Lymphoid Myeloid

Total Page:16

File Type:pdf, Size:1020Kb

Lymphoid Myeloid LYMPHOID Human Hematopoietic Stem Cell MYELOID CD34 CD117 (c-kit) CD338 CD38low/neg CD133 linneg CD59 CD135 (Flt3) GATA2 CD90 (Thy1) CD164 TdT Common Lymphoid Progenitor (CLP) Multi-Potent Progenitor (MPP) Common Myeloid Progenitor (CMP) low neg CD33 CD123low CD174 CD7 CD117 (c-kit) C/EBPα CD34 linneg neg CD34 CD131 Ikaros CD10 CD127 GATA2 CD135 (Flt3) TdT CD24neg CD135 (Flt3) GATA3 CD45RA CD164 PU.1 CD34 CD164 PU.1high Common DC Progenitor CD117 (c-kit) CD173 CD38 HLA-DR TdT CD45RA Aiolos CD11c dim CD90low c-mybhigh CD33 Pro-B Pre-NK/T Megakaryocyte- CD10 CD124 CD5 Conventional DC Precursor Erythroid CD19 CD164 CD34 CD11c Granulocyte-Myeloid CD20 CD252 CD14neg Progenitor (GMP) Progenitor (MEP) CD22 CD268 CD33dim CD33 CD131 CD34neg CD275 CD34 CD45RA CD34 CD164 CD72 HLA-DR CD36 FOG-1 CD74 CD123 PU.1 CD110 GATA1 CD123high GATA2 Pre-T Pro-NK CD7 Pre-B CD1a CD28 CD10neg CD2 CD34 neg CD10 CD124 CD34 CD3 CD45 CD117 (c-kit) CD19 CD164 CD5 CD127 (IL-7Rα) CD20 CD252 CD7high NOTCH1 CD22 CD268 CD34neg CD275 CD72 HLA-DR Immature NK CD74 IgM CD34neg Plasmacytoid Conventional Monocyte Neutrophil Eosinophil Mast Basophil Megakaryocyte Erythrocyte CD79a Pax5 CD94neg DC (pDC) DC (cDC) CD4low CD85a (ILT5) CD171 CD10 CD9 CD9 CD9 CD41 CD51 CD35 CD236 CD117 (c-kit) CD9 CD85d (ILT4) CD172a (SIRPα) CD15 CD11b CD11b CD11a CD42a CD61 CD44 CD236R CD4 CD1c CD122 CD11b CD85h (ILT1) CD172b CD16b CD15 CD15 CD11b CD42b CD110 CD123 CD238 CD11c neg CD1d CD161 CD11c CD85j (ILT2) CD180 CD17 CD24 CD24 CD13 CD42c CD112 CD173 CD239 CD45RA CD2 Ets-1 CD13 CD85k (ILT3) CD184 (CXCR4) CD24 CD32 CD32 CD16 CD42d CD123 CD233 CD240 Immature B CD4 ISP (Immature CD49d CD4low act Id2 CD14 CD86 CD191 (CCR1) CD32 CD35 CD35 CD17 CD49f CD234 CD241 CD5 CD152 CD85g (ILT7) CD11b Single Positive) Id3 CD15 CD87 CD192 (CCR2) CD35 CD64 CD43 CD25 CD235a CD242 CD10 CD153 CD85k (ILT3) CD11c CD1a CD7 CD17 CD89 CD195 (CCR5) CD43 CD244 CD64 CD32 CD235b CD19 CD180 CD123 CD13 CD2 CD34 CD28 CD91 CD198 (CCR8) CD66a CD116 CD116 CD33 CD20 CD184 CD282 (TLR2)neg CD14 neg CD3 CD45RO CD31 CD92 CD210 (IL-10R) CD66b CD123 CD117 (c-kit) CD38 CD21 CD185 CD284 (TLR4)neg CD33 CD4 CD127 (IL-7Rα) CD32 CD93 CD213a1 (IL-13Rα1) CD66d CD125 CD123 CD43 CD22 CD196 low CD289 (TLR9) CD45RO CD5 TCRβ CD33 CD101 CD213a2 (IL-13Rα2) CD89 CD126 CD125 CD88 CD23 CD200 Mature NK CD303 (BDCA-2) CD64 Platelet CD35 CD111 CD226 CD93 FcεR1 CD126 CD123 CD24 CD210 CD2 