Introduction &Functional Anatomy Of

Total Page:16

File Type:pdf, Size:1020Kb

Introduction &Functional Anatomy Of INTRODUCTION &FUNCTIONAL ANATOMY OF GIT DR RASHMI MISHRA INTRODUCTION: Digestion is defined as the process by which food is broken down into simple chemical substances that can be absorbed and used as nutrient by the body. Most of the substances in the diet cannot be utilized as such. These substances must be broken into smaller particles so that they can be broken into smaller particles and can be absorbed in to blood and distributed to various parts of the body for utilization. The digestive system is responsible for these functions. FUNCTIONS OF GIT SYSYTEM 1. Digestive functions. The major function of the gastrointestinal system is to transfer nutrients, minerals and water from external environment to the circulating body fluids for distribution to all the body tissues. This function is accomplished by following processes: a. Ingestion of food. -It involves Placing the food into the mouth. -Most of the foodstuffs are taken into mouth as large particles mainly made of carbohydrates, proteins and fats. -Chewing the food into smaller pieces is carried out with the help of teeth and jaw muscles. This process is called mastication. - Lubrication and moistening of the food is done by the saliva. - Swallowing the food (deglutition). It refers to pushing the bolus of food from mouth into the stomach. It is accomplished in three phases: oral phase, pharyngeal phase and oesophageal phase. CONTD…. 2. Digestion of food. It refers to the conversion of complex insoluble large organic molecules (food) into soluble, smaller and simpler molecules which can be easily absorbed. Digestion of food is accomplished with the help of hydrochloric acid and digestive juices containing various enzymes. 3. Absorption of digested food. Absorption of food refers to the movement of digested molecules from the lumen of alimentary canal across its epithelial lining to the blood or lymph. The absorbed water, electrolytes and nutrients are carried away to the various tissues by the circulating blood. CONTD… 4. Egestion i.e. excretion of unwanted undigested food by the alimentary canal in the form of faeces is called defaecation NON-DIGESTIVE FUNCTIONS The main non-digestive function of the gastrointestinal system is its role as an immune system. The lymphoid tissue in the tonsils, adenoids and Peyer’s patches constitute an important part of body’s immune system. These provide both the humoral and cellular immunity, which is especially effective against the micro-organisms trying to enter the body from the alimentary canal. FUNCTIONAL ANATOMY OF THE DIGESTIVE SYSTEM: Digestive system is made up of gastrointestinal tract(GI TRACT) OR alimentary canal and accessory organs, which help in the process of digestion and absorption. GI tract is a tubular structure extending from the mouth up to the anus with a length of about 30 feet. It opens to the external environment on both sides. GI tract is formed by two types of organs: 1- PRIMARY DIGESTIVE ORGANS. 2- ACCESSORY DIGESTIVE ORGANS. 1- PRIMARY DIGESTIVE ORGANS: These are the organs where actual digestion takes place. These organs are: 1- Mouth 2-Pharynx 3-Esophagus 4-Stomach 5-Small intestine 6-Large intestine 2- ACCESSORY DIGESTIVE ORGANS: These are the organs which help the primary digestive organs in the process of digestion. These organs are: 1- Teeth 2-Tongue 3- Salivary glands 4- Exocrine part of pancreas 5- Liver 6- Gallbladder ORAL CAVITY HISTOLOGY: In general wall of GI tract is formed by four layers which are from inside out: 1- MUCUS LAYER 2-SUBMUCUS LAYER 3-MUSCULAR LAYER 4- SEROUS OR FIBROUS LAYER 1- MUCUS LAYER: It is the innermost layer of the wall of GI tract. It is also called gastrointestinal mucosa or mucous membrane. It faces the cavity of GI tract. The mucosa has three layers of structures: 1- Epithelial lining which is in contact with content of GI tract. 