Notes on the Use of Propagation of Error Formulas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Krishnan Correlation CUSB.Pdf
SELF INSTRUCTIONAL STUDY MATERIAL PROGRAMME: M.A. DEVELOPMENT STUDIES COURSE: STATISTICAL METHODS FOR DEVELOPMENT RESEARCH (MADVS2005C04) UNIT III-PART A CORRELATION PROF.(Dr). KRISHNAN CHALIL 25, APRIL 2020 1 U N I T – 3 :C O R R E L A T I O N After reading this material, the learners are expected to : . Understand the meaning of correlation and regression . Learn the different types of correlation . Understand various measures of correlation., and, . Explain the regression line and equation 3.1. Introduction By now we have a clear idea about the behavior of single variables using different measures of Central tendency and dispersion. Here the data concerned with one variable is called ‗univariate data‘ and this type of analysis is called ‗univariate analysis‘. But, in nature, some variables are related. For example, there exists some relationships between height of father and height of son, price of a commodity and amount demanded, the yield of a plant and manure added, cost of living and wages etc. This is a a case of ‗bivariate data‘ and such analysis is called as ‗bivariate data analysis. Correlation is one type of bivariate statistics. Correlation is the relationship between two variables in which the changes in the values of one variable are followed by changes in the values of the other variable. 3.2. Some Definitions 1. ―When the relationship is of a quantitative nature, the approximate statistical tool for discovering and measuring the relationship and expressing it in a brief formula is known as correlation‖—(Craxton and Cowden) 2. ‗correlation is an analysis of the co-variation between two or more variables‖—(A.M Tuttle) 3. -
Three Problems of the Theory of Choice on Random Sets
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91125 THREE PROBLEMS OF THE THEORY OF CHOICE ON RANDOM SETS B. A. Berezovskiy,* Yu. M. Baryshnikov, A. Gnedin V. Institute of Control Sciences Academy of Sciences of the U.S.S.R, Moscow *Guest of the California Institute of Technology SOCIAL SCIENCE WORKING PAPER 661 December 1987 THREE PROBLEMS OF THE THEORY OF CHOICE ON RANDOM SETS B. A. Berezovskiy, Yu. M. Baryshnikov, A. V. Gnedin Institute of Control Sciences Academy of Sciences of the U.S.S.R., Moscow ABSTRACT This paper discusses three problems which are united not only by the common topic of research stated in thetitle, but also by a somewhat surprising interlacing of the methods and techniques used. In the first problem, an attempt is made to resolve a very unpleasant metaproblem arising in general choice theory: why theconditions of rationality are not really necessary or, in other words, why in every-day life we are quite satisfied with choice methods which are far from being ideal. The answer, substantiated by a number of results, is as follows: situations in which the choice function "misbehaves" are very seldom met in large presentations. the second problem, an overview of our studies is given on the problem of statistical propertiesIn of choice. One of themost astonishing phenomenon found when we deviate from scalar extremal choice functions is in stable multiplicity of choice. If our presentation is random, then a random number of alternatives is chosen in it. But how many? The answer isn't trival, and may be sought in many differentdirections. -
The Halász-Székely Barycenter
