Notes on the Use of Propagation of Error Formulas

Total Page:16

File Type:pdf, Size:1020Kb

Notes on the Use of Propagation of Error Formulas ~.------~------------ JOURNAL OF RESEARCH of the National Bureau of Standards - C. Engineering and Instrumentation Vol. 70C, No.4, October- December 1966 Notes on the Use of Propagation of Error Formulas H. H. Ku Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234 (May 27, 1966) The " la w of propagation o[ error" is a tool th at physical scientists have convenie ntly and frequently used in th eir work for many years, yet an adequate refere nce is diffi c ult to find. In this paper an exposi­ tory rev ie w of this topi c is presented, partic ularly in the li ght of c urre nt practi ces a nd interpretations. Examples on the accuracy of the approximations are given. The reporting of the uncertainties of final results is discussed. Key Words : Approximation, e rror, formula, imprecision, law of error, prod uc ts, propagati on of error, random, ratio, syste mati c, sum. Introduction The " law of propagation of error" is a tool that physical scientists have conveniently and frequently In the December 1939, issue of the American used in their work for many years. No claim is Physics Teacher, Raymond T. Birge wrote an ex­ made here that it is the only tool or even a suitable pository paper on "The Propagation of Errors." tool for all occasions. "Data analysis" is an ever­ In the introductory paragraph of his paper, Birge expanding field and other methods, existing or new, re marked: are probably available for the analysis and inter­ "The questi on of what constitutes the most reliable valu e to pretation fo r each particular set of data. Never­ be assigned as the uncertainty of any given measured quantity is theless, under certain assumptions give n in detail one that has been discussed [or many decades and, presumably, in th e following sections, the a pproxim ati ons res ulting will continue to be discussed. It is a questi on that involves many considerations a nd by its very nature has no unique answer. The from the use of these formulas are useful in giving subject of the propagation of errors, on the contrary, is a purely an estimate of the uncertainty of a reported value. mathematical matter, with very definite and easily ascertained T he uncertainty computed from the use of these conclusions. Although the general s ubject of the present article formulas, however, is probably somewhat less that is by no means new,' many scie ntists still fail to avail themselves of the enlighte ning conclu sions that may often thus be reached, the actual in the sense that no func ti on form is know n while others frequently use the theory incorrectly and thus arrive exactly and the number of variables considered usually at quite mi sleading conclusions." does not represent fully the contributors of errors Birge's remark 27 years ago still sounds fitting today. that affect the final result. For a number of years, the need for an expository paper on this topi c has been felt by the staff of the 1. Sta tist ica l Tolerancing Versus Imprecision Statistical Engineering Laboratory at the National of a Derived Quantity Bureau of Standards. Frequent inquiries have to be answered, yet a diligent search in current litera· 1.1. Propagation of error formulas are frequently ture and textbooks failed to produce a suitable ref· used by engineers in the type of problem yalled '~S ta ­ erence that treats the subject matter adequately. tis tical tolerancing." In such problems, we are The present manuscript was written to fill this need. concerned with the behavior of the characteristic In section 1, we consider the two distinct situations W of a system as related to the behavior of a charac­ under which the propagation of error formulas can teristic X of its component. For instance, an engi­ be used. The mathematical manipulations are the neer may have designed a circuit. A property W same, yet the interpretations of the results are en­ of the circuit may be related to the value X of the tirely different. In section 2 the notations are de­ resistance used. As the value of X is changed, " , fined and the general formulas given. Frequently W changes and the relationship can be expressed used special formulas are li sted at the end of the by a mathematical function section for conveni ent reference. In section 3 the accuracies of the approximations are discussed, W=F(X) together with suggesti ons on the use of the errors propagated. Section 4 contains s uggestions on the within a certain range of the values of X. reporting of final results. Suppose our engineer decides on W = Wo to be the desired property of