2- Lamina propria formed by connective tissue. 3- Muscularis mucosa formed by the smooth muscle fibers. 2- SUBMUCUS LAYER: This is present in all part of GI tract except mouth and pharynx. This layer contains loose collagen fiber, elastic fiber, reticular fibers and few cells of connective tissue. Blood vessels, lymphatic vessels and nerve plexus are present in this layer. 3- MUSCULAR LAYER This layer in lips, cheeks and wall of pharynx have skeletal muscle fiber. The esophagus have both skeletal and smooth muscle fibers. Wall of stomach and intestine is formed by smooth muscle fiber. The smooth muscle fiber in stomach are arranged in three layers: 1- INNER OBLIQUE LAYER. 2-MIDDLE CIRCULAR LAYER 3- OUTER LONGITUDINAL LAYER. The smooth muscle fiber in the intestine are arranged in two layers: 1- INNER CIRCULAR LAYER. 2- OUTER LONGITUDINAL LAYER. 4- serous or fibrous layer: Outermost layer of the wall of GI tract is either serous or fibrous in nature. The serous layer is formed by connective tissue and mesoepithelial cells. It is also called serosa or serous membrane. It covers stomach, small intestine and large intestine. The fibrous layer is otherwise called fibrosa. It is formed by connective tissue. It covers pharynx and esophagus. NERVE SUPPLY TO G.I.T GIT receive two type of nerve supply 1. Intrinsic 1. extrinsic Intrinsic nerve supply It is present within the wall of GI tract from esophagus to anus Nerve fibers are interconnected & form 2 major networks 1. Auerbach’s plexus 2. Meissner’s plexus These nerve plexus contain cell bodies,processes of nerve cells & receptors Receptors in the G.I.T are stretch receptors & chemoreceptors. Intrinsic nerve supply is controlled by the extrinsic nerve supply. AUERBACH’S PLEXUS It is also known as myenteric nerve plexus. Present b/ inner circular muscle layer & the outer longitudinal muscle layer FUNCTION OF MYENTERIC PLEXUS It regulate movements of G.I.T Some fibers accelerate movement by secreting excitatory neurotansmitters such as Ach, serotonin, substance P Some fiber inhibit by secreting inhibitory neurotransmitters :- vasoactive intestinal polypeptide(VIP),neurotensin MEISSNER’S NERVE PLEXUS Also known as submucus nerve plexus. It is present b/w muscular layer & submucosal layer of G.I.T The function of these plexus is to regulate secretory function of G.I.T These nerve fibers cause constriction of blood vessels of GI tract. EXTRINSIC NERVE SUPPLY They control the enteric nervous system They are controlled by ANS. Both sympathethic & parasympathetic divisions of ANS innervate the GIT Sympathetic nerve fibers Preganglionic sympathetic nerve fibers to GI tract arise from lateral horns of spinal cord b/w 5th thoracic & second lumbar segments (T5-L2). Funtions of sympathetic nerve fibers Sympathetic nerve fibers inhibit the movement & decrease the secretions of GI tract by secreting the neurotransmitter noradrenaline. It also cause constriction of sphincters. Parasympathetic nerve fibers It pass through the cranial & sacral nerves. The pre & postganglionic parasympathetic nerve fibers to mouth & salivary glands pass through facial and glossopharyngeal nerves. Nerves from esophagus, stomach, small intestine & upper part of the large intestine pass through vagus nerve. The preganglionic nerve fibers to lower part of L.intestine arise from 2nd,3rd,4th sacral segments (S1,S2 & S3) of spinal cord & pass through pelvic nerve. All preganglionic nerve fiber synapse with postganglionic nerve fibers in the myenteric & submucus plexus. FUNCTIONS Parasympathetic nerve fibers accelerate movements & increase the secretions of GIT The neurotransmitter secreted by the parasympathetic nerve fibers is Ach. THANK YOU.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • On the So-Called Pharyngeal Gland-Cells of Earthworms. by J