THE HALÁSZ–SZÉKELY BARYCENTER JAIRO BOCHI, GODOFREDO IOMMI, AND MARIO PONCE Abstract. We introduce a notion of barycenter of a probability measure re- lated to the symmetric mean of a collection of nonnegative real numbers. Our definition is inspired by the work of Halász and Székely, who in 1976 proved a law of large numbers for symmetric means. We study analytic properties of this Halász–Székely barycenter. We establish fundamental inequalities that relate the symmetric mean of a list of nonnegative real numbers with the barycenter of the measure uniformly supported on these points. As consequence, we go on to establish an ergodic theorem stating that the symmetric means of a se- quence of dynamical observations converges to the Halász–Székely barycenter of the corresponding distribution. 1. Introduction Means have fascinated man for a long time. Ancient Greeks knew the arith- metic, geometric, and harmonic means of two positive numbers (which they may have learned from the Babylonians); they also studied other types of means that can be defined using proportions: see [He, pp. 85–89]. Newton and Maclaurin en- countered the symmetric means (more about them later). Huygens introduced the notion of expected value and Jacob Bernoulli proved the first rigorous version of the law of large numbers: see [Mai, pp. 51, 73]. Gauss and Lagrange exploited the connection between the arithmetico-geometric mean and elliptic functions: see [BB]. Kolmogorov and other authors considered means from an axiomatic point of view and determined when a mean is arithmetic under a change of coordinates (i.e. quasiarithmetic): see [HLP, p. -
TOPIC 0 Introduction
TOPIC 0 Introduction 1 Review Course: Math 535 (http://www.math.wisc.edu/~roch/mmids/) - Mathematical Methods in Data Science (MMiDS) Author: Sebastien Roch (http://www.math.wisc.edu/~roch/), Department of Mathematics, University of Wisconsin-Madison Updated: Sep 21, 2020 Copyright: © 2020 Sebastien Roch We first review a few basic concepts. 1.1 Vectors and norms For a vector ⎡ 푥 ⎤ ⎢ 1 ⎥ 푥 ⎢ 2 ⎥ 푑 퐱 = ⎢ ⎥ ∈ ℝ ⎢ ⋮ ⎥ ⎣ 푥푑 ⎦ the Euclidean norm of 퐱 is defined as ‾‾푑‾‾‾‾ ‖퐱‖ = 푥2 = √퐱‾‾푇‾퐱‾ = ‾⟨퐱‾‾, ‾퐱‾⟩ 2 ∑ 푖 √ ⎷푖=1 푇 where 퐱 denotes the transpose of 퐱 (seen as a single-column matrix) and 푑 ⟨퐮, 퐯⟩ = 푢 푣 ∑ 푖 푖 푖=1 is the inner product (https://en.wikipedia.org/wiki/Inner_product_space) of 퐮 and 퐯. This is also known as the 2- norm. More generally, for 푝 ≥ 1, the 푝-norm (https://en.wikipedia.org/wiki/Lp_space#The_p- norm_in_countably_infinite_dimensions_and_ℓ_p_spaces) of 퐱 is given by 푑 1/푝 ‖퐱‖ = |푥 |푝 . 푝 (∑ 푖 ) 푖=1 Here (https://commons.wikimedia.org/wiki/File:Lp_space_animation.gif#/media/File:Lp_space_animation.gif) is a nice visualization of the unit ball, that is, the set {퐱 : ‖푥‖푝 ≤ 1}, under varying 푝. There exist many more norms. Formally: 푑 푑 Definition (Norm): A norm is a function ℓ from ℝ to ℝ+ that satisfies for all 푎 ∈ ℝ, 퐮, 퐯 ∈ ℝ (Homogeneity): ℓ(푎퐮) = |푎|ℓ(퐮) (Triangle inequality): ℓ(퐮 + 퐯) ≤ ℓ(퐮) + ℓ(퐯) (Point-separating): ℓ(푢) = 0 implies 퐮 = 0. ⊲ The triangle inequality for the 2-norm follows (https://en.wikipedia.org/wiki/Cauchy– Schwarz_inequality#Analysis) from the Cauchy–Schwarz inequality (https://en.wikipedia.org/wiki/Cauchy– Schwarz_inequality). -
Continuous Probability Distributions Continuous Probability Distributions – a Guide for Teachers (Years 11–12)
1 Supporting Australian Mathematics Project 2 3 4 5 6 12 11 7 10 8 9 A guide for teachers – Years 11 and 12 Probability and statistics: Module 21 Continuous probability distributions Continuous probability distributions – A guide for teachers (Years 11–12) Professor Ian Gordon, University of Melbourne Editor: Dr Jane Pitkethly, La Trobe University Illustrations and web design: Catherine Tan, Michael Shaw Full bibliographic details are available from Education Services Australia. Published by Education Services Australia PO Box 177 Carlton South Vic 3053 Australia Tel: (03) 9207 9600 Fax: (03) 9910 9800 Email: [email protected] Website: www.esa.edu.au © 2013 Education Services Australia Ltd, except where indicated otherwise. You may copy, distribute and adapt this material free of charge for non-commercial educational purposes, provided you retain all copyright notices and acknowledgements. This publication is funded by the Australian Government Department of Education, Employment and Workplace Relations. Supporting Australian Mathematics Project Australian Mathematical Sciences Institute Building 161 The University of Melbourne VIC 3010 Email: [email protected] Website: www.amsi.org.au Assumed knowledge ..................................... 4 Motivation ........................................... 4 Content ............................................. 5 Continuous random variables: basic ideas ....................... 5 Cumulative distribution functions ............................ 6 Probability density functions .............................. -