the circuit, and specifies X = Xo I See. for instance. M. Merriman, Method of Least Squares, pp. 75- 79 (ed. 8, 1910). for this purpose. He realizes, however, that there 263 I /' will be vanatlOns among the large lot of resistors he dF]2 S2 ordered, no matter how tight his specifications are. var (11)= [dX n (1.2) Let x denote the value of anyone of the resistors in the lot, then some of the time x will be below Xo, while at other times x will be above Xo. In other words, x has a distribution of values somewhat clus­ tered about Xo. As x varies with each resistor, so Often he assumes that 11 is distributed at least approxi­ does w with each circuit manufactured. mately in accordance with the normal law of error and If our engineer knows the mean and standard gives probability limits to the statistical uncertainty of deviation (or variance) of x, based on data from the his estimate 11 based on the standard deviation calcu­ history of their manufacture, then he can calculate lated (o-w) and this assumption. the approximate mean and variance of w by the Cramer [1946] has shown that under very general propagation of error formulas: conditions, functions of sample moments are asymp­ totically normal, with mean and variance given by mean (w) == F(mean x), and the respective propagation of error formulas. 2 Since xn is the first sample moment, the estimate 11 will be approximately normitlly distributed for large n. Hence variance (w) == [dXdF]2 var (x), (1.1) our physicist is interested in the variance (or the standard deviation) of the normal distribution which the distribution of F(xn) approximates as n increases. where the square brackets signify that the derivatives (Note that both estimators tv and var (11) are functions within the brackets are to be evaluated at the mean of n.) For n large, the distribution of tv can be as­ of x. The approximations computed refer to the mean sumed to be approximately normal and probability and variance of an individual unit in the collection of statements can be made about 11. circuits that will be manufactured from the lot of 1.3 Hence, we have the two cases: resistors. The distribution of values of w, however, (1) The problem of determining the mean and vari­ is still far from being determined since it depends ance (or standard deviation) of the actual distribu­ entirely on the functional form of the relation between tion of a given function F(x) of a particular random Wand X, as mathematical variables, and the distri­ variable x, and bution of x itself, as a random variable. This type of (2) The problem of estimating the mean and vari­ approach has been used frequently in preliminary ance (or standard deviation) of the normal distri­ examinations of the reliability of performance of a bution to which the distribution of F(xlI) tends asymp­ system, where X may be considered as a multidimen­ totically. sional variable. As examples of problems studied under the first 1.2 Let us consider now the second situation under case, we can cite Fieller [1932] on the ratio of two which propagation of error formulas are used. This normally distributed random variables, and Craig situation is the one considered in Birge's paper, and [1937] and Goodman [1962] on the product of two is the one that will be discussed in the main part of or more random variables. Tukey, in three Princeton this paper. University reports, extended the classical formulas A physicist may wish to determine the "true" value through the fourth order terms for the mean and Wo of interest, for example, the atomic weight of silver. variance, and propagated the skewness and elon­ He makes n independent measurements on some re­ gation of the distribution of F(x) as well. These lated quantity x and calculates reports present perhaps the most exhausti ve treat­ ment of statistical tolerancing to date. _ 1 From now on we shall be concerned in this paper Xn = - (Xl + X2 +. + Xn) n with the second case only, i.e., the problem of esti­ mating the mean and variance, or standard deviation, as an estimate of the true value Xo and of the normal distribution to which the distribution of F(xn) tends as n increases indefinitely, and hence also the problem of using approximations to the 1 1/ S2=_- (X-X)2 mean and variance computed from a finite number of l L In n- I measurements. Since the mean and standard deviation are the parameters that specify a particular normal distribution, our problem is by its very nature less complicated than that of statistical tolerancing as an index of dispersion of his measured values. The where the actual distribution of the function may physicist is mainly concerned in obtaining an estimate have to be specified.