    PHARYNOEAL GLAND-CELLS OF EARTHWORMS. 253 On the So-called Pharyngeal Gland-cells of Earthworms. By J. Stephenson, D.Sc, M.B., Lieutenant-Colonel, Indian Medical Service; Professor of Zoology, Government College, Lahore. With Plate 19. CONTENTS. PAGE 1. HISTORICAL ...... 253 2. MATERIAL AND METHODS .... 260 3. PHEEETIMA POSTHUMA .... 261 4. PHERETIMA HETEROCH,S:TA , 265 5. PHERETIMA HAWAYANA .... 267 6. LUMBRICID.*: . ... 269 7. THE APPEARANCES IN YOUNG SPECIMENS . 274 8. THE CELLS IN THE LUMBRICID EMBRYO . , 279 9. FUNCTION OF THE CELLS . .'281 10. SUMMARY . .283 11. REFERENCES TO LITERATURE .... 284 12. EXPLANATION OF FIGURES .... 2S5 HISTOIUCAL. SUCCEEDING the buccal cavity in all earthworms is a swollen portion of the alimentary tube, the pharynx. The usual description of this portion of the tube in Lumbricus may be given in the words of Parker and Haswell (7): the "buccal cavity ... is followel by a much larger thick-walled, rounded chamber, the pharynx. From the wall VOL. 62, PART 3. NEW SERIES. 19 254 J. STEPJdENSON. of the pharynx there run outwards to the body-wall a number of radially arranged bundles of muscular fibres which, when they contract, draw the pharynx backwards, and at the same time dilate it." One of the constituents of this pharyngeal thickening, not mentioned in the ordinary descriptions of the earthworm, is nevertheless a prominent feature, easily visible under tlie lens in the ordinary dissection, and immediately obvious, owing to its staining properties, in sections through the region where it occurs. This constituent is a cellular mass which forms soft white projecting lobules on the dorsal and lateral aspects of the pharynx; the lobules surround the muscular strands which issue from the pharynx, and in addition, the cells of the mass penetrate inwards between the interlacing muscular bundles of the thick dorsal pharyn- geal wall in the direction of the lumen of the canal.
    [Show full text]
  • 48 Anal Canal
    Anal Canal The rectum is a relatively straight continuation of the colon about 12 cm in length. Three internal transverse rectal valves (of Houston) occur in the distal rectum. Infoldings of the submucosa and the inner circular layer of the muscularis externa form these permanent sickle- shaped structures. The valves function in the separation of flatus from the developing fecal mass. The mucosa of the first part of the rectum is similar to that of the colon except that the intestinal glands are slightly longer and the lining epithelium is composed primarily of goblet cells. The distal 2 to 3 cm of the rectum forms the anal canal, which ends at the anus. Immediately proximal to the pectinate line, the intestinal glands become shorter and then disappear. At the pectinate line, the simple columnar intestinal epithelium makes an abrupt transition to noncornified stratified squamous epithelium. After a short transition, the noncornified stratified squamous epithelium becomes continuous with the keratinized stratified squamous epithelium of the skin at the level of the external anal sphincter. Beneath the epithelium of this region are simple tubular apocrine sweat glands, the circumanal glands. Proximal to the pectinate line, the mucosa of the anal canal forms large longitudinal folds called rectal columns (of Morgagni). The distal ends of the rectal columns are united by transverse mucosal folds, the anal valves. The recess above each valve forms a small anal sinus. It is at the level of the anal valves that the muscularis mucosae becomes discontinuous and then disappears. The submucosa of the anal canal contains numerous veins that form a large hemorrhoidal plexus.
