Echo-Chambers and Positive Feedback Loops: the Complex Nature of Echoing Voices on the Internet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is a Complex Adaptive System?
PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006). -
Across the Universe? a Comparative Analysis of Violent Behavior And
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Across the Universe? A Comparative Analysis of Violent Behavior and Radicalization Across Three Offender Types with Implications for Criminal Justice Training and Education Author(s): John G. Horgan, Ph.D., Paul Gill, Ph.D., Noemie Bouhana, Ph.D., James Silver, J.D., Ph.D., Emily Corner, MSc. Document No.: 249937 Date Received: June 2016 Award Number: 2013-ZA-BX-0002 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this federally funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Across the Universe? A Comparative Analysis of Violent Behavior and Radicalization Across Three Offender Types with Implications for Criminal Justice Training and Education Final Report John G. Horgan, PhD Georgia State University Paul Gill, PhD University College, London Noemie Bouhana, PhD University College, London James Silver, JD, PhD Worcester State University Emily Corner, MSc University College, London This project was supported by Award No. 2013-ZA-BX-0002, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Justice 1 ABOUT THE REPORT ABOUT THE PROJECT The content of this report was produced by John Horgan (Principal Investigator (PI)), Paul Gill (Co-PI), James Silver (Project Manager), Noemie Bouhana (Co- Investigator), and Emily Corner (Research Assistant). -
The Effects of Feedback Interventions on Performance: a Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory
Psychological Bulletin Copyright 1996 by the American Psychological Association, Inc. 1996, Vol. II9, No. 2, 254-284 0033-2909/96/S3.00 The Effects of Feedback Interventions on Performance: A Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory Avraham N. Kluger Angelo DeNisi The Hebrew University of Jerusalem Rutgers University Since the beginning of the century, feedback interventions (FIs) produced negative—but largely ignored—effects on performance. A meta-analysis (607 effect sizes; 23,663 observations) suggests that FIs improved performance on average (d = .41) but that over '/3 of the FIs decreased perfor- mance. This finding cannot be explained by sampling error, feedback sign, or existing theories. The authors proposed a preliminary FI theory (FIT) and tested it with moderator analyses. The central assumption of FIT is that FIs change the locus of attention among 3 general and hierarchically organized levels of control: task learning, task motivation, and meta-tasks (including self-related) processes. The results suggest that FI effectiveness decreases as attention moves up the hierarchy closer to the self and away from the task. These findings are further moderated by task characteristics that are still poorly understood. To relate feedback directly to behavior is very confusing. Results able has been historically disregarded by most FI researchers. This are contradictory and seldom straight-forward. (Ilgen, Fisher, & disregard has led to a widely shared assumption that FIs consis- Taylor, 1979, p. 368) tently improve performance. Fortunately, several FI researchers The effects of manipulation of KR [knowledge of results] on motor (see epigraphs) have recently recognized that FIs have highly vari- learning. -
Jeffrey Weise: Timeline
Jeffrey Weise: Timeline Compiled by Peter Langman, Ph.D. I have not found a source that chronicles the history of Jeffrey and his family. In order to fill this gap, this document was compiled from a variety of sources to provide a general chronology of the family’s life. In many cases, exact dates of events are not known, so approximate years and months are indicated. There is a lack of agreement among the sources as to why Jeffrey was not attending school at the time of the attack. Multiple sources are listed with the discrepant testimonies provided. 8 August 1988 Jeffrey James Weise was born in Minneapolis to Joanne Elizabeth Weise and Daryl Allen Lussier, Jr. (parents never married). Mother lived in Minneapolis, father on Red Lake reser- vation. Jeffrey lived mostly with his father for first three years.1 November 1988 Mother gave Jeffrey to father to raise when he was 3 months old. 2 1991 Jeffrey lived with his father and father’s parents until he was three years old. Then mother took him to live with her in Twin Cities.3 June 1993 Mother booked into Ramsey County jail for driving while intoxicated.4 17 July 1993 Father married Roma Jean Ryan at Red Lake.5 Fall 1996 Jeffrey moved with mother to Shakopee, Minnesota, and entered third grade at Pearson Elementary School. Joanne Weise was living with Timothy Troy Desjarlait.6 Jeffrey attended Pearson until 1998.7 1996 Daphne Desjarlait born to Joanne Weise and Timothy Desjarlait.8 1997 Sebastian Desjarlait born to Joanne Weise and Timothy Desjarlait.9 21 July 1997 Jeffrey’s father killed himself by shooting himself in the chest during armed standoff with tribal police on Red Lake reservation.10 The standoff with police occurred at the father’s home and lasted for “days.”11 September 1997 Jeffrey started fourth grade in Shakopee, but that month the family moved to Chaska, Min- nesota.12 27 June 1998 Joanne Weise married Timothy Desjarlait on Red Lake reservation (reportedly had moved to reservation shortly after move to Chaska).13 Late September 1998 Jeffrey attended fifth grade at Bluff Creek Elementary School. -
An Analysis of Power and Stress Using Cybernetic Epistemology Randall Robert Lyle Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 An analysis of power and stress using cybernetic epistemology Randall Robert Lyle Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Educational Psychology Commons, Family, Life Course, and Society Commons, and the Philosophy Commons Recommended Citation Lyle, Randall Robert, "An analysis of power and stress using cybernetic epistemology " (1992). Retrospective Theses and Dissertations. 10131. https://lib.dr.iastate.edu/rtd/10131 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from lefr to right in equal sections with small overlaps. -