CD160 CD304 (BDCA-4) CD68 CD9 CD51 CD36 CD112 CD277 CD112 IgE CD181 (CXCR1) CD125 CD32 CD229 CD7 CD161 HLA-DR CD80 CD17 CD60a act CD38 CD115 CD281 (TLR1) CD114 CD244 CD218 (IL-18R) CD37 CD252 CD8 CD162R TLR7 CD85j (ILT2) CD23 CD61 CD40 CD116 CD282 (TLR2) CD116 FcεR1 CD154 CD40 CD253 CD11b CD178 Spi-B CD85k (ILT3) CD31 CD84 CD45RO CD119 CD284 (TLR4) CD157 IgE CD192 CD48 CD267 (TACI) CD15s CD181 (CXCR1) CD86 CD36 CD92 CD45RA CD121b CD300a CD177 CD193 CD52 CD275 CD16 CD182 (CXCR2) CD105 CD41 CD110 CD45RB CD123 CD300c CD181 (CXCR1) CD203c CD72 CD279 (PD-1) CD27 CD183 (CXCR3) CD112 CD42a CD147 CD49b CD131 CD300e (IREM-2) CD281 (TLR1) CD281 (TLR1) CD75 CD307 γδ T CD32 CD198 CD123neg CD42b CD151 CD49e CD142 CD300f (IREM-1) CD282 (TLR2) CD282 (TLR2) CD79a CD317 (BST2) CD4neg CD43 CD210 CD141low CD42c CD173 CD49f CD147 CD302 CD284 (TLR4) CD284 (TLR4) CD79b CD319 (CRACC) γδ TCR CD45RC CD212 CD163 CD42d CD226 act CD63 CD155 CD305 CD286 (TLR6) CD286 (TLR6) CD80 IgD Sox13 CD49d CD218a CD172a (SIRPα) CD49b GARP CD64 CD156a CD312 CD289 (TLR9) CD289 (TLR9) CD84 IgG CD56 CD218b CD195 (CCR5) CD49f act CD65s CD157 CD317 (BST2) MPO CD294 CD86 IgM CD57 CD223 CD197 (CCR7) CD68 CD162 CD322 Trem-1 FcεR1 CD98 CD62L CD226 CD205 CD74 CD163 CD329 IgE CD124 CD66a CD244 CD282 (TLR2) act CD84 CD168 GITRL C/EBPα CD137 (41BB) CD81 CD245 CD283 (TLR3) CD170 PU.1 GATA2 CD85d (ILT4) CD247 CD284 (TLR4) CD85j (ILT2) CD253 CD286 (TLR6) Activated Platelets Early Double CD87 CD277 CD300e CD54 CD107a CD94 CD300a CLEC-9A CD62p CD107b Mature B Positive (EDP) CD96 CD305 HLA-DR CD63 CD109 CD5 CD180 CD1a CD99R CD319 (CRACC) CD19 CD184 (CXCR4) CD2 CD119 CD328 (Siglec-7) CD20 CD185 (CXCR5) CD3 CD122 CD335 (NKp46) Macrophage CD21 CD192 (CCR2)act CD4 CD132 CD336 CD11a CD26 CD52 CD88 CD156a CD206 CD354 (Trem-1) CD22 CD196 (CCR6) CD5 CD158a CD337 CD11c CD31 CD63 CD92 CD163 CD210 CD357 (GITR) CD23act CD200 CD7 CD158b Granzyme A CD14 CD32 CD68 CD119 CD169 CD280 HLA-DR CD24 CD210 CD8α CD158f Granzyme B CD16 CD36 CD71 CD121b CD170 CD282 (TLR2) Trem-2 CD27act CD229 CD38 CD159a (NKG2A) Perforin CD19 CD40 CD74 CD123 CD195 CD284 (TLR4) PU.1 CD32 CD252act CD45RO CD159c (NKG2C) CD23 CD45RO CD87 CD155 CD204 CD312 CD35 CD253act CD127 (IL-7Rα) CD37 CD267 (TACI) TCRβ CD40 CD268 (BAFFR) CD8 CD48act CD269 (BCMA) CD8 CD49b CD272 Granulysin General T Cell Markers CD49c CD275 Granzyme A CD2 CD35 CD60a CD89 CD119 CD158a CD172a (SIRPα) CD196 (CCR6) CD229 CD316 CD49d CD279 (PD-1)act Granzyme B CD3 CD40 CD60b CD94 