    [Show full text]
  • The Digestive System
    69 chapter four THE DIGESTIVE SYSTEM THE DIGESTIVE SYSTEM The digestive system is structurally divided into two main parts: a long, winding tube that carries food through its length, and a series of supportive organs outside of the tube. The long tube is called the gastrointestinal (GI) tract. The GI tract extends from the mouth to the anus, and consists of the mouth, or oral cavity, the pharynx, the esophagus, the stomach, the small intestine, and the large intes- tine. It is here that the functions of mechanical digestion, chemical digestion, absorption of nutrients and water, and release of solid waste material take place. The supportive organs that lie outside the GI tract are known as accessory organs, and include the teeth, salivary glands, liver, gallbladder, and pancreas. Because most organs of the digestive system lie within body cavities, you will perform a dissection procedure that exposes the cavities before you begin identifying individual organs. You will also observe the cavities and their associated membranes before proceeding with your study of the digestive system. EXPOSING THE BODY CAVITIES should feel like the wall of a stretched balloon. With your skinned cat on its dorsal side, examine the cutting lines shown in Figure 4.1 and plan 2. Extend the cut laterally in both direc- out your dissection. Note that the numbers tions, roughly 4 inches, still working with indicate the sequence of the cutting procedure. your scissors. Cut in a curved pattern as Palpate the long, bony sternum and the softer, shown in Figure 4.1, which follows the cartilaginous xiphoid process to find the ventral contour of the diaphragm.
    [Show full text]
  • Latin Language and Medical Terminology
    ODESSA NATIONAL MEDICAL UNIVERSITY Department of foreign languages Latin Language and medical terminology TextbookONMedU for 1st year students of medicine and dentistry Odessa 2018 Authors: Liubov Netrebchuk, Tamara Skuratova, Liubov Morar, Anastasiya Tsiba, Yelena Chaika ONMedU This manual is meant for foreign students studying the course “Latin and Medical Terminology” at Medical Faculty and Dentistry Faculty (the language of instruction: English). 3 Preface Textbook “Latin and Medical Terminology” is designed to be a comprehensive textbook covering the entire curriculum for medical students in this subject. The course “Latin and Medical Terminology” is a two-semester course that introduces students to the Latin and Greek medical terms that are commonly used in Medicine. The aim of the two-semester course is to achieve an active command of basic grammatical phenomena and rules with a special stress on the system of the language and on the specific character of medical terminology and promote further work with it. The textbook consists of three basic parts: 1. Anatomical Terminology: The primary rank is for anatomical nomenclature whose international version remains Latin in the full extent. Anatomical nomenclature is produced on base of the Latin language. Latin as a dead language does not develop and does not belong to any country or nation. It has a number of advantages that classical languages offer, its constancy, international character and neutrality. 2. Clinical Terminology: Clinical terminology represents a very interesting part of the Latin language. Many clinical terms came to English from Latin and people are used to their meanings and do not consider about their origin.
    [Show full text]
  • Anatomy and Physiology of the Bowel and Urinary Systems
    PMS1 1/26/05 10:52 AM Page 1 Anatomy and Physiology of the Bowel and 1 Urinary Systems Anthony McGrath INTRODUCTION The aim of this chapter is to increase the reader’s under- standing of the small and large bowel and urinary system as this will enhance their knowledge base and allow them to apply this knowledge when caring for patients who are to undergo stoma formation. LEARNING OBJECTIVES By the end of this chapter the reader will have: ❏ an understanding of the anatomy and physiology of the small and large bowel; ❏ an understanding of the anatomy and physiology of the urinary system. GASTROINTESTINAL TRACT The gastrointestinal (GI) tract (Fig. 1.1) consists of the mouth, pharynx, oesophagus, stomach, duodenum, jejunum, small and large intestines, rectum and anal canal. It is a muscular tube, approximately 9m in length, and it is controlled by the autonomic nervous system. However, while giving a brief outline of the whole system and its makeup, this chapter will focus on the anatomy and physiology of the small and large bowel and the urinary system. The GI tract is responsible for the breakdown, digestion and absorption of food, and the removal of solid waste in the form of faeces from the body. As food is eaten, it passes through each section of the GI tract and is subjected to the action of various 1 PMS1 1/26/05 10:52 AM Page 2 1 Anatomy and Physiology of the Bowel and Urinary Systems Fig. 1.1 The digestive system. Reproduced with kind permission of Coloplast Ltd from An Introduction to Stoma Care 2000 2 PMS1 1/26/05 10:52 AM Page 3 Gastrointestinal Tract 1 digestive fluids and enzymes (Lehne 1998).