Recommended publications
  • Krishnan Correlation CUSB.Pdf
    SELF INSTRUCTIONAL STUDY MATERIAL PROGRAMME: M.A. DEVELOPMENT STUDIES COURSE: STATISTICAL METHODS FOR DEVELOPMENT RESEARCH (MADVS2005C04) UNIT III-PART A CORRELATION PROF.(Dr). KRISHNAN CHALIL 25, APRIL 2020 1 U N I T – 3 :C O R R E L A T I O N After reading this material, the learners are expected to : . Understand the meaning of correlation and regression . Learn the different types of correlation . Understand various measures of correlation., and, . Explain the regression line and equation 3.1. Introduction By now we have a clear idea about the behavior of single variables using different measures of Central tendency and dispersion. Here the data concerned with one variable is called ‗univariate data‘ and this type of analysis is called ‗univariate analysis‘. But, in nature, some variables are related. For example, there exists some relationships between height of father and height of son, price of a commodity and amount demanded, the yield of a plant and manure added, cost of living and wages etc. This is a a case of ‗bivariate data‘ and such analysis is called as ‗bivariate data analysis. Correlation is one type of bivariate statistics. Correlation is the relationship between two variables in which the changes in the values of one variable are followed by changes in the values of the other variable. 3.2. Some Definitions 1. ―When the relationship is of a quantitative nature, the approximate statistical tool for discovering and measuring the relationship and expressing it in a brief formula is known as correlation‖—(Craxton and Cowden) 2. ‗correlation is an analysis of the co-variation between two or more variables‖—(A.M Tuttle) 3.
    [Show full text]
  • Three Problems of the Theory of Choice on Random Sets
    DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91125 THREE PROBLEMS OF THE THEORY OF CHOICE ON RANDOM SETS B. A. Berezovskiy,* Yu. M. Baryshnikov, A. Gnedin V. Institute of Control Sciences Academy of Sciences of the U.S.S.R, Moscow *Guest of the California Institute of Technology SOCIAL SCIENCE WORKING PAPER 661 December 1987 THREE PROBLEMS OF THE THEORY OF CHOICE ON RANDOM SETS B. A. Berezovskiy, Yu. M. Baryshnikov, A. V. Gnedin Institute of Control Sciences Academy of Sciences of the U.S.S.R., Moscow ABSTRACT This paper discusses three problems which are united not only by the common topic of research stated in thetitle, but also by a somewhat surprising interlacing of the methods and techniques used. In the first problem, an attempt is made to resolve a very unpleasant metaproblem arising in general choice theory: why theconditions of rationality are not really necessary or, in other words, why in every-day life we are quite satisfied with choice methods which are far from being ideal. The answer, substantiated by a number of results, is as follows: situations in which the choice function "misbehaves" are very seldom met in large presentations. the second problem, an overview of our studies is given on the problem of statistical propertiesIn of choice. One of themost astonishing phenomenon found when we deviate from scalar­ extremal choice functions is in stable multiplicity of choice. If our presentation is random, then a random number of alternatives is chosen in it. But how many? The answer isn't trival, and may be sought in many differentdirections.
    [Show full text]
  • The Halász-Székely Barycenter
    THE HALÁSZ–SZÉKELY BARYCENTER JAIRO BOCHI, GODOFREDO IOMMI, AND MARIO PONCE Abstract. We introduce a notion of barycenter of a probability measure re- lated to the symmetric mean of a collection of nonnegative real numbers. Our definition is inspired by the work of Halász and Székely, who in 1976 proved a law of large numbers for symmetric means. We study analytic properties of this Halász–Székely barycenter. We establish fundamental inequalities that relate the symmetric mean of a list of nonnegative real numbers with the barycenter of the measure uniformly supported on these points. As consequence, we go on to establish an ergodic theorem stating that the symmetric means of a se- quence of dynamical observations converges to the Halász–Székely barycenter of the corresponding distribution. 1. Introduction Means have fascinated man for a long time. Ancient Greeks knew the arith- metic, geometric, and harmonic means of two positive numbers (which they may have learned from the Babylonians); they also studied other types of means that can be defined using proportions: see [He, pp. 85–89]. Newton and Maclaurin en- countered the symmetric means (more about them later). Huygens introduced the notion of expected value and Jacob Bernoulli proved the first rigorous version of the law of large numbers: see [Mai, pp. 51, 73]. Gauss and Lagrange exploited the connection between the arithmetico-geometric mean and elliptic functions: see [BB]. Kolmogorov and other authors considered means from an axiomatic point of view and determined when a mean is arithmetic under a change of coordinates (i.e. quasiarithmetic): see [HLP, p.