CD121b CD158b CD181 (CXCR1) CD197 (CCR7) CD244 CD317 (BST2) CD52 CD307 Perforin CD5 CD43 CD60c CD98 CD122 CD158f CD182 (CXCR2) CD198 (CCR8) CD247 CD319 (CRACC) CD72 CD317 (BST2) Runx3 CD6 CD45RA CD62L CD99R CD123 CD159a CD184 (CXCR4) CD199 (CCR9) CD277 αβ TCR CD75 CD319 (CRACC) CD7 CD45RB CD75s CD101 CD127 CD160 CD191 (CCR1) CD210 CD279 CD79a CD360 (IL-21R) CD27 CD45RC CD81 CD103 CD130 CD161 CD192 (CCR2) CDv218a CD300a CD79b HLA-DR Double Positive (DP) CD28 CD52 CD84 CD107aact CD132 CD168 CD193 (CCR3) CD218b CD300c act act CD80 IgD CD1a CD8β CD30 CD57 CD85j (ILT2) CD107b CD150 CD171 CD195 (CCR5) CD226 CD305 CD84 IgG CD2 CD45RO act CD86 IgM CD3 CD127 (IL-7Rα) CD98 Blimp-1 CD4 TCRβ CD124 Bcl-6 CD5 ThPOK act CD137 (41BB) Pax5 CD7 TOX act CD152 (CTLA-4) CD8α CD4 CD4 Plasma NKT CD3 neg CD19 CD133 CD8 neg CD20 CD138 CD16 LEGEND Treg Th17 Th1 Th2 Th9 Th22 Tfh CD27 CD183 (CXCR3) CD56 CD25 CD161 CD26 CD30 CD124 (IL-4R) CD140 (PDGFR) CD84 CD252 CD184 (CXCR4) CD69 –– = Proposed Pathway CD39 CD121a (IL-1R1) CD94 CD124 (IL-4R) IL-17RB CCR10 CD126 (IL-6R) CD52neg CD269 (BCMA) CD161 act = Expressed On Activated CD73 CD196 (CCR6) CD178 (FASL) CD184 (CXCR4) IRF4 CD185 (CXCR5) CD126 Aiolos Vα24Jα18TCR CD101 CD360 (IL-21R) CD195 CD198 (CCR8) CD278 (ICOS) CD38 Blimp-1 low = Low Expresion low Id2 CD127 IL-23R CD212 (IL-12RB2) IL-17RB CD360 (IL-21R) Differentiation of the Human Hematopoietic Stem Cell CD72neg IRF4 PLZF high = High Expresion CD152 (CTLA-4) BATF CD218 (IL-18R) NOTCH1 Bcl-6 Human hematopoietic development from the hematopoietic CD79a XBP-1 CD183 (CXCR3) IRF4 CD254 (TRANCE) NOTCH2 stem cell to the end stage cells illustrating markers found at neg = Negative each stage as determined through the 9th HLDA congress. CD194 (CCR4) RORγt CD278 (ICOS) Tim-1 = Intracellular Antigen CD199 (CCR9) NOTCH3 GATA3 Q312061 Hematopoietic Stem Cells 0912 = Subset CD357 (GITR) Tim-3 act = Pan Marker/Common GARP T-bet Foxp3 Defining Marker Helios ©2012 eBioscience, Inc. An Affymetrix Company. All rights reserved. Differentiation of the Human Hematopoietic Stem Cell Customers in countries where direct sales are not available may contact their eBioscience distributor listed at NORTH AMERICA: CUSTOMER SERVICE 888.999.1371 • [email protected] | TECHNICAL SUPPORT 888.810.6168 • [email protected] www.eBioscience.com/distributors EUROPE: CUSTOMER SERVICE +43 1 796 40 40-304 • [email protected] | TECHNICAL SUPPORT +43 1 796 40 40-120 • [email protected] www.eBioscience.com.
