Chemoprevention of Preclinical Breast and Lung Cancer with the Bromodomain Inhibitor I-BET 762 Di Zhang1, Ana S

Total Page:16

File Type:pdf, Size:1020Kb

Chemoprevention of Preclinical Breast and Lung Cancer with the Bromodomain Inhibitor I-BET 762 Di Zhang1, Ana S Published OnlineFirst December 15, 2017; DOI: 10.1158/1940-6207.CAPR-17-0264 Research Article Cancer Prevention Research Chemoprevention of Preclinical Breast and Lung Cancer with the Bromodomain Inhibitor I-BET 762 Di Zhang1, Ana S. Leal1, Sarah Carapellucci1, Kayla Zydeck1, Michael B. Sporn2, and Karen T. Liby1 Abstract Breast cancer and lung cancer remain the top two However, few studies have investigated the chemo- leading causes of cancer-related deaths in women. preventive effects of bromodomain inhibitors. Here, Because of limited success in reducing the high mortality we found that I-BET 762 significantly delayed tumor of these diseases, new drugs and approaches are desper- development in preclinical breast and lung cancer ately needed. Cancer prevention is one such promising mouse models. This drug not only induced growth arrest strategy that is effective in both preclinical and clinical and downregulated c-Myc, pSTAT3, and pERK protein studies. I-BET 762 is a new bromodomain inhibitor that expression in tumor cells in vitro and in vivo but also reversibly targets BET (bromodomain and extraterminal) altered immune populations in different organs. These proteins and impairs their ability to bind to acetylated results demonstrate the promising potential of using lysines on histones, thus interrupting downstream I-BET 762 for cancer prevention and suggest the striking transcription. This inhibitor has anti-inflammatory effects of I-BET 762 are the result of targeting both effects and induces growth arrest in many cancers and tumor cells and the tumor microenvironment. Cancer is currently under clinical trials for treatment of cancer. Prev Res; 11(3); 143–56. Ó2017 AACR. Introduction Prevention and early intervention in cancer are two underutilized strategies that have proven effective in both Breast cancer and lung cancer are the top two leading preclinical and clinical studies (3). Fisher and colleagues causes of cancer deaths in women (1). Even though the þ reported a 49% reduction in the incidence of breast cancer survival rates of estrogen receptor–positive (ER ) breast in women taking tamoxifen compared with a placebo (4). cancer have gradually improved, primarily because of the Raloxifene, a second-generation selective ER modulator benefits of endocrine therapy, the incidence and survival À (SERM), reduced the incidence of breast cancer by approx- rates for ER–negative (ER ) breast cancer have not notice- imately 80% in early clinical trials (5). Abundant clinical ably shifted over the past 30 years (2). Lung cancer is þ data confirm that antiestrogens or SERMs can prevent ER responsible for more cancer-related deaths than breast, breast cancer in women (6–9). However, tamoxifen can prostate, colon, and pancreatic cancer combined, and the induce rare but serious side effects, such as increasing 5-year survival rates for lung cancer remain a disappointing the risk of uterine cancer (10), and there are no approved 18% (1). Therefore, new drugs as well as new approaches À drugs available for the prevention of ER breast cancer. In are greatly needed to reduce both the incidence and mor- contrast to breast cancer, drugs have been tested for the tality of both of these diseases. prevention of lung cancer in a variety of preclinical models, but these efforts have not been successfully translated into the clinic. Because smokers are at high risk of developing 1Department of Pharmacology and Toxicology, Michigan State University, East lung cancer, developing effective drugs with a good safety Lansing, Michigan. 