    [Show full text]
  • TOPIC 0 Introduction
    TOPIC 0 Introduction 1 Review Course: Math 535 (http://www.math.wisc.edu/~roch/mmids/) - Mathematical Methods in Data Science (MMiDS) Author: Sebastien Roch (http://www.math.wisc.edu/~roch/), Department of Mathematics, University of Wisconsin-Madison Updated: Sep 21, 2020 Copyright: © 2020 Sebastien Roch We first review a few basic concepts. 1.1 Vectors and norms For a vector ⎡ 푥 ⎤ ⎢ 1 ⎥ 푥 ⎢ 2 ⎥ 푑 퐱 = ⎢ ⎥ ∈ ℝ ⎢ ⋮ ⎥ ⎣ 푥푑 ⎦ the Euclidean norm of 퐱 is defined as ‾‾푑‾‾‾‾ ‖퐱‖ = 푥2 = √퐱‾‾푇‾퐱‾ = ‾⟨퐱‾‾, ‾퐱‾⟩ 2 ∑ 푖 √ ⎷푖=1 푇 where 퐱 denotes the transpose of 퐱 (seen as a single-column matrix) and 푑 ⟨퐮, 퐯⟩ = 푢 푣 ∑ 푖 푖 푖=1 is the inner product (https://en.wikipedia.org/wiki/Inner_product_space) of 퐮 and 퐯. This is also known as the 2- norm. More generally, for 푝 ≥ 1, the 푝-norm (https://en.wikipedia.org/wiki/Lp_space#The_p- norm_in_countably_infinite_dimensions_and_ℓ_p_spaces) of 퐱 is given by 푑 1/푝 ‖퐱‖ = |푥 |푝 . 푝 (∑ 푖 ) 푖=1 Here (https://commons.wikimedia.org/wiki/File:Lp_space_animation.gif#/media/File:Lp_space_animation.gif) is a nice visualization of the unit ball, that is, the set {퐱 : ‖푥‖푝 ≤ 1}, under varying 푝. There exist many more norms. Formally: 푑 푑 Definition (Norm): A norm is a function ℓ from ℝ to ℝ+ that satisfies for all 푎 ∈ ℝ, 퐮, 퐯 ∈ ℝ (Homogeneity): ℓ(푎퐮) = |푎|ℓ(퐮) (Triangle inequality): ℓ(퐮 + 퐯) ≤ ℓ(퐮) + ℓ(퐯) (Point-separating): ℓ(푢) = 0 implies 퐮 = 0. ⊲ The triangle inequality for the 2-norm follows (https://en.wikipedia.org/wiki/Cauchy– Schwarz_inequality#Analysis) from the Cauchy–Schwarz inequality (https://en.wikipedia.org/wiki/Cauchy– Schwarz_inequality).
    [Show full text]
  • Continuous Probability Distributions Continuous Probability Distributions – a Guide for Teachers (Years 11–12)
    1 Supporting Australian Mathematics Project 2 3 4 5 6 12 11 7 10 8 9 A guide for teachers – Years 11 and 12 Probability and statistics: Module 21 Continuous probability distributions Continuous probability distributions – A guide for teachers (Years 11–12) Professor Ian Gordon, University of Melbourne Editor: Dr Jane Pitkethly, La Trobe University Illustrations and web design: Catherine Tan, Michael Shaw Full bibliographic details are available from Education Services Australia. Published by Education Services Australia PO Box 177 Carlton South Vic 3053 Australia Tel: (03) 9207 9600 Fax: (03) 9910 9800 Email: [email protected] Website: www.esa.edu.au © 2013 Education Services Australia Ltd, except where indicated otherwise. You may copy, distribute and adapt this material free of charge for non-commercial educational purposes, provided you retain all copyright notices and acknowledgements. This publication is funded by the Australian Government Department of Education, Employment and Workplace Relations. Supporting Australian Mathematics Project Australian Mathematical Sciences Institute Building 161 The University of Melbourne VIC 3010 Email: [email protected] Website: www.amsi.org.au Assumed knowledge ..................................... 4 Motivation ........................................... 4 Content ............................................. 5 Continuous random variables: basic ideas ....................... 5 Cumulative distribution functions ............................ 6 Probability density functions ..............................