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Human NK Cells with the 2B4 Receptor Inhibits Self-Killing of the Association of MHC Class I Proteins
    The Association of MHC Class I Proteins with the 2B4 Receptor Inhibits Self-Killing of Human NK Cells This information is current as Gili Betser-Cohen, Saar Mizrahi, Moran Elboim, Osnat of September 27, 2021. Alsheich-Bartok and Ofer Mandelboim J Immunol 2010; 184:2761-2768; Prepublished online 17 February 2010; doi: 10.4049/jimmunol.0901572 http://www.jimmunol.org/content/184/6/2761 Downloaded from References This article cites 39 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/184/6/2761.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Association of MHC Class I Proteins with the 2B4 Receptor Inhibits Self-Killing of Human NK Cells Gili Betser-Cohen, Saar Mizrahi, Moran Elboim, Osnat Alsheich-Bartok, and Ofer Mandelboim The killing activity of NK cells is carried out by several activating NK receptors, which includes NKp46, NKp44, NKp30, NKp80, NKG2D, and 2B4.
    [Show full text]
  • A CD22-Shp1 Phosphatase Axis Controls Integrin Β7 Display and B Cell Function in Mucosal Immunity
    UCSF UC San Francisco Previously Published Works Title A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Permalink https://escholarship.org/uc/item/27j4g9rr Journal Nature immunology, 22(3) ISSN 1529-2908 Authors Ballet, Romain Brennan, Martin Brandl, Carolin et al. Publication Date 2021-03-01 DOI 10.1038/s41590-021-00862-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Europe PMC Funders Group Author Manuscript Nat Immunol. Author manuscript; available in PMC 2021 August 15. Published in final edited form as: Nat Immunol. 2021 March 01; 22(3): 381–390. doi:10.1038/s41590-021-00862-z. Europe PMC Funders Author Manuscripts A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity Romain Ballet1,2,#, Martin Brennan1,2,10, Carolin Brandl3,10, Ningguo Feng1,4, Jeremy Berri1,2, Julian Cheng1,2, Borja Ocón1,2, Amin Alborzian Deh Sheikh5, Alex Marki6, Yuhan Bi1,2, Clare L. Abram7, Clifford A. Lowell7, Takeshi Tsubata5, Harry B. Greenberg1,4, Matthew S. Macauley8,9, Klaus Ley6, Lars Nitschke3, Eugene C. Butcher1,2,# 1The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, United States 2Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States 3Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen,
    [Show full text]
  • Tools for Cell Therapy and Immunoregulation
    RnDSy-lu-2945 Tools for Cell Therapy and Immunoregulation Target Cell TIM-4 SLAM/CD150 BTNL8 PD-L2/B7-DC B7-H1/PD-L1 (Human) Unknown PD-1 B7-1/CD80 TIM-1 SLAM/CD150 Receptor TIM Family SLAM Family Butyrophilins B7/CD28 Families T Cell Multiple Co-Signaling Molecules Co-stimulatory Co-inhibitory Ig Superfamily Regulate T Cell Activation Target Cell T Cell Target Cell T Cell B7-1/CD80 B7-H1/PD-L1 T cell activation requires two signals: 1) recognition of the antigenic peptide/ B7-1/CD80 B7-2/CD86 CTLA-4 major histocompatibility complex (MHC) by the T cell receptor (TCR) and 2) CD28 antigen-independent co-stimulation induced by interactions between B7-2/CD86 B7-H1/PD-L1 B7-1/CD80 co-signaling molecules expressed on target cells, such as antigen-presenting PD-L2/B7-DC PD-1 ICOS cells (APCs), and their T cell-expressed receptors. Engagement of the TCR in B7-H2/ICOS L 2Ig B7-H3 (Mouse) the absence of this second co-stimulatory signal typically results in T cell B7-H1/PD-L1 B7/CD28 Families 4Ig B7-H3 (Human) anergy or apoptosis. In addition, T cell activation can be negatively regulated Unknown Receptors by co-inhibitory molecules present on APCs. Therefore, integration of the 2Ig B7-H3 Unknown B7-H4 (Mouse) Receptors signals transduced by co-stimulatory and co-inhibitory molecules following TCR B7-H5 4Ig B7-H3 engagement directs the outcome and magnitude of a T cell response Unknown Ligand (Human) B7-H5 including the enhancement or suppression of T cell proliferation, B7-H7 Unknown Receptor differentiation, and/or cytokine secretion.