Feedback, a Powerful Lever in Teams: a Review
Educational Research Review 7 (2012) 123–144 Contents lists available at SciVerse ScienceDirect Educational Research Review journal homepage: www.elsevier.com/locate/EDUREV Review Feedback, a powerful lever in teams: A review ⇑ Catherine Gabelica a, , Piet Van den Bossche a,b, Mien Segers a, Wim Gijselaers a a Maastricht University, Faculty of Economics and Business Administration, Department of Educational Research and Development Tongersestraat 53, 6211 LM Maastricht, PO BOX 616, 6200 MD Maastricht, The Netherlands b University of Antwerp, Institute for Education and Information Sciences, Venusstraat 35, 2000 Antwerpen, Belgium article info abstract Article history: This paper reviews the literature on the effects of feedback provided to teams in higher Received 19 June 2011 education or organizational settings. This review (59 empirical articles) showed that most Revised 30 September 2011 of the feedback applications concerned ‘‘knowledge of results’’ (performance feedback). In Accepted 15 November 2011 contrast, there is a relatively small body of research using feedback conveying information Available online 25 November 2011 regarding the way individuals or the team performed a task (process feedback). Moreover, no research compared the effectiveness of process versus performance feedback. Concern- Keywords: ing feedback effectiveness, half of the studies implementing performance feedback Review of the literature research reported uniformly positive effects while the other half resulted in positive effects Feedback Teams on some dependent variables and no effect on others. All the studies using solely process Performance feedback feedback showed mixed positive results: some dependent variables improved while some Process feedback others did not change. None of the studies reported any negative effects. This review also highlighted 28 key factors supporting feedback interventions effectiveness. -
Adventures Beyond Reductionism. the Remarkable Unfolding of Complex Holism: Sustainability Science
Adventures Beyond Reductionism. The Remarkable Unfolding of Complex Holism: Sustainability Science A. Sengupta Institute for Complex Holism, Kolkata, INDIA E-mail: [email protected] Abstract “If it could be demonstrated that any complex organ existed, which could not possibly have been formed by numerous successive, slight modifications, my theory would absolutely break down”. Can Darwinian random mutations and selection generate biological complexity and holism? In this paper we argue that the “wonderful but not enough” tools of linear reductionism cannot lead to chaos and hence to complexity and holism, but with ChaNoXity this seems indeed plausible, even likely. Based on the Pump-Engine realism of mutually interacting supply and demand — demand institutes supply that fuels demand — we demonstrate that the “supply” of symmetry breaking Darwinian genetic variation, in direct conflict with the symmetry inducing “demand” of natural selection, defines the antagonistic arrows of the real and negative worlds. Working in this competitively collaborating nonlinear mode, these opposites generate the homeostasy of holistic life. Protein folding, mitosis, meiosis, hydrophobicity and other ingredients have their respective expressions in this paradigm; nucleotide substitution, gene duplication-divergence, HGT, stress-induced mutations, antibiotic resistance, Lamarckism would appear to fit in naturally in this complexity paradigm defined through emergence of novelty and self-organization. With obvious departures from mainstream reductionism, this can have far reaching implications in the Darwinian and nano medicine of genetic diseases and disorders. Our goal is to chart a roadmap of adventure beyond (neo)-Darwinian reductionism. Keywords: Chanoxity; Reductionism; Darwinian Holism; Self-organization and Emergence; Demand, Sup- ply, Logistic. 1 Introduction: Beyond Reductionism Biological systems are complex holistic systems: thermodynamically open and far-from-equilibrium, self organizing, emergent. -
Language Is a Complex Adaptive System: Position Paper
Language Learning ISSN 0023-8333 Language Is a Complex Adaptive System: Position Paper The “Five Graces Group” Clay Beckner Nick C. Ellis University of New Mexico University of Michigan Richard Blythe John Holland University of Edinburgh Santa Fe Institute; University of Michigan Joan Bybee Jinyun Ke University of New Mexico University of Michigan Morten H. Christiansen Diane Larsen-Freeman Cornell University University of Michigan William Croft Tom Schoenemann University of New Mexico Indiana University Language has a fundamentally social function. Processes of human interaction along with domain-general cognitive processes shape the structure and knowledge of lan- guage. Recent research in the cognitive sciences has demonstrated that patterns of use strongly affect how language is acquired, is used, and changes. These processes are not independent of one another but are facets of the same complex adaptive system (CAS). Language as a CAS involves the following key features: The system consists of multiple agents (the speakers in the speech community) interacting with one another. This paper, our agreed position statement, was circulated to invited participants before a conference celebrating the 60th Anniversary of Language Learning, held at the University of Michigan, on the theme Language is a Complex Adaptive System. Presenters were asked to focus on the issues presented here when considering their particular areas of language in the conference and in their articles in this special issue of Language Learning. The evolution of this piece was made possible by the Sante Fe Institute (SFI) though its sponsorship of the “Continued Study of Language Acquisition and Evolution” workgroup meeting, Santa Fe Institute, 1–3 March 2007. -