    [Show full text]
  • BACHELOR of COMMERCE (Hons)
    GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY , D ELHI BACHELOR OF COMMERCE (Hons) BCOM 110- Business Statistics L-5 T/P-0 Credits-5 Objectives: The objective of this course is to familiarize students with the basic statistical tools used to summarize and analyze quantitative information for decision making. COURSE CONTENTS Unit I Lectures: 20 Statistical Data and Descriptive Statistics: Measures of Central Tendency: Mathematical averages including arithmetic mean, geometric mean and harmonic mean, properties and applications, positional averages, mode, median (and other partition values including quartiles, deciles, and percentile; Unit II Lectures: 15 Measures of variation: absolute and relative, range, quartile deviation, mean deviation, standard deviation, and their co-efficients, properties of standard deviation/variance; Moments: calculation and significance; Skewness, Kurtosis and Moments. Unit III Lectures: 15 Simple Correlation and Regression Analysis: Correlation Analysis, meaning of correlation simple, multiple and partial; linear and non-linear, Causation and correlation, Scatter diagram, Pearson co-efficient of correlation; calculation and properties, probable and standard errors, rank correlation; Simple Regression Analysis: Regression equations and estimation. Unit IV Lectures: 20 Index Numbers: Meaning and uses of index numbers, construction of index numbers, univariate and composite, aggregative and average of relatives – simple and weighted, tests of adequacy of index numbers, Base shifting, problems in the construction of index numbers. Text Books : 1. Levin, Richard and David S. Rubin. (2011), Statistics for Management. 7th Edition. PHI. 2. Gupta, S.P., and Gupta, Archana, (2009), Statistical Methods. Sultan Chand and Sons, New Delhi. Reference Books : 1. Berenson and Levine, (2008), Basic Business Statistics: Concepts and Applications. Prentice Hall. BUSINESS STATISTICS:PAPER CODE 110 Dr.
    [Show full text]
  • Probability with Engineering Applications ECE 313 Course Notes
    Probability with Engineering Applications ECE 313 Course Notes Bruce Hajek Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign January 2017 c 2017 by Bruce Hajek All rights reserved. Permission is hereby given to freely print and circulate copies of these notes so long as the notes are left intact and not reproduced for commercial purposes. Email to [email protected], pointing out errors or hard to understand passages or providing comments, is welcome. Contents 1 Foundations 3 1.1 Embracing uncertainty . .3 1.2 Axioms of probability . .6 1.3 Calculating the size of various sets . 10 1.4 Probability experiments with equally likely outcomes . 13 1.5 Sample spaces with infinite cardinality . 15 1.6 Short Answer Questions . 20 1.7 Problems . 21 2 Discrete-type random variables 25 2.1 Random variables and probability mass functions . 25 2.2 The mean and variance of a random variable . 27 2.3 Conditional probabilities . 32 2.4 Independence and the binomial distribution . 34 2.4.1 Mutually independent events . 34 2.4.2 Independent random variables (of discrete-type) . 36 2.4.3 Bernoulli distribution . 37 2.4.4 Binomial distribution . 38 2.5 Geometric distribution . 41 2.6 Bernoulli process and the negative binomial distribution . 43 2.7 The Poisson distribution{a limit of binomial distributions . 45 2.8 Maximum likelihood parameter estimation . 47 2.9 Markov and Chebychev inequalities and confidence intervals . 50 2.10 The law of total probability, and Bayes formula . 53 2.11 Binary hypothesis testing with discrete-type observations .
