Computational Modeling of Fire Safety in Metro-Stations
Total Page:16
File Type:pdf, Size:1020Kb
COMPUTATIONAL MODELING OF FIRE SAFETY IN METRO-STATIONS By Philip McKeen Bachelor of Architectural Science, Ryerson University, 2009 A thesis Presented to Ryerson University In partial fulfillment of the Requirements for the degree of Master of Applied Science In the Program of Building Science Toronto, Ontario, Canada, 2016 © Philip McKeen 2016 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public. ii COMPUTATIONAL MODELING OF FIRE SAFETY IN METRO-STATIONS Philip McKeen Masters of Applied Science in Building Science, 2016 Ryerson University, Toronto Abstract This research investigates and attempts to quantify the hazards associated with fire in metro- stations. The use of numerical simulations for the analysis of fire safety within metro-stations allows for the prediction and analysis of hazards within the built environment. Such approaches form the growing basis of performance based design (PBD), which can optimize design solutions. The simulations utilize Fire Dynamics Simulator (FDS), a Computational Fluid Dynamics (CFD) model and Pathfinder, an evacuation modeling software. The safety of underground metro-stations is analyzed through the simulation of smoke spread and egress modelling. CFD models of TTC’s Union Station and TransLink’s Yaletown Station are developed to allow for simulations of smoke spread scenarios. These models are evaluated in regards to the preservation of tenability and influence on the Available Safe Egress Time (ASET). The egress of metro-stations is modelled and analyzed to determine the Required Safe Egress Time (RSET). iii Acknowledgements The development of this research was made possible through support from friends, faculty and family. Tremendous assistance was provided by Dr. Ramani Ramakrishnan of Ryerson University, who provided access to powerful computer processors. This allowed for detailed simulations which would otherwise have been impractical. I would like to extend thanks to my supervisor, Dr. Zaiyi Liao for his tremendous support and to the faculty of the graduate program in building science at Ryerson University. A noted thanks to the developers of FDS, the National Institute of Standards and Technology (NIST) and VTT Technical Research Centre of Finland. The availability of this software made this research possible. Many thanks are given to Thunderhead Engineering, whom provided educational licenses for PyroSim and Pathfinder software which proved extremely valuable. The research for fire simulation of polyether polyurethane foam (see Appendix A) was reliant on experimental data provided by the National Research Council of Canada (NRC). The sharing of information and strategies in numerical simulations were critiqued through The Google Discussion Group for Fire Dynamics Simulator and Dr. Kuldeep Prasad of NIST amongst others. iv Table of Contents Abstract ......................................................................................................................................... iii List of Tables ................................................................................................................................. x List of Figures ............................................................................................................................... xi Nomenclature ............................................................................................................................ xvii Abbreviations ........................................................................................................................... xviii Chapter 1. Introduction ............................................................................................................... 1 1.1 Objectives and Methodology ............................................................................................. 2 1.2 Thesis Structure ................................................................................................................. 3 Chapter 2. Metro-Station Analysis .............................................................................................. 5 2.1 Metro-Station Fires ............................................................................................................ 5 1987 King's Cross fire ......................................................................................................... 5 1995 Baku Metro Azerbaijan .............................................................................................. 5 Daegu, Korea Subway Fire metro train fire, Korea, 2003 .................................................. 5 2.2 Metro-station design requirements .................................................................................... 6 2.3 FDS in Performance Based Design ................................................................................... 7 2.4 Determining the Design Fire Size for Simulations ............................................................ 9 2.5 Analysis of Ventilation .................................................................................................... 14 2.6 Analysis of Tenability ..................................................................................................... 20 v 2.6.1 Smoke Spread Simulation Procedure ........................................................................... 23 Chapter 3. Smoke Spread Analysis: TTC’s Union Station Platform ........................................ 24 3.1 Design Fire ...................................................................................................................... 24 3.2 Analysis & Modelling of TTC’s Union Station Platform ............................................... 25 3.3 Developing the Model ..................................................................................................... 27 3.4 Simulation Scenarios for Union Station .......................................................................... 28 3.5 Natural Ventilation .......................................................................................................... 30 3.6 “Pull” Strategy ................................................................................................................. 30 3.7 “Pull-Pull” Strategy ......................................................................................................... 30 3.8 “Push-Pull” Strategy ........................................................................................................ 31 3.9 Pressurization Strategies .................................................................................................. 31 3.10 Sensitivity Analysis ....................................................................................................... 32 Simulation Results: ........................................................................................................... 33 Sensor Data Analysis ........................................................................................................ 33 3.11 Graphical Results of Smoke Spread .............................................................................. 34 Simulation T1: Natural Ventilation .................................................................................. 34 Simulation T2: “Pull” Strategy, Single Exhaust at 80m3/s (E80s) ................................... 35 Simulation T3: “Pull” Strategy, Exhaust at 160m3/s (E160) ............................................ 35 Simulation T4: “Pull” Strategy, Exhaust at 240m3/s (E240) ............................................ 35 Simulation T5: “Pull-Pull” Strategy, Exhaust 160 m3/s on east and west (E160 | E160) . 36 vi Simulation T6: “Push-Pull” Strategy, Supply 160 m3/s on east and exhaust 160 m3/s on west (S160 | E160) ............................................................................................................ 37 3.12 Analysis of tenability on Platform ................................................................................. 38 Platform Visibility ............................................................................................................ 38 Platform Temperature ....................................................................................................... 39 3.13 Analysis of Tenability in Stairwells .............................................................................. 42 Zone 1-B ........................................................................................................................... 42 Zone 2-B ........................................................................................................................... 42 Smoke movement across the platform .............................................................................. 43 Pull Strategy (T2, T3, T4) ................................................................................................. 43 Pull-Pull Strategy (T5) ...................................................................................................... 44 Push-Pull