2Department of Pharmacology, Geisel School of Medicine at fi Dartmouth, Lebanon, New Hampshire. pro le for the chemoprevention of lung cancer could greatly reduce the overall number of cancer deaths (11). Note: Supplementary data for this article are available at Cancer Prevention Research Online (http://cancerprevres.aacrjournals.org/). In addition to known genetic mutations that drive carcinogenesis, epigenetic events are also highly involved Corresponding Author: Karen T. Liby, Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue in the initiation and progression of cancer (12). Unlike Street, East Lansing, MI 48824. Phone: 517-884-8955; Fax: 517-353-8915; E-mail: genetic mutations, epigenetic alterations are considered [email protected] reversible, which makes them an appealing therapeutic doi: 10.1158/1940-6207.CAPR-17-0264 target. A number of epigenetic drugs have been developed Ó2017 American Association for Cancer Research. that can reverse the aberrations of DNA methylation www.aacrjournals.org 143 Downloaded from cancerpreventionresearch.aacrjournals.org on September 25, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst December 15, 2017; DOI: 10.1158/1940-6207.CAPR-17-0264 Zhang et al. or histone modifications in cancer. Inhibitors of DNA Materials and Methods methylation were the first epigenetic drugs designed for In vivo experiments treatment of cancer; these nucleoside analogues inhibit All animal studies were performed in accordance with DNA methylation by trapping DNA methyltransferases protocols approved by the Institutional Animal Care and (13). Drugs targeting histone modifications were then Use Committee at Michigan State University (East Lansing, developed, and the histone deacetylase (HDAC) inhibitor MI). For the breast cancer studies, MMTV-PyMT mice were suberoylanilide hydroxamic acid is approved by the obtained from Dr. Jeffrey Pollard (Albert Einstein College FDA for the treatment of cutaneous T-cell lymphoma. of Medicine, Bronx, NY) and were genotyped as described Some of these epigenetic drugs have also been tested for previously (26). Four-week-old female PyMT mice were chemoprevention (14). The HDAC inhibitor valproic acid randomized into either control group fed powdered 5002 is currently being tested in a clinical trial (NCT02608736) rodent chow or I-BET 762 (60 mg/kg diet) mixed into for chemoprevention of head and neck squamous cell powdered diet as described previously (27); I-BET 762 carcinoma. (purity >95%) was synthesized (25) by J-Star Research. Recently, chromatin "readers" have emerged as promis- Mice were palpated for tumors twice a week. For the ing epigenetic targets. In contrast to "writers" (e.g., histone immune cell infiltration studies, 11-week-old female PyMT acetyltransferases and histone methyltransferases) or "era- mice were gavaged (5% DMSO and 10% Tween 20 in sers" [e.g., HDACs and lysine demethylases (KDMs)], saline) with 60 mg I-BET 762/kg body weight daily for one readers bind to specific epigenetically modified sites. Bro- week for a short-term protocol. In a longer term protocol, modomains, which contain a conserved binding motif, 4-week-old female PyMT mice were fed either powdered are the primary readers of acetylated lysine residues, and control diet or diet containing I-BET 762 (60 mg/kg diet) over 40 human proteins express bromodomains (15). until 13 weeks of age. For both studies, tissues were Importantly, distinct small molecules that are specificto harvested for analysis by flow cytometry and evaluation the BET (bromodomain and extraterminal domain) family of biomarkers by Western blot or IHC. (BRD-2, 3, 4, T) of bromodomain proteins (16, 17) have For the lung cancer studies, 8-week-old female A/J mice been developed. The BET inhibitors have shown promising from The Jackson Laboratory were injected intraperitone- efficacy in preclinical models for treating cancers including ally with 0.32 mg vinyl carbamate (Toronto Research NUT-midline carcinoma (18), hematologic malignancies Chemicals) dissolved in saline. One week after injection, (16, 19), and pancreatic cancer (20), but little is known the mice were randomized into either control group fed regarding the chemopreventive potential of bromodomain AIN-93G semisynthetic diet (BioServ), I-BET 762 (40–120 inhibitors in cancer. mg/kg diet), LG100268 (40 mg/kg diet), or the combina- JQ1 was one of the earliest BET inhibitors identified (17), tion of I-BET 762 and LG100268 (40 mg of each drug/kg and it blocks neoplastic transformation induced by 12-O- diet). After 16 weeks on diet, lungs were harvested and tetradecanoylphorbol-13-acetate (21) or visceral adipose þ inflated with PBS. Left lungs were