    [Show full text]
  • The Interpretation of the Probable Error and the Coefficient of Correlation
    THE UNIVERSITY OF ILLINOIS LIBRARY 370 IL6 . No. 26-34 sssftrsss^"" Illinois Library University of L161—H41 Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/interpretationof32odel BULLETIN NO. 32 BUREAU OF EDUCATIONAL RESEARCH COLLEGE OF EDUCATION THE INTERPRETATION OF THE PROBABLE ERROR AND THE COEFFICIENT OF CORRELATION By Charles W. Odell Assistant Director, Bureau of Educational Research ( (Hi THE UBMM Of MAR 14 1927 HKivERsrrv w Illinois PRICE 50 CENTS PUBLISHED BY THE UNIVERSITY OF ILLINOIS. URBANA 1926 370 lit TABLE OF CONTENTS PAGE Preface 5 i Chapter I. Introduction 7 Chapter II. The Probable Error 9 .Chapter III. The Coefficient of Correlation 33 PREFACE Graduate students and other persons contemplating ed- ucational research frequently ask concerning the need for training in statistical procedures. They usually have in mind training in the technique of making tabulations and calcula- tions. This, as Doctor Odell points out, is only one phase, and probably not the most important phase, of needed train- ing in statistical methods. The interpretation of the results of calculation has not received sufficient attention by the authors of texts in this field. The following discussion of two derived measures, the probable error and the coefficient of correlation, is offered as a contribution to the technique of educational research. It deals with the problems of the reader of reports of research, as well as those of original investigators. The tabulating of objective data and the mak- ing of calculations from the tabulations may be and fre- quently is a tedious task, but it is primarily one of routine.
    [Show full text]
  • HARMONIC ANALYSIS 1. Maximal Function for a Locally Integrable
    HARMONIC ANALYSIS PIOTR HAJLASZ 1. Maximal function 1 n For a locally integrable function f 2 Lloc(R ) the Hardy-Littlewood max- imal function is defined by Z n Mf(x) = sup jf(y)j dy; x 2 R : r>0 B(x;r) The operator M is not linear but it is subadditive. We say that an operator T from a space of measurable functions into a space of measurable functions is subadditive if jT (f1 + f2)(x)j ≤ jT f1(x)j + jT f2(x)j a.e. and jT (kf)(x)j = jkjjT f(x)j for k 2 C. The following integrability result, known also as the maximal theorem, plays a fundamental role in many areas of mathematical analysis. p n Theorem 1.1 (Hardy-Littlewood-Wiener). If f 2 L (R ), 1 ≤ p ≤ 1, then Mf < 1 a.e. Moreover 1 n (a) For f 2 L (R ) 5n Z (1.1) jfx : Mf(x) > tgj ≤ jfj for all t > 0. t Rn p n p n (b) If f 2 L (R ), 1 < p ≤ 1, then Mf 2 L (R ) and p 1=p kMfk ≤ 2 · 5n=p kfk for 1 < p < 1, p p − 1 p kMfk1 ≤ kfk1 : Date: March 28, 2012. 1 2 PIOTR HAJLASZ The estimate (1.1) is called weak type estimate. 1 n 1 n Note that if f 2 L (R ) is a nonzero function, then Mf 62 L (R ). Indeed, R if λ = B(0;R) jfj > 0, then for jxj > R we have Z λ Mf(x) ≥ jfj ≥ n ; B(x;R+jxj) !n(R + jxj) n and the function on the right hand side is not integrable on R .
    [Show full text]
  • Probabilistic Models for Shapes As Continuous Curves
    J Math Imaging Vis (2009) 33: 39–65 DOI 10.1007/s10851-008-0104-3 Probabilistic Models for Shapes as Continuous Curves Jeong-Gyoo Kim · J. Alison Noble · J. Michael Brady Published online: 23 July 2008 © Springer Science+Business Media, LLC 2008 Abstract We develop new shape models by defining a stan- 1 Introduction dard shape from which we can explain shape deformation and variability. Currently, planar shapes are modelled using Our work contributes to shape analysis, particularly in med- a function space, which is applied to data extracted from ical image analysis, by defining a standard representation images. We regard a shape as a continuous curve and identi- of shape. Specifically we develop new mathematical mod- fied on the Wiener measure space whereas previous methods els of planar shapes. Our aim is to develop a standard rep- have primarily used sparse sets of landmarks expressed in a resentation of anatomical or biological shapes that can be Euclidean space. The average of a sample set of shapes is used to explain shape variations, whether in normal subjects defined using measurable functions which treat the Wiener or abnormalities due, for example, to disease. In addition, measure as varying Gaussians. Various types of invariance we propose a quasi-score that measures global deformation of our formulation of an average are examined in regard to and provides a generic way to compare statistical methods practical applications of it. The average is examined with of shape analysis. relation to a Fréchet mean in order to establish its valid- As D’Arcy Thompson pointed in [50], there is an impor- ity.