BACHELOR of COMMERCE (Hons)
GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY , D ELHI BACHELOR OF COMMERCE (Hons) BCOM 110- Business Statistics L-5 T/P-0 Credits-5 Objectives: The objective of this course is to familiarize students with the basic statistical tools used to summarize and analyze quantitative information for decision making. COURSE CONTENTS Unit I Lectures: 20 Statistical Data and Descriptive Statistics: Measures of Central Tendency: Mathematical averages including arithmetic mean, geometric mean and harmonic mean, properties and applications, positional averages, mode, median (and other partition values including quartiles, deciles, and percentile; Unit II Lectures: 15 Measures of variation: absolute and relative, range, quartile deviation, mean deviation, standard deviation, and their co-efficients, properties of standard deviation/variance; Moments: calculation and significance; Skewness, Kurtosis and Moments. Unit III Lectures: 15 Simple Correlation and Regression Analysis: Correlation Analysis, meaning of correlation simple, multiple and partial; linear and non-linear, Causation and correlation, Scatter diagram, Pearson co-efficient of correlation; calculation and properties, probable and standard errors, rank correlation; Simple Regression Analysis: Regression equations and estimation. Unit IV Lectures: 20 Index Numbers: Meaning and uses of index numbers, construction of index numbers, univariate and composite, aggregative and average of relatives – simple and weighted, tests of adequacy of index numbers, Base shifting, problems in the construction of index numbers. Text Books : 1. Levin, Richard and David S. Rubin. (2011), Statistics for Management. 7th Edition. PHI. 2. Gupta, S.P., and Gupta, Archana, (2009), Statistical Methods. Sultan Chand and Sons, New Delhi. Reference Books : 1. Berenson and Levine, (2008), Basic Business Statistics: Concepts and Applications. Prentice Hall. BUSINESS STATISTICS:PAPER CODE 110 Dr. -
Probability with Engineering Applications ECE 313 Course Notes
Probability with Engineering Applications ECE 313 Course Notes Bruce Hajek Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign January 2017 c 2017 by Bruce Hajek All rights reserved. Permission is hereby given to freely print and circulate copies of these notes so long as the notes are left intact and not reproduced for commercial purposes. Email to [email protected], pointing out errors or hard to understand passages or providing comments, is welcome. Contents 1 Foundations 3 1.1 Embracing uncertainty . .3 1.2 Axioms of probability . .6 1.3 Calculating the size of various sets . 10 1.4 Probability experiments with equally likely outcomes . 13 1.5 Sample spaces with infinite cardinality . 15 1.6 Short Answer Questions . 20 1.7 Problems . 21 2 Discrete-type random variables 25 2.1 Random variables and probability mass functions . 25 2.2 The mean and variance of a random variable . 27 2.3 Conditional probabilities . 32 2.4 Independence and the binomial distribution . 34 2.4.1 Mutually independent events . 34 2.4.2 Independent random variables (of discrete-type) . 36 2.4.3 Bernoulli distribution . 37 2.4.4 Binomial distribution . 38 2.5 Geometric distribution . 41 2.6 Bernoulli process and the negative binomial distribution . 43 2.7 The Poisson distribution{a limit of binomial distributions . 45 2.8 Maximum likelihood parameter estimation . 47 2.9 Markov and Chebychev inequalities and confidence intervals . 50 2.10 The law of total probability, and Bayes formula . 53 2.11 Binary hypothesis testing with discrete-type observations . -
The Interpretation of the Probable Error and the Coefficient of Correlation
