Author Manuscript Published OnlineFirst on August 23, 2013; DOI: 10.1158/0008-5472.CAN-13-1550 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Therapeutic PD-1 Pathway Blockade Augments with other Modalities of Immunotherapy to Prevent Immune Decline in Ovarian Cancer Jaikumar Duraiswamy1, Gordon J. Freeman2 and George Coukos1,3* 1Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, PA, USA 2Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA 3Department of Oncology and Ludwig Center for Cancer Research, University Hospital of Lausanne, Switzerland Running Title: PD-1 blockade restores immune function in ovarian cancer *Correspondence: Dr. George Coukos MD, PhD Email:
[email protected] Abbreviations: ID8, ovarian cancer model; TIL, tumor-infiltrating lymphocytes; PD-1, programmed death-1; PD-L, programmed death-1 ligands; TAM, tumor associated macrophages; DC, dendritic cells; MDSC, myeloid derived suppressor cells; Tregs, Foxp3+CD4+CD25+T cells; ID8-GVAX or ID8-FVAX, ID8 tumor cells transduced to express GM-CSF or Flt3-ligand Words in text (excluding references): 5493 Number of Figures: 7 Number of supplementary figures: 8 References: 56 1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 23, 2013; DOI: 10.1158/0008-5472.CAN-13-1550 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract The tumor microenvironment mediates induction of the immunosuppressive programmed death-1 (PD-1) pathway, targeted interventions against which can help restore antitumor immunity.