    [Show full text]
  • Two Notes on Financial Mathematics
    TWO NOTES ON FINANCIAL MATHEMATICS Daniel Dufresne Centre for Actuarial Studies University of Melbourne The two notes which follow are aimed at students of financial mathematics or actuarial science. The first one, “A note on correlation in mean variance portfolio theory” is an elementary discussion of how negative correlation coefficients can be, given any set of n random variables. The second one, “Two essential formulas in actuarial science and financial mathematics,” gives a more or less self-contained introduction to Jensen’s inequality and to another formula, which I have decided to call the “survival function expectation formula.” The latter allows one to write the expectation of a function of a random variable as an integral involving the complement of its cumulative distribution function. A NOTE ON CORRELATION IN MEAN VARIANCE PORTFOLIO THEORY Daniel Dufresne Centre for Actuarial Studies University of Melbourne Abstract This note is aimed at students and others interested in mean variance portfolio theory. Negative correlations are desirable in portfolio selection, as they decrease risk. It is shown that there is a mathematical limit to how negative correlations can be among a given number of securities. In particular, in an “average correlation model” (where the correlation coefficient between different securities is constant) the correlation has to be at least as large as −1/(n − 1), n being the number of securities. Keywords: Mean-variance portfolio theory; average correlation mod- els 1. INTRODUCTION One of the more technical points encountered when teaching the basics of mean variance portfolio theory is the restrictions which apply on the covariance matrix of the securities’ returns.
    [Show full text]
  • Revision of All Topics
    Revision Of All Topics Quantitative Aptitude & Business Statistics Def:Measures of Central Tendency • A single expression representing the whole group,is selected which may convey a fairly adequate idea about the whole group. • This single expression is known as average. Quantitative Aptituide & Business 2 Statistics: Revision Of All Toics Averages are central part of distribution and, therefore ,they are also called measures of central tendency. Quantitative Aptituide & Business 3 Statistics: Revision Of All Toics Types of Measures central tendency: There are five types ,namely 1.Arithmetic Mean (A.M) 2.Median 3.Mode 4.Geometric Mean (G.M) 5.Harmonic Mean (H.M) Quantitative Aptituide & Business 4 Statistics: Revision Of All Toics Arithmetic Mean (A.M) The most commonly used measure of central tendency. When people ask about the “average" of a group of scores, they usually are referring to the mean. Quantitative Aptituide & Business 5 Statistics: Revision Of All Toics • The arithmetic mean is simply dividing the sum of variables by the total number of observations. Quantitative Aptituide & Business 6 Statistics: Revision Of All Toics Arithmetic Mean for Ungrouped data is given by n ∑ xi + + + + X = x1 x2 x3 ...... xn = i=1 n n Quantitative Aptituide & Business 7 Statistics: Revision Of All Toics Arithmetic Mean for Discrete Series n ∑ fi xi f1x1 + f 2 x2 + f 3 x3 +......+ f n xn i=1 X = = n f1 + f2 + f3 + .... + fn ∑ fi i=1 Quantitative Aptituide & Business 8 Statistics: Revision Of All Toics Arithmetic Mean for Continuous Series fd X = A + ∑ ×C N Quantitative Aptituide & Business 9 Statistics: Revision Of All Toics Weighted Arithmetic Mean • The term ‘ weight’ stands for the relative importance of the different items of the series.
    [Show full text]