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • In the Guinea-Pig*
    J. Anat. (1983), 136, 1, pp. 97-109 97 With 9 figures Printed in Great Britain Innervation of the gall bladder and biliary pathways in the guinea-pig* WEN-QIN CAIt AND GIORGIO GABELLA Department of Anatomy and Embryology, University College London, Gower Street, London WC1E 6BT (Accepted 22 March 1982) INTRODUCTION Several authors have carried out neurohistological studies of the gall bladder and biliary pathways in mammals, using silver impregnation and methylene blue tech- niques (reviewed in Baumgarten & Lange, 1969; Solovieva, 1980). More recently, further studies have been published based on histochemical techniques for cholin- ergic and adrenergic nerves (Sutherland, 1966; Grapulin, Ottolenghi, Fagiolo & Vecellio, 1968; Sisto & Robecchi, 1968; Baumgarten & Lange, 1969; Mori, Azuma & Fujiwara, 1971; Tansy, Innes, Martin & Kendall, 1974; Kyosola, 1974, 1976, 1977, 1978; Kyosola & Rechardt, 1973; Kyosola & Penttila, 1977; Wahlin, Axelson, Schiebler & Winckler, 1977; Davison, Al-Hassani, Crowe & Burnstock, 1978; Onda & Miyazaki, 1980). The results presented by different authors are somewhat contradictory. For instance, in the dog, Grapulin et al. (1968) observed a rich supply of adrenergic nerves to different layers of the biliary duct, including the region of the papilla, whereas Tansy et al. (1974) failed to demonstrate histochemically an adrenergic nerve supply to this region (reviewed by Kyosola, 1975). Baumgarten & Lange (1969) demonstrated extrinsic adrenergic innervation of the smooth muscula- ture in the extrahepatic biliary duct system in the cat and the rhesus monkey but not in the guinea-pig. However, Mori et al. (1971) found a rich plexus of adrernergic fibres in the musculature of the gall bladder and the choledochoduodenal junction in the guinea-pig and rabbit.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and Main Principals Of
    Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and main principals of anatomical, pharmaceutical and clinical terminology (Student's book) Simferopol, 2017 Contents No. Topics Page 1. UNIT I. Latin language history. Phonetics. Alphabet. Vowels and consonants classification. Diphthongs. Digraphs. Letter combinations. 4-13 Syllable shortness and longitude. Stress rules. 2. UNIT II. Grammatical noun categories, declension characteristics, noun 14-25 dictionary forms, determination of the noun stems, nominative and genitive cases and their significance in terms formation. I-st noun declension. 3. UNIT III. Adjectives and its grammatical categories. Classes of adjectives. Adjective entries in dictionaries. Adjectives of the I-st group. Gender 26-36 endings, stem-determining. 4. UNIT IV. Adjectives of the 2-nd group. Morphological characteristics of two- and multi-word anatomical terms. Syntax of two- and multi-word 37-49 anatomical terms. Nouns of the 2nd declension 5. UNIT V. General characteristic of the nouns of the 3rd declension. Parisyllabic and imparisyllabic nouns. Types of stems of the nouns of the 50-58 3rd declension and their peculiarities. 3rd declension nouns in combination with agreed and non-agreed attributes 6. UNIT VI. Peculiarities of 3rd declension nouns of masculine, feminine and neuter genders. Muscle names referring to their functions. Exceptions to the 59-71 gender rule of 3rd declension nouns for all three genders 7. UNIT VII. 1st, 2nd and 3rd declension nouns in combination with II class adjectives. Present Participle and its declension. Anatomical terms 72-81 consisting of nouns and participles 8. UNIT VIII. Nouns of the 4th and 5th declensions and their combination with 82-89 adjectives 9.