Providing Educational Feedback
Providing Educational Feedback Higher Education Services WHITE PAPER What is feedback? Feedback in educational contexts is information provided to a learner to reduce the gap between current performance and a desired goal (Sadler, 1989). The primary purpose of feedback is to help Why is feedback important in learners adjust their thinking and behaviors to online instruction? produce improved learning outcomes (Shute, Feedback is widely touted as one of the most 2008). This definition of feedback differentiates important elements for promoting successful it from other types of information that might student learning (Bransford, Brown, & Cocking, be provided to learners such as a summative 2000; Chickering & Gamson, 1987). Decades evaluations or praise. of research on the topic of feedback have Feedback is a critical component of an ideal supported this view and have found it to be one instructional cycle. Feedback is a consequence of the most effective methods for improving of teaching and a response to learner student achievement. In an extensive meta- performance. Typically feedback is provided by analysis of more than 100 factors influencing an external agent (e.g., teacher or peer) but can educational achievement, Hattie (2009) found also be self-generated in response to learner the effect of feedback great enough to place it in self-monitoring. Although feedback is generally the top 5 of all in-school influences studied. perceived as information provided to learners in order to improve their performance, an equally powerful function of feedback is to cue the Feedback is widely regarded by attention of instructors to errors or weaknesses researchers as crucial for improving in their teaching methods that might be not only knowledge acquisition but improved (Hattie, 2011). -
11 Introduction to the Nervous System and Nervous Tissue
11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system. -
Assessing the Impact of Positive Feedback in Constraint-Based Tutors
Swinburne Research Bank http://researchbank.swinburne.edu.au Barrow, D., Mitrovic, A., Ohlsson, S., & Grimley, M. (2008). Assessing the impact of positive feedback in constraint-based tutors. Originally published in B. P. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (eds.). Proceedings of the 9th International Conference on Intelligent Tutoring Systems (ITS 2008), Montreal, Canada, 23–27 June 2008. Lecture notes in computer science (Vol. 5091, pp. 250–259). Berlin: Springer. Available from: http://dx.doi.org/10.1007/978-3-540-69132-7_29 Copyright © Springer-Verlag Berlin Heidelberg 2008. This is the author’s version of the work, posted here with the permission of the publisher for your personal use. No further distribution is permitted. You may also be able to access the published version from your library. The definitive version is available at http://www.springerlink.com/. Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au Assessing the Impact of Positive Feedback in Constraint-based Tutors Devon Barrow1, Antonija Mitrovic1, Stellan Ohlsson2 and Michael Grimley1 1University of Canterbury, Private Bag 4800 Christchurch 8140, New Zealand [email protected] {tanja.mitrovic,[email protected]} 2Department of Psychology, University of Illinois, Chicago [email protected] Abstract. Most existing Intelligent Tutoring Systems (ITSs) are built around cognitive learning theories, such as Ohlsson's theory of learning from performance errors and Anderson's ACT theories of skill acquisition, which focus primarily on providing negative feedback, facilitating learning by correcting errors. Research into the behavior of expert tutors suggest that experienced tutors use positive feedback quite extensively and successfully. -
Developmental Systems Science 1
DEVELOPMENTAL SYSTEMS SCIENCE 1 Developmental Systems Science: Exploring the Application of Systems Science Methods to Developmental Science Questions Manuscript #: 8(1)_1 Date: October 27, 2010 Running head: Developmental Systems Science Urban, J.B., Osgood, N., & Mabry, P. (2011). Developmental systems science: Exploring the application of non- linear methods to developmental science questions. Research in Human Development, 8(1), 1-25. doi: 10.1080/15427609.2011.549686 DEVELOPMENTAL SYSTEMS SCIENCE 2 Abstract Developmental science theorists fully acknowledge the wide array of complex interactions between biology, behavior, and environment that together give rise to development. However, despite this conceptual understanding of development as a system, developmental science has not fully applied analytic methods commensurate with this systems perspective. This paper provides a brief introduction to systems science, an approach to problem-solving that involves the use of methods especially equipped to handle complex relationships and their evolution over time. Moreover, we provide a rationale for why and how these methods can serve the needs of the developmental science research community. A variety of developmental science theories are reviewed and the need for systems science methodologies is demonstrated. This is followed by an abridged primer on systems science terminology and concepts, with specific attention to how these concepts relate to similar concepts in developmental science. Finally, an illustrative example is presented to demonstrate the utility of systems science methodologies. We hope that this article inspires developmental scientists to learn more about systems science methodologies and to begin to use them in their work. Urban, J.B., Osgood, N., & Mabry, P. (2011). Developmental systems science: Exploring the application of non- linear methods to developmental science questions.