THE UNIVERSITY OF ILLINOIS LIBRARY 370 IL6 . No. 26-34 sssftrsss^"" Illinois Library University of L161—H41 Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/interpretationof32odel BULLETIN NO. 32 BUREAU OF EDUCATIONAL RESEARCH COLLEGE OF EDUCATION THE INTERPRETATION OF THE PROBABLE ERROR AND THE COEFFICIENT OF CORRELATION By Charles W. Odell Assistant Director, Bureau of Educational Research ( (Hi THE UBMM Of MAR 14 1927 HKivERsrrv w Illinois PRICE 50 CENTS PUBLISHED BY THE UNIVERSITY OF ILLINOIS. URBANA 1926 370 lit TABLE OF CONTENTS PAGE Preface 5 i Chapter I. Introduction 7 Chapter II. The Probable Error 9 .Chapter III. The Coefficient of Correlation 33 PREFACE Graduate students and other persons contemplating ed- ucational research frequently ask concerning the need for training in statistical procedures. They usually have in mind training in the technique of making tabulations and calcula- tions. This, as Doctor Odell points out, is only one phase, and probably not the most important phase, of needed train- ing in statistical methods. The interpretation of the results of calculation has not received sufficient attention by the authors of texts in this field. The following discussion of two derived measures, the probable error and the coefficient of correlation, is offered as a contribution to the technique of educational research. It deals with the problems of the reader of reports of research, as well as those of original investigators. The tabulating of objective data and the mak- ing of calculations from the tabulations may be and fre- quently is a tedious task, but it is primarily one of routine. -
HARMONIC ANALYSIS 1. Maximal Function for a Locally Integrable
HARMONIC ANALYSIS PIOTR HAJLASZ 1. Maximal function 1 n For a locally integrable function f 2 Lloc(R ) the Hardy-Littlewood max- imal function is defined by Z n Mf(x) = sup jf(y)j dy; x 2 R : r>0 B(x;r) The operator M is not linear but it is subadditive. We say that an operator T from a space of measurable functions into a space of measurable functions is subadditive if jT (f1 + f2)(x)j ≤ jT f1(x)j + jT f2(x)j a.e. and jT (kf)(x)j = jkjjT f(x)j for k 2 C. The following integrability result, known also as the maximal theorem, plays a fundamental role in many areas of mathematical analysis. p n Theorem 1.1 (Hardy-Littlewood-Wiener). If f 2 L (R ), 1 ≤ p ≤ 1, then Mf < 1 a.e. Moreover 1 n (a) For f 2 L (R ) 5n Z (1.1) jfx : Mf(x) > tgj ≤ jfj for all t > 0. t Rn p n p n (b) If f 2 L (R ), 1 < p ≤ 1, then Mf 2 L (R ) and p 1=p kMfk ≤ 2 · 5n=p kfk for 1 < p < 1, p p − 1 p kMfk1 ≤ kfk1 : Date: March 28, 2012. 1 2 PIOTR HAJLASZ The estimate (1.1) is called weak type estimate. 1 n 1 n Note that if f 2 L (R ) is a nonzero function, then Mf 62 L (R ). Indeed, R if λ = B(0;R) jfj > 0, then for jxj > R we have Z λ Mf(x) ≥ jfj ≥ n ; B(x;R+jxj) !n(R + jxj) n and the function on the right hand side is not integrable on R . -
Probabilistic Models for Shapes As Continuous Curves
J Math Imaging Vis (2009) 33: 39–65 DOI 10.1007/s10851-008-0104-3 Probabilistic Models for Shapes as Continuous Curves Jeong-Gyoo Kim · J. Alison Noble · J. Michael Brady Published online: 23 July 2008 © Springer Science+Business Media, LLC 2008 Abstract We develop new shape models by defining a stan- 1 Introduction dard shape from which we can explain shape deformation and variability. Currently, planar shapes are modelled using Our work contributes to shape analysis, particularly in med- a function space, which is applied to data extracted from ical image analysis, by defining a standard representation images. We regard a shape as a continuous curve and identi- of shape. Specifically we develop new mathematical mod- fied on the Wiener measure space whereas previous methods els of planar shapes. Our aim is to develop a standard rep- have primarily used sparse sets of landmarks expressed in a resentation of anatomical or biological shapes that can be Euclidean space. The average of a sample set of shapes is used to explain shape variations, whether in normal subjects defined using measurable functions which treat the Wiener or abnormalities due, for example, to disease. In addition, measure as varying Gaussians. Various types of invariance we propose a quasi-score that measures global deformation of our formulation of an average are examined in regard to and provides a generic way to compare statistical methods practical applications of it. The average is examined with of shape analysis. relation to a Fréchet mean in order to establish its valid- As D’Arcy Thompson pointed in [50], there is an impor- ity. -