fixed in neutral-buffered tissue (22) in mouse skin epidermal JB6 P cells and formalin (NBF) for histopathology. Right lungs were used suppresses inflammation in many cell types (23, 24). immediately for flow cytometry (two lobes) or were flash However, poor bioavailability and a short half-life frozen (the other two lobes). Samples were coded with make JQ1 an impractical candidate for clinical develop- random numbers to blind the investigators to the identity ment. In contrast, the bromodomain inhibitor I-BET 762 of the treatment group during analysis. Then, tumor num- (also known as GSK525762) has good potency and phar- ber, size, and histopathology were assessed on two separate macokinetics following oral administration (25). It is sections of the left lung by two independent investigators currently being evaluated in clinical trials (NCT01587703, using published criteria (28). NCT01943851, NCT02964507) for the treatment of NUT middle carcinoma and other cancers, including breast and lung cancer. In addition to its antiproliferative effects in Flow cytometry cancer cells, I-BET 762 can inhibit cytokine secretion and The same two mammary glands or two lobes of the right decrease the number of tumor-associated macrophages lung were harvested
Recommended publications
  • Head and Neck Cancer Immunoprevention J
    Published OnlineFirst November 14, 2017; DOI: 10.1158/1940-6207.CAPR-17-0331 Editorial Cancer Prevention Research The Next Frontier: Head and Neck Cancer Immunoprevention J. Silvio Gutkind1 and Jack D. Bui2 Abstract Restoring T cell–mediated antitumor immunity by targeting elicit an increased therapeutic response. New experimental studies immune checkpoint inhibitors in head and neck squamous cell suggest that immune therapies can be used for HNSCC prevention carcinoma (HNSCC) results in immunomodulation and durable rather than therapy. Given the current excitement for precision remissions. However, the overall response rate to these immu- medicine, these findings support the future development of notherapies in HNSCC is only approximately 20%. This raises the multimodality approaches for preventive immune oncology. possibility that immunologic intervention earlier in the HNSCC Cancer Prev Res; 10(12); 681–3. Ó2017 AACR. continuum, such as in oral premalignant lesions (OPL) could See related article by Jin Wang, et al., p. 684 Oral Premalignancy and Chemoprevention recognition and an antitumor immune response, including the recruitment of myeloid-derived suppressor cells and conditioning Every year, more than 600,000 cases of head and neck squa- of the surrounding microenvironment to become highly immu- mous cell carcinomas (HNSCC) are diagnosed worldwide. Pre- nosuppressive by expressing cytokines, such as IL6, IL10, and invasive tissue histologic abnormalities, such as dysplasia, often TGFb, leading to the accumulation of suppressive regulatory T represent early to intermediate stages of the carcinogenic process cells and the polarization of macrophages toward an immuno- during HNSCC progression. At a macroscopic level, these pre- suppressive (M2) tumor-associated macrophage phenotype (2).
    [Show full text]
  • Vaccines and Other Immunological Approaches for Cancer Immunoprevention
    Current Drug Targets, 2011, 12, 1957-1973 1957 Vaccines and Other Immunological Approaches for Cancer Immunoprevention Pier-Luigi Lollini*,1, Giordano Nicoletti2, Lorena Landuzzi2, Federica Cavallo3, Guido Forni3, Carla De Giovanni4 and Patrizia Nanni4 1Department of Hematology and Oncological Sciences, University of Bologna; 2Rizzoli Orthopedic Institute, Bologna; 3Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin; 4Department of Experimental Pathology, University of Bologna, Italy Abstract: The immune system effectively prevents cancer, whereas severe immunodepression increases its incidence. Cancer immunoprevention is a strategy based on the concept that enhancement of tumor immunity in healthy individuals reduces cancer risk. It can be viewed as a kind of chemoprevention. For cancer immunoprevention, the cancer universe can be neatly divided between tumors caused - directly or indirectly - by infectious agents and all other tumors. Immunoprevention of tumors caused by infectious agents is already implemented at the population level for hepatitis B virus (HBV)-related hepatocellular carcinoma and for tumors caused by human papillomaviruses (HPV), like cervical carcinoma. Now the challenge is to develop immunological strategies to prevent the bulk (>80%) of human tumor burden, unrelated to infections. Both vaccines against tumor antigens and immune modulators can prevent tumor onset in cancer- prone mice. These studies outlined the target antigens and the molecular and cellular mechanisms