    [Show full text]
  • A Clinical Study of Metastatic Colorectal Cancer Based on Network
    www.nature.com/scientificreports OPEN Molecular targets of Chinese herbs: a clinical study of metastatic colorectal cancer based on network Received: 6 November 2017 Accepted: 23 April 2018 pharmacology Published: xx xx xxxx Hongxu Zhu1, Jian Hao1, Yangyang Niu2, Dan Liu1, Dan Chen3 & Xiongzhi Wu4 Increasing evidence has shown that Chinese herbal medicine (CHM) has promising therapeutic efects in colorectal cancer (CRC); however, the active ingredients and potential targets remain unclear. In this study, we aimed to investigate the relative molecular targets of the Chinese herbs that have been found efective in treating metastatic CRC (mCRC) based on clinical data and network pharmacology. In multivariate analysis CHM resulted an independent prognostic factor. The hazard ratio was 0.103 (95% confdence interval = 0.064–0.164; P < 0.001). Compared with the non-CHM group, the median survival time of the CHM group was also improved (40 versus 12 months; P < 0.001). Eighteen out of 295 herbs showed signifcant correlation with survival results (P < 0.05). Bioinformatics analysis indicated that the 18 herbs realize anti-CRC activity mainly through suppressing the proliferative activity of ERBB2, peroxisome proliferator-activated receptor gamma, and retinoid X receptor, suppressing angiogenesis via inhibition of VEGFR and VEGFA expression, inhibiting the phosphatidylinositol-3-kinase/AKT1 signaling pathway directly through SRC and AKT1, and reducing tumor necrosis factor-induced infammation. Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and the third leading cause of cancer-related deaths worldwide1. Approximately 20–25% of the patients have distant metastases at the time of diagnosis; in addition, surgery becomes non-benefcial in a large proportion of these patients because of the inconspicuous and nonspecifc early symptoms2–5.
    [Show full text]
  • A HISTOLOGICAL STUDY of HUMAN FOETAL GALLBLADDER Kalpana Thounaojam*1, Ashihe Kaini Pfoze 1, N
    International Journal of Anatomy and Research, Int J Anat Res 2017, Vol 5(4.3):4648-53. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2017.427 A HISTOLOGICAL STUDY OF HUMAN FOETAL GALLBLADDER Kalpana Thounaojam*1, Ashihe Kaini Pfoze 1, N. Saratchandra Singh 2, Y. Ibochouba Singh 2. *1Associate Professor, Department of Anatomy, Jawaharlal Nehru Institute of Medical Sciences (JNIMS), Imphal, Manipur, India 2 Professor, Department of Anatomy, Regional Institute of Medical Sciences (RIMS), Imphal, Manipur, India ABSTRACT Background: The wall of human gallbladder is composed of three layers: mucous membrane(mucosa), fibromuscular layer, adventitia (and serosa). Heterotopic tissues in the gallbladder include liver parenchymal nodules suspended in gallbladder by a mesentery, gastric mucosa and pancreatic tissue. There are not many literature on the histological development of human foetal gallbladder. The study was aimed at conducting an utmost effort on analyzing the histological layers of human foetal gallbladder at different gestational ages. Materials and Methods: 100 fresh fetuses, of different age groups varying from 15 weeks to 40 weeks which are products of terminated pregnancy under Medical Termination of Pregnancy (MTP) Act of India,1971 and stillbirths are obtained from the Department of Obstetrics and Gynaecology, Regional Institute of Medical Sciences,Imphal. The histology of foetal gallbladder are analysed in the present study by staining the sections prepared with haematoxylin and eosin, Van Gieson’s, Masson’s Trichrome and Verhoeff’s haematoxylin elastic tissue stains. Result: In the present study, three histological layers of gallbladder viz., mucosa, fibromuscular layer and adventitia(and serosa) can be clearly demarcated from 18-week old foetuses onwards.
    [Show full text]