Two Notes on Financial Mathematics
TWO NOTES ON FINANCIAL MATHEMATICS Daniel Dufresne Centre for Actuarial Studies University of Melbourne The two notes which follow are aimed at students of financial mathematics or actuarial science. The first one, “A note on correlation in mean variance portfolio theory” is an elementary discussion of how negative correlation coefficients can be, given any set of n random variables. The second one, “Two essential formulas in actuarial science and financial mathematics,” gives a more or less self-contained introduction to Jensen’s inequality and to another formula, which I have decided to call the “survival function expectation formula.” The latter allows one to write the expectation of a function of a random variable as an integral involving the complement of its cumulative distribution function. A NOTE ON CORRELATION IN MEAN VARIANCE PORTFOLIO THEORY Daniel Dufresne Centre for Actuarial Studies University of Melbourne Abstract This note is aimed at students and others interested in mean variance portfolio theory. Negative correlations are desirable in portfolio selection, as they decrease risk. It is shown that there is a mathematical limit to how negative correlations can be among a given number of securities. In particular, in an “average correlation model” (where the correlation coefficient between different securities is constant) the correlation has to be at least as large as −1/(n − 1), n being the number of securities. Keywords: Mean-variance portfolio theory; average correlation mod- els 1. INTRODUCTION One of the more technical points encountered when teaching the basics of mean variance portfolio theory is the restrictions which apply on the covariance matrix of the securities’ returns. -
Revision of All Topics
Revision Of All Topics Quantitative Aptitude & Business Statistics Def:Measures of Central Tendency • A single expression representing the whole group,is selected which may convey a fairly adequate idea about the whole group. • This single expression is known as average. Quantitative Aptituide & Business 2 Statistics: Revision Of All Toics Averages are central part of distribution and, therefore ,they are also called measures of central tendency. Quantitative Aptituide & Business 3 Statistics: Revision Of All Toics Types of Measures central tendency: There are five types ,namely 1.Arithmetic Mean (A.M) 2.Median 3.Mode 4.Geometric Mean (G.M) 5.Harmonic Mean (H.M) Quantitative Aptituide & Business 4 Statistics: Revision Of All Toics Arithmetic Mean (A.M) The most commonly used measure of central tendency. When people ask about the “average" of a group of scores, they usually are referring to the mean. Quantitative Aptituide & Business 5 Statistics: Revision Of All Toics • The arithmetic mean is simply dividing the sum of variables by the total number of observations. Quantitative Aptituide & Business 6 Statistics: Revision Of All Toics Arithmetic Mean for Ungrouped data is given by n ∑ xi + + + + X = x1 x2 x3 ...... xn = i=1 n n Quantitative Aptituide & Business 7 Statistics: Revision Of All Toics Arithmetic Mean for Discrete Series n ∑ fi xi f1x1 + f 2 x2 + f 3 x3 +......+ f n xn i=1 X = = n f1 + f2 + f3 + .... + fn ∑ fi i=1 Quantitative Aptituide & Business 8 Statistics: Revision Of All Toics Arithmetic Mean for Continuous Series fd X = A + ∑ ×C N Quantitative Aptituide & Business 9 Statistics: Revision Of All Toics Weighted Arithmetic Mean • The term ‘ weight’ stands for the relative importance of the different items of the series.