    [Show full text]
  • Harnessing the Immune System to Prevent Cancer: Basic Immunologic Mechanisms & Their Application to Clinical Trials of Vaccines Part 2: the Vaccines Barbara K
    Harnessing the Immune System to Prevent Cancer: Basic Immunologic Mechanisms & Their Application to Clinical Trials of Vaccines Part 2: The Vaccines Barbara K. Dunn NCI/Division of Cancer Prevention August 3, 2020 Harnessing the Immune System to Prevent Cancer: Basic Immunologic Mechanisms and Therapeutic Approaches that are Relevant to Cancer Prevention I. Basic immunologic mechanisms II. Application to prevention & treatment of cancer 1. Antibodies: as drugs 2. Vaccines: general principles & your vaccine trials & more… I) Vaccines to prevent cancers caused by infectious agents II) Vaccines to prevent non-infection associated cancer (directed toward tumor associated antigens) Harnessing the Immune System to Prevent Cancer: Basic Immunologic Mechanisms and Therapeutic Approaches that are Relevant to Cancer Prevention I. Basic immunologic mechanisms II. Application to prevention & treatment of cancer 1. Antibodies: as drugs “passive immunity” 2. Vaccines: general principles & your vaccine trials & more… I) Vaccines to prevent cancers caused by infectious agents “active II) Vaccines to prevent immunity” non-infection associated cancer (directed toward tumor associated antigens) Harnessing the Immune System to Prevent Cancer: Basic Immunologic Mechanisms and Therapeutic Approaches that are Relevant to Cancer Prevention I. Basic immunologic mechanisms II. Application to prevention & treatment of cancer 1. Antibodies:Focus as on drugs the Antigen “passive !immunity” 2. Vaccines: general principles & your vaccine trials & more… I) Vaccines
    [Show full text]
  • Cancer Moonshot: the Immuno-Oncology Translation
    Blue Ribbon Panel Recommendations A. Establish a network for direct patient involvement B. Create a translational science network devoted to immunotherapy C. Develop ways to overcome resistance to therapy D. Build a national cancer data ecosystem E. Intensify research on the major drivers of childhood cancer F. Minimize cancer treatment’s debilitating side effects G. Expand use of proven prevention and early detection strategies H. Mine past patient data to predict future patient outcomes I. Develop a 3D cancer atlas J. Develop new cancer technologies 13 Immuno-ImmunoOncology-Oncology Translational Translational Network Network (IOTN) Blue Ribbon Panel Immunotherapy and Prevention Accelerate translation of basic discoveries to clinical applications to improve immunotherapy outcomes for both “hot” and “cold” cancers - and to prevent cancers before they occur. Recommendation: Create a translational science network devoted to immunotherapy Implementation Plan: Build a collaborative network focused on: o Discovering and evaluating novel immune-based approaches to increase the number of patients that benefit from immunotherapy; and o Developing and validating early intervention vaccines to prevent cancers of all types o Incorporating multi-disciplinary approaches to improve immunotherapy 5 Cancer Immunotherapy Research Projects (U01) Objectives: Cancer Immunotherapy Sub-Networks o Define immune interactions in tumor microenvironments. Pancreatic o Identify novel immune checkpoints, tumor-specific T cell Other Lung receptors and their cognate tumor targets (neoantigens). Cancers Steering Committee Ovarian o Uncover intrinsic and extrinsic resistance pathways. Prostate Breast o Test improved immunotherapies, (vaccines, checkpoint Colorectal inhibitors, cellular or viral therapies, bispecific antibodies) o Studies should be largely pre-clinical involving clinically- relevant models and endpoints for rapid translation.