    [Show full text]
  • CD22 Antigen Is Broadly Expressed on Lung Cancer Cells and Is a Target for Antibody-Based Therapy
    Published OnlineFirst September 17, 2012; DOI: 10.1158/0008-5472.CAN-12-0173 Cancer Therapeutics, Targets, and Chemical Biology Research CD22 Antigen Is Broadly Expressed on Lung Cancer Cells and Is a Target for Antibody-Based Therapy Joseph M. Tuscano1,2, Jason Kato1, David Pearson3, Chengyi Xiong1, Laura Newell4, Yunpeng Ma1, David R. Gandara1, and Robert T. O'Donnell1,2 Abstract Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasisandextendedoverallsurvival.Thefinding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti- CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. Cancer Res; 72(21); 5556–65. Ó2012 AACR. Introduction lymphoma (NHL), HB22.7, effectively binds lung cancer cells fi in vitro in vivo In the United States, lung cancer is the most common and mediates speci c and killing.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • ORIGINAL ARTICLE Flow Cytometric Protein Expression Profiling As a Systematic Approach for Developing Disease-Specific Assays
    Leukemia (2006) 20, 2102–2110 & 2006 Nature Publishing Group All rights reserved 0887-6924/06 $30.00 www.nature.com/leu ORIGINAL ARTICLE Flow cytometric protein expression profiling as a systematic approach for developing disease-specific assays: identification of a chronic lymphocytic leukaemia-specific assay for use in rituximab-containing regimens AC Rawstron, R de Tute, AS Jack and P Hillmen Haematological Malignancy Diagnostic Service (HMDS), Leeds Teaching Hospitals, Leeds, UK Depletion of disease below the levels detected by sensitive sustained remissions only occur in patients achieving an MRD- minimal residual disease (MRD) assays is associated with negative complete response.12 Therefore MRD is increasingly prolonged survival in chronic lymphocytic leukaemia (CLL). being used as an end point for therapeutic trials, and several Flow cytometric MRD assays are now sufficiently sensitive and rapid to guide the duration of therapy in CLL, but generally rely studies are now using the assessment of MRD to define the on assessment of CD20 expression, which cannot be accurately duration of therapy. measured during and after therapeutic approaches containing Approaches using allele-specific oligonucleotide polymerase rituximab. The aim of this study was to use analytical software chain reaction (ASO-PCR) to the immunoglobulin gene of the developed for microarray analysis to provide a systematic B-CLL cell are generally accepted to show the highest sensitivity approach for MRD flow assay development. Samples from CLL for MRD detection. However, more recent four-colour ap- patients (n ¼ 49), normal controls (n ¼ 21) and other B-lympho- proaches show sensitivities nearing that of ASO-PCR6,11,13 with proliferative disorders (n ¼ 12) were assessed with a panel of 66 antibodies.
