * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * PREPARED BY: ___/s/ Charmane Powers_________________ Charmane Powers Ecologist DATE: ____November 21, 2006__________________ PROJECT LOCATION: Bend/Ft. Rock Ranger District, Deschutes National Forest * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Opine Biological Evaluation – Threatened, Endangered, and Sensitive Plants Page 1 of 28 SUMMARY OF FINDINGS The analysis of effects on species viability found the following: For the no action alternative: No impact to CACH or BOPU. For the two action alternatives: The Opine project may impact CACH individuals or habitat, but will not likely contribute to a trend towards Federal listing or cause a loss of viability to the population or species. The Opine project will have no impact on BOPU individuals or habitat. ________________________________________________________________________ INTRODUCTION This Biological Evaluation documents the review and review findings of Forest Service planned programs and activities for possible effects on species (1) listed or proposed for listing by the USDI Fish and Wildlife Service (USFWS) as Endangered or Threatened; (2) designated by the Pacific Northwest Regional Forester as Sensitive. It is prepared in compliance with the requirements of Forest Service Manual (FSM) 2630.3, FSM 2672.4, FSM 10/89 R-6 Supplement 47 2670.44, and the Endangered
    [Show full text]
  • (Vinca Rosea and Vinca Difformis) from Libya
    Research Article Open Acc J of Toxicol Volume 4 Issue 1 - April 2019 Copyright © All rights are reserved by Salem Mohamed Edrah DOI : 10.19080/OAJT.2019.04.555626 Phytochemical Study and In Vitro Antibacterial Activity of Two Traditional Medicinal Plants (Vinca Rosea and Vinca Difformis) from Libya Salem Mohamed Edrah1*, Fatimh Mustafa Meelad1 and Fouzy Alafid2 1Department of Chemistry, Al-Khums El-Mergeb University, Libya 2University of Pardubice, Czech Republic Submission: March 04, 2019; Published: April 02, 2019 *Corresponding author: Salem Mohamed Edrah, Department of Chemistry, Faculty of Sciences Al-Khums El-Mergeb University, Al-Khums, Libya Abstract Vinca rosea and Vinca difformis gardens. Aqueous and Ethanol extracts leaf of both species were preliminary phytochemically screened and tested against some pathogenic bacteria. Qualitatively analysis revealed are magnificentTannin, Saponin, plants Flavonoids growing in and the Terpenoids Libyan woodlands gave positive and are results utilized and beautifully phlobatanins as an and embellishing Steroids gave in negative results. Quantitative analysis revealed that the percentage yield of bioactive constituents is present more in Vinca rosea than in Vinca difformis. In addition, the crude extracts of Vinca rosea and Vinca difformis were tested (using the Disc Diffusion Method) for their antimicrobial bacteria include Staphylococcus aureus and Streptococcus spp., and two strains of gram-negative bacteria including Escherichia coli and Klebsiella pneumoniaactivity against the bacterial pathogens. The influences of aqueous and ethanol extracts on some pathogenic: two strains of gram-positive antibiotics by measuring the diameter of the inhibition zones, After incubation, the zone of inhibition was measured in mm, a good inhibition of more than ,6 and mm the were sensitivity observed of indicating the microorganisms the effective to antibacterial the extracts activityof plant’s of thespecies bioactive were compoundscompared with in both each of other the plants and with leaves designated extracts.
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • Comparative Morphology of the Male Genitalia in Lepidoptera
    COMPARATIVE MORPHOLOGY OF THE MALE GENITALIA IN LEPIDOPTERA. By DEV RAJ MEHTA, M. Sc.~ Ph. D. (Canta.b.), 'Univefsity Scholar of the Government of the Punjab, India (Department of Zoology, University of Oambridge). CONTENTS. PAGE. Introduction 197 Historical Review 199 Technique. 201 N ontenclature 201 Function • 205 Comparative Morphology 206 Conclusions in Phylogeny 257 Summary 261 Literature 1 262 INTRODUCTION. In the domains of both Morphology and Taxonomy the study' of Insect genitalia has evoked considerable interest during the past half century. Zander (1900, 1901, 1903) suggested a common structural plan for the genitalia in various orders of insects. This work stimulated further research and his conclusions were amplified by Crampton (1920) who homologized the different parts in the genitalia of Hymenoptera, Mecoptera, Neuroptera, Diptera, Trichoptera Lepidoptera, Hemiptera and Strepsiptera with those of more generalized insects like the Ephe­ meroptera and Thysanura. During this time the use of genitalic charac­ ters for taxonomic purposes was also realized particularly in cases where the other imaginal characters had failed to serve. In this con­ nection may be mentioned the work of Buchanan White (1876), Gosse (1883), Bethune Baker (1914), Pierce (1909, 1914, 1922) and others. Also, a comparative account of the genitalia, as a basis for the phylo­ genetic study of different insect orders, was employed by Walker (1919), Sharp and Muir (1912), Singh-Pruthi (1925) and Cole (1927), in Orthop­ tera, Coleoptera, Hemiptera and the Diptera respectively. It is sur­ prising, work of this nature having been found so useful in these groups, that an important order like the Lepidoptera should have escaped careful analysis at the hands of the morphologists.