    [Show full text]
  • Cancer Immunoprevention: from Mice to Early Clinical Trials Arianna Palladini1, Lorena Landuzzi2, Pier-Luigi Lollini1* and Patrizia Nanni1
    Palladini et al. BMC Immunology (2018) 19:16 https://doi.org/10.1186/s12865-018-0253-0 REVIEW Open Access Cancer immunoprevention: from mice to early clinical trials Arianna Palladini1, Lorena Landuzzi2, Pier-Luigi Lollini1* and Patrizia Nanni1 Abstract Cancer immunoprevention is based on the fact that a functioning immune system controls tumor onset and development in humans and animals, thus leading to the idea that the enhancement of immune responses in healthy individuals could effectively reduce cancer risk later in life. Successful primary immunoprevention of tumors caused by hepatitis B and papilloma viruses is already implemented at the population level with specific vaccines. The immunoprevention of human tumors unrelated to infectious agents is an outstanding challenge. Proof-of- principle preclinical studies in genetically-modified or in carcinogen-exposed mice clearly demonstrated that vaccines and other immunological treatments induce host immune responses that effectively control tumor onset and progression, eventually resulting in cancer prevention. While a straightforward translation to healthy humans is currently unfeasible, a number of pioneering clinical trials showed that cancer immunoprevention can be effectively implemented in human cohorts affected by specific cancer risks, such as preneoplastic/early neoplastic lesions. Future developments will see the implementation of cancer immunoprevention in a wider range of conditions at risk of tumor development, such as the exposure to known carcinogens and genetic predispositions. Keywords: Cancer immunoprevention, Cancer vaccines, Genetically-modified mouse models, HER-2, Oncoantigens Background After 50 years of intense research, we have reached The immune system is a major player in the prevention of general conclusions that apply to humans and mice: any diseases.
    [Show full text]
  • The Dawn of Vaccines for Cancer Prevention
    CANCER IMMUNOTHERAPYREVIEWS The dawn of vaccines for cancer prevention Olivera J. Finn Abstract | An important role of the immune system is in the surveillance for abnormal or transformed cells, which is known as cancer immunosurveillance. Through this process, the first changes to normal tissue homeostasis caused by infectious or other inflammatory insults can be detected by the immune system through the recognition of antigenic molecules (including tumour antigens) expressed by abnormal cells. However, as they develop, tumour cells can acquire antigenic and other changes that allow them to escape elimination by the immune system. To bias this process towards elimination, immunosurveillance can be improved by the administration of vaccines based on tumour antigens. Therapeutic cancer vaccines have been extensively tested in patients with advanced cancer but have had little clinical success, which has been attributed to the immunosuppressive tumour microenvironment. Thus, the administration of preventive vaccines at pre-malignant stages of the disease holds promise, as they function before tumour-associated immune suppression is established. Accordingly, immunological and clinical studies are yielding impressive results. Checkpoint inhibitors Treatment without prevention is simply unsustainable. Ribbon Panel included support for basic, translational, Antibodies or other drugs that Bill Gates computational and clinical research in immunotherapy inhibit the function of specific and immunoprevention of all cancers5. The fiscal year molecules (such as cytotoxic T In October 2015, as part of a Grand Challenges initi- 2019 NCI budget proposal for the first time includes vac- lymphocyte antigen 4 (CTLA4), programmed cell death ative, Cancer Research UK (CRUK) published a call cines for cancer prevention as a priority area (see Further protein 1 (PD1) and PD1 ligand for proposals to develop vaccines for the prevention of information).
    [Show full text]
  • Immunoprevention of Mammary Carcinoma in HER-2/ Neu Transgenic Mice Is IFN-Γ and B Cell Dependent
    Immunoprevention of Mammary Carcinoma in HER-2/ neu Transgenic Mice Is IFN-γ and B Cell Dependent This information is current as Patrizia Nanni, Lorena Landuzzi, Giordano Nicoletti, Carla of October 1, 2021. De Giovanni, Ilaria Rossi, Stefania Croci, Annalisa Astolfi, Manuela Iezzi, Emma Di Carlo, Piero Musiani, Guido Forni and Pier-Luigi Lollini J Immunol 2004; 173:2288-2296; ; doi: 10.4049/jimmunol.173.4.2288 http://www.jimmunol.org/content/173/4/2288 Downloaded from References This article cites 32 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/173/4/2288.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Immunoprevention of Mammary Carcinoma in HER-2/neu Transgenic Mice Is IFN-␥ and B Cell Dependent1 Patrizia Nanni,* Lorena Landuzzi,*† Giordano Nicoletti,*† Carla De Giovanni,* Ilaria Rossi,* Stefania Croci,* Annalisa Astolfi,* Manuela Iezzi,‡ Emma Di Carlo,‡ Piero Musiani,‡ Guido Forni,§ and Pier-Luigi Lollini2* A vaccine combining IL-12 and allogeneic mammary carcinoma cells expressing p185neu completely prevents tumor onset in HER-2/neu transgenic BALB/c mice (NeuT mice).