    [Show full text]
  • Enrichment and Characterization of Two Subgroups of Committed Osteogenic Cells in the Mouse Endosteal Bone Marrow with Expressio
    ne Marro Bo w f R o e l s a e n a r Chang CF et al., J Bone Marrow Res 2014, 2:2 r c u h o J Journal of Bone Marrow Research DOI: 10.4172/2329-8820.1000144 ISSN: 2329-8820 Research Article Open Access Enrichment and Characterization of Two Subgroups of Committed Osteogenic Cells in the Mouse Endosteal Bone Marrow with Expression Levels of CD24 Ching-Fang Chang1,2, Ke-Hsun Hsu1,2, Chia-Ning Shen1,2,3, Chung-Leung Li2,3* and Jean Lu1,2** 1Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 2Genomics Research Center, Academia Sinica, Taipei, Taiwan 3Institute of Bioscience and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan Abstract Primary osteogenic cells have been known to reside within the CD45-CD31-Ter119-Sca-1- cell fraction, particularly in the CD51+ subpopulation. However, detailed determination of the frequency of osteogenic cells within this Sca-1- cell population remains yet to be determined. In addition, it is not clear that other cell surface markers can be used to further sub-fractionate this Sca-1-CD51+ osteogenic cell population and to define their developmental stages. In this report, both Sca-1-CD24med and Sca-1- CD24-/lo cells have been shown to be two small subsets of the Sca-1-CD51+ cell fraction. These two cell fractions show subtle difference in the expression level of osteogenic marker genes such as Osx and Opn, and in vitro proliferate rate. All these observations suggest that they may be at different developmental stages of osteogenesis.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • CD48 Is Critically Involved in Allergic Eosinophilic Airway Inflammation
    CD48 Is Critically Involved in Allergic Eosinophilic Airway Inflammation Ariel Munitz,1 Ido Bachelet,1 Fred D. Finkelman,2 Marc E. Rothenberg,3 and Francesca Levi-Schaffer1,4 1Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; 2Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; 3Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and 4David R. Bloom Center for Pharmacology, Hebrew University of Jerusalem, Jerusalem, Israel Rationale: Despite ongoing research, the molecular mechanisms con- trolling asthma are still elusive. CD48 is a glycosylphosphatidylinositol- AT A GLANCE COMMENTARY anchored protein involved in lymphocyte adhesion, activation, and costimulation. Although CD48 is widely expressed on hematopoi- Scientific Knowledge on the Subject etic cells and commonly studied in the context of natural killer and CD48 is an activation molecule able to facilitate various cytotoxic T cell functions, its role in helper T cell type 2 settings cellular activities. Its role in asthma is unknown. has not been examined. Objectives: To evaluate the expression and function of CD48, CD2, and 2B4 in a murine model of allergic eosinophilic airway inflammation. What This Study Adds to the Field Methods: Allergic eosinophilic airway inflammation was induced by CD48 is upregulated in experimental asthma. Anti-CD48– ovalbumin (OVA)–alum sensitization and intranasal inoculation of based therapies may be useful for asthma and perhaps OVA or, alternatively, by repeated intranasal inoculation of Aspergil- various allergic diseases. lus fumigatus antigen in wild-type, STAT (signal transducer and acti- vator of transcription)-6–deficient, and IL-4/IL-13–deficient BALB/c mice.
    [Show full text]
  • Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway
    Article Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway Francesco Muoio 1 , Stefano Panella 1 , Yves Harder 2,3 and Tiziano Tallone 1,* 1 Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino, 6807 Taverne, Switzerland; [email protected] (F.M.); [email protected] (S.P.) 2 Department of Plastic, Reconstructive, and Aesthetic Surgery, EOC, 6900 Lugano, Switzerland; [email protected] or [email protected] 3 Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland * Correspondence: [email protected] or [email protected]; Tel.: +41-91-805-3885 Abstract: In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced Citation: Muoio, F.; Panella, S.; cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction Harder, Y.; Tallone, T. Induction of the (RT-qPCR) techniques, and their secretion profile.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]