    [Show full text]
  • Okanogan County Plant List by Scientific Name
    The NatureMapping Program Washington Plant List Revised: 9/15/2011 Okanogan County by Scientific Name (1) Non- native, (2) ID Scientific Name Common Name Plant Family Invasive √ 763 Acer glabrum Douglas maple Aceraceae 3 Acer macrophyllum Big-leaf maple Aceraceae 800 Alisma graminium Narrowleaf waterplantain Alismataceae 19 Alisma plantago-aquatica American waterplantain Alismataceae 1155 Amaranthus blitoides Prostrate pigweed Amaranthaceae 1087 Rhus glabra Sumac Anacardiaceae 650 Rhus radicans Poison ivy Anacardiaceae 1230 Berula erecta Cutleaf water-parsnip Apiaceae 774 Cicuta douglasii Water-hemlock Apiaceae 915 Cymopteris terebinthinus Turpentine spring-parsley Apiaceae 167 Heracleum lanatum Cow parsnip Apiaceae 1471 Ligusticum canbyi Canby's lovage Apiaceae 991 Ligusticum grayi Gray's lovage Apiaceae 709 Lomatium ambiguum Swale desert-parsley Apiaceae 1475 Lomatium brandegei Brandegee's lomatium Apiaceae 573 Lomatium dissectum Fern-leaf biscuit-root Apiaceae Coeur d'Alene desert- Lomatium farinosum Apiaceae 548 parsley 582 Lomatium geyeri Geyer's desert-parsley Apiaceae 586 Lomatium gormanii Gorman's desert-parsley Apiaceae 998 Lomatium grayi Gray's desert-parsley Apiaceae 999 Lomatium hambleniae Hamblen's desert-parsley Apiaceae 609 Lomatium macrocarpum Large-fruited lomatium Apiaceae 1476 Lomatium martindalei Few-flowered lomatium Apiaceae 1000 Lomatium nudicaule Pestle parsnip Apiaceae 1477 Lomatium piperi Piper's bisciut-root Apiaceae 634 Lomatium triternatum Nine-leaf lomatium Apiaceae 1528 Osmorhiza berteroi Berter's sweet-cicely
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Download the *.Pdf File
    ECOLOGICAL SURVEY OF THE PROPOSED BIG PINE MOUNTAIN RESEARCH NATURAL AREA LOS PADRES NATIONAL FOREST, SANTA BARBARA COUNTY, CALIFORNIA TODD KEELER-WOLF FEBRUARY 1991 (PURCHASE ORDER # 40-9AD6-9-0407) INTRODUCTION 1 Access 1 PRINCIPAL DISTINGUISHING FEATURES 2 JUSTIFICATION FOR ESTABLISHMENT 4 Mixed Coniferous Forest 4 California Condor 5 Rare Plants 6 Animal of Special Concern 7 Biogeographic Significance 7 Large Predator and Pristine Environment 9 Riparian Habitat 9 Vegetation Diversity 10 History of Scientific Research 11 PHYSICAL AND CLIMATIC CONDITIONS 11 VEGETATION AND FLORA 13 Vegetation Types 13 Sierran Mixed Coniferous Forest 13 Northern Mixed Chaparral 22 Canyon Live Oak Forest 23 Coulter Pine Forest 23 Bigcone Douglas-fir/Canyon Live Oak Forest 25 Montane Chaparral 26 Rock Outcrop 28 Jeffrey Pine Forest 28 Montane Riparian Forest 31 Shale Barrens 33 Valley and Foothill Grassland 34 FAUNA 35 GEOLOGY 37 SOILS 37 AQUATIC VALUES 38 CULTURAL VALUES 38 IMPACTS AND POSSIBLE CONFLICTS 39 MANAGEMENT CONCERNS 40 BOUNDARY CHANGES 40 RECOMMENDATIONS 41 LITERATURE CITED 41 APPENDICES 41 Vascular Plant List 43 Vertebrate List 52 PHOTOGRAPHS AND MAPS 57 INTRODUCTION The Big Pine Mountain candidate Research Natural Area (RNA) is on the Santa Lucia Ranger District, Los Padres National Forest, in Santa Barbara County, California. The area was nominated by the National Forest as a candidate RNA in 1986 to preserve an example of the Sierra Nevada mixed conifer forest for the South Coast Range Province. The RNA as defined in this report covers 2963 acres (1199 ha). The boundaries differ from those originally proposed by the National Forest (map 5, and see discussion of boundaries in later section).
    [Show full text]
  • Download The
    SYSTEMATICA OF ARNICA, SUBGENUS AUSTROMONTANA AND A NEW SUBGENUS, CALARNICA (ASTERACEAE:SENECIONEAE) by GERALD BANE STRALEY B.Sc, Virginia Polytechnic Institute, 1968 M.Sc, Ohio University, 1974 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Botany) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1980 © Gerald Bane Straley, 1980 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department nf Botany The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 26 March 1980 ABSTRACT Seven species are recognized in Arnica subgenus Austromontana and two species in a new subgenus Calarnica based on a critical review and conserva• tive revision of the species. Chromosome numbers are given for 91 populations representing all species, including the first reports for Arnica nevadensis. Results of apomixis, vegetative reproduction, breeding studies, and artifi• cial hybridizations are given. Interrelationships of insect pollinators, leaf miners, achene feeders, and floret feeders are presented. Arnica cordifolia, the ancestral species consists largely of tetraploid populations, which are either autonomous or pseudogamous apomicts, and to a lesser degree diploid, triploid, pentaploid, and hexaploid populations.
    [Show full text]