    [Show full text]
  • Special Series: Cancer Immunoprevention: a New
    Author Manuscript Published OnlineFirst on September 18, 2014; DOI: 10.1158/1940-6207.CAPR-14-0213 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Special Series: Cancer Immunoprevention: A New Approach to Intercept Cancer Early Asad Umar Author Affiliation: Gastrointestinal & Other Cancers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland. Corresponding Author: Asad Umar, DVM, PhD, Chief, Gastrointestinal & Other Cancers Research Group, Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Drive, 5E226, Bethesda, MD 20892-9782. Phone: (240) 276-7070; Fax:(240) 276-7848; Email: [email protected] Downloaded from cancerpreventionresearch.aacrjournals.org on September 29, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 18, 2014; DOI: 10.1158/1940-6207.CAPR-14-0213 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Cancer Immunoprevention Cancer immunoprevention refers to the modulation of the host immune response to control the initiation or development of cancer. The significant role of host immunity in early tumorigenesis has only recently been confirmed, as a better understanding of the mechanisms, molecules and cells involved in tumor immunology has been elucidated over the past two decades. Of utmost importance, preclinical and clinical evidence have demonstrated that early neoplastic cells (transformed cells that initiate cancer formation) express antigens that allow the immune system to distinguish them from normal cells. Furthermore, recognition of the aberrant cell by the immune cells activates a complex interaction of mutual modulation between the immune cells, the tumor and the tumor microenvironment that may result not only in inhibition but also promotion of cancer.
    [Show full text]
  • Immuno-Prevention of Cancers Not Associated with Infectious Agents
    Immuno-Prevention of cancers not associated with infectious agents Margaret Wojtowicz NCI-Division of Cancer Prevention November 16, 2017 1 Overview • What is “Cancer Immunoprevention”? • Why is it an attractive strategy for cancer prevention? • Attributes of targets/antigens (Ags) & strategies used in cancer immunoprevention. • What Ags can we target for prevention of tumors NOT associated with infectious agents? • Vaccines currently being investigated in studies conducted at DCP: * WOKVAC breast cancer prevention * VADIS * MUC-1 colon cancer & lung cancer prevention * PROSTVAC prostate cancer prevention 2 Cancer Immunoprevention Modulation of the host immune system to prevent the initiation of carcinogenesis and progression to cancer PREVENTION 3 Immune Modulation as an Attractive Strategy for Cancer Prevention • Specificity & adaptability of immune responses • Memory immunity (potentially life-long) • Safety profile (vaccines) • Ease of administration and potentially improved compliance 4 Immunity During Carcinogenesis 5 Attributes of targets/antigens & strategies used in cancer immunoprevention Targets: 1. Relevant for cancer development 2. Expressed on tumor tissue (or predominantly) and NOT (or to much lesser degree) on normal tissue – Tumor Specific Antigens – TSA Tumor Associated Antigens - TAA 3. Capable to induce “specific” immune response, especially T cell responses (break immune tolerance to “self”) – be immunogenic – but NOT inducing autoimmunity 4. Overall safety of targeting given antigen Strategies: 1. SAFETY --- > Vaccines
    [Show full text]
  • Cancer Immunoprevention and Public Health Sandeep K
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Florida International University Florida International University FIU Digital Commons All Faculty 5-8-2017 Cancer Immunoprevention and Public Health Sandeep K. Singh Department of Biological Sciences, Florida International University, [email protected] Mehmet Tevfik Dorak School of Health Sciences, LiverpoolHope University, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/all_faculty Part of the Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Singh, Sandeep K. and Dorak, Mehmet Tevfik, "Cancer Immunoprevention and Public Health" (2017). All Faculty. 212. https://digitalcommons.fiu.edu/all_faculty/212 This work is brought to you for free and open access by FIU Digital Commons. It has been accepted for inclusion in All Faculty by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. REVIEW published: 08 May 2017 doi: 10.3389/fpubh.2017.00101 Cancer Immunoprevention and Public Health Sandeep K. Singh1 and Mehmet Tevfik Dorak2* 1 Department of Biological Sciences, Florida International University, Miami, FL, USA, 2 School of Health Sciences, Liverpool Hope University, Liverpool, UK The power of cancer immune surveillance has been documented beyond doubt, and the successful exploitation of immune response to cancer has started a new era in the war against cancer. Cancer biologists have recognized immunoevasion as an emerg- ing hallmark in addition to the six hallmarks of cancer. Besides the natural connection between the immune system and cancer development, most established environmental risk factors are now known to interfere with immune surveillance mechanisms.
    [Show full text]
  • Synthetic and Immunological Studies on the OCT4 Immunodominant Motif Antigen-Based Anti-Cancer Vaccine
    Cancer Biol Med 2020. doi: 10.20892/j.issn.2095-3941.2019.0224 ORIGINAL ARTICLE Synthetic and immunological studies on the OCT4 immunodominant motif antigen-based anti-cancer vaccine Tingting Chen1*, Kan Liu1*, Jiangyao Xu1, Tianying Zhan1, Maixian Liu1, Li Li1, Zhiwen Yang1, Shuping Yuan1, Wenyi Zou1, Guimiao Lin1, Dennis A. Carson1,2, Christina C. N. Wu1,2, Xiaomei Wang1 1Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen 518060, China; 2Carson Lab, Moores Cancer Center, UCSD, La Jolla 92093, CA, USA ABSTRACT Objective: Cancer stem cell is one of the important causes of tumorigenesis as well as a drug target in the treatment of malignant tumor. However, at present, there is no immune vaccine targeting these cells. Octamer-binding transcription factor 4 (OCT4), a marker of embryonic stem cells and germ cells, often highly expresses in the early stages of tumorigenesis and is therefore a good candidate for cancer vaccine development. Methods: To identify the optimal carrier and adjuvant combination, we chemically synthesized and linked three different OCT4 epitope antigens to a carrier protein, keyhole limpet hemocyanin (KLH), combined with Toll-like receptor 9 agonist (TLR9). Results: Immunization with OCT4-3 + TLR9 produced the strongest immune response in mice. In prevention assays, significant tumor growth inhibition was achieved in BABL/c mice treated with OCT4-3 + TLR9 (P < 0.01). Importantly, the results showed that cytotoxic T lymphocyte activity and the inhibition of tumor growth were enhanced in mice immunized with OCT4-3 combined with TLR9. Meanwhile, multiple cytokines [such as interferon (IFN)-γ (P < 0.05), interleukin (IL)-12 (P < 0.05), IL-2 (P < 0.01), and IL-6 (P < 0.05)] promoting cellular immune responses were shown to be greatly enhanced in mice immunized with OCT4-3 + TLR9.
    [Show full text]
  • Exploring the Potential Use of a PBMC-Based Functional Assay to Identify Predictive Biomarkers for Anti-PD-1 Immunotherapy
    International Journal of Molecular Sciences Article Exploring the Potential Use of a PBMC-Based Functional Assay to Identify Predictive Biomarkers for Anti-PD-1 Immunotherapy 1, 1, , 1,§ 1 Silvia M. Bacot y, Taylor A. Harper y z , Rebecca L. Matthews , Christie Jane Fennell , Adovi Akue 2, Mark A. KuKuruga 2, Shiowjen Lee 3, Tao Wang 1,* and Gerald M. Feldman 1,* 1 Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; [email protected] (S.M.B.); [email protected] (T.A.H.); [email protected] (R.L.M.); [email protected] (C.J.F.) 2 Office of Vaccines Research & Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; [email protected] (A.A.); [email protected] (M.A.K.) 3 Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; [email protected] * Correspondence: [email protected] (T.W.); [email protected] (G.M.F.); Tel.: +1-301-402-9392 (T.W.) These authors contributed equally to this paper. y Current address: Flow Cytometry Core Facility, School of Medicine, University of Virginia, Charlottesville, z VA 22903, USA. § Current address: Cancer ImmunoPrevention Laboratory, Vaccine, Immunity, and Cancer Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. Received: 20 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: The absence of reliable, robust, and non-invasive biomarkers for anti- Programmed cell death protein 1 (PD-1) immunotherapy is an urgent unmet medical need for the treatment of cancer patients.
    [Show full text]