Complex Adaptive Systems Theory Applied to Virtual Scientific Collaborations: the Case of Dataone

Total Page:16

File Type:pdf, Size:1020Kb

Complex Adaptive Systems Theory Applied to Virtual Scientific Collaborations: the Case of Dataone University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2011 Complex adaptive systems theory applied to virtual scientific collaborations: The case of DataONE Arsev Umur Aydinoglu [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Communication Technology and New Media Commons, Library and Information Science Commons, and the Organizational Behavior and Theory Commons Recommended Citation Aydinoglu, Arsev Umur, "Complex adaptive systems theory applied to virtual scientific collaborations: The case of DataONE. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/1054 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Arsev Umur Aydinoglu entitled "Complex adaptive systems theory applied to virtual scientific collaborations: The case of DataONE." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Communication and Information. Suzie Allard, Major Professor We have read this dissertation and recommend its acceptance: Carol Tenopir, Virginia Kupritz, Heather Douglas Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Complex Adaptive Systems Theory Applied to Virtual Scientific Collaborations: The Case of DataONE A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Arsev Umur Aydinoglu August 2011 ii Copyright © 2011 by Arsev Umur Aydinoglu All rights reserved. iii Dedication I dedicate this study to my Mîr, my lives would not have a meaning without his teachings. iv Acknowledgements I would never have been able to finish (maybe even able to start) my dissertation without the guidance of my committee members; help from my friends; and support from my family. I would like to express my deepest gratitude to my advisor, Dr. Suzie Allard, for encouraging me to think outside the box and to try new approaches in my doctoral education. Without her guidance, intellectual contribution, practical solutions, and sense of humor, writing this dissertation would be painful at best. Her patience towards my wild ideas deserves special thanks. I would like to thank Dr. Carol Tenopir, who supported me since the beginning of my graduate education and provided me with the opportunities to be involved in first class research. I would also like to thank to Dr. Heather Douglas who contributed not only to my dissertation but also my intellectual development with her infinite knowledge on the philosophy of science. Dr. Virginia Kupritz‘s experience and knowledge on mixed method studies helped me to find my way in the labyrinths of abundant data I collected. I am grateful to the members of DataONE. They have accepted me to their meetings, agreed to be interviewed by me, and shared their thoughts and passion on one v of the biggest problems of today‘s science –data. Without their contribution this dissertation would not happen. My very old friend Emine Yetgin for directing me to pursue a PhD and my colleagues Dr. Lei Wu and Dr. Katerina Spasovska for preventing me from derailing to pursue a PhD deserve a huge thank you. Finally, I would like to thank my wife, Pinar. She was always there cheering me up and stood by me through the good times and bad. She also took very good care of my daughter, Neva Isik, when I was immersed in doctoral work and unable to help her. vi Abstract This study is the exploration of the emergence of DataONE, a multidisciplinary, multinational, and multi-institutional virtual scientific collaboration to develop a cyberinfrastructure for earth sciences data, from the complex adaptive systems perspective. Data is generated through conducting 15 semi-structured interviews, observing three 3-day meetings, and 51 online surveys. The main contribution of this study is the development of a complexity framework and its application to a project such as DataONE. The findings reveal that DataONE behaves like a complex adaptive system: various individuals and institutions interacting, adapting, and coevolving to achieve their own and common goals; during the process new structures, relationships, and products emerge that harmonize with DataONE‘s goals. DataONE is quite resilient to threats and adaptive to its environment, which are important strengths. The strength comes from its diversified structure and balanced management style that allows for frequent interaction among members. The study also offers insights to PI(s), managers, and funding institutions on how to treat complex systems. Additional results regarding multidisiplinarity, library and information sciences, and communication studies are presented as well. vii Table of Contents Chapter 1 Introduction ........................................................................................................ 1 Chapter 2 Literature Review ............................................................................................ 10 Scientific Collaborations ............................................................................................... 10 a. Scientometrics ....................................................................................................... 11 b. Qualitative Case Studies ....................................................................................... 14 Complexity Theory ....................................................................................................... 28 Emergence..................................................................................................................... 51 Chapter 3 Background for DataONE ............................................................................... 54 About DataONE ............................................................................................................ 54 NSF the Office of Cyberinfrastructure ......................................................................... 55 The Fourth Paradigm: Data-intensive scientific discovery ........................................... 56 Sustainable Digital Data Preservation and Access Network Partners (DataNet) ......... 57 Data Conservancy ......................................................................................................... 58 The Data Observation Network for Earth (DataONE) ................................................. 58 Chapter 4 Methods ........................................................................................................... 68 viii Case study ..................................................................................................................... 68 Rationale for qualitative inquiry ............................................................................... 70 Sampling ................................................................................................................... 71 Rationale for selecting DataONE.............................................................................. 72 Data collection .............................................................................................................. 74 1. Semi-structured interviews ................................................................................... 75 2. Naturalistic observations ....................................................................................... 79 3. Survey ................................................................................................................... 81 Data Integration, Evaluative Criteria, and Analysis ..................................................... 81 Chapter 5 Results .............................................................................................................. 86 1. Large number of components and counteracting forces: .......................................... 88 2. Variation and Diversity ............................................................................................. 91 3. Connectivity, interdependence, and interaction ...................................................... 103 Interdependency & Working Groups ...................................................................... 105 Communication behaviors ...................................................................................... 113 4. Feedback ................................................................................................................. 116 5. Unpredictability ...................................................................................................... 116 ix 6. The edge of chaos ................................................................................................... 117 7. Self-organization, emergence, and strange attractors ............................................. 117 8. Adaptation to environment (context) / pattern recognition / learning .................... 122 a. The management ................................................................................................
Recommended publications
  • What Is a Complex Adaptive System?
    PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006).
    [Show full text]
  • Adaptive Capacity and Traps
    Copyright © 2008 by the author(s). Published here under license by the Resilience Alliance. Carpenter, S. R., and W. A. Brock. 2008. Adaptive capacity and traps. Ecology and Society 13(2): 40. [online] URL: http://www.ecologyandsociety.org/vol13/iss2/art40/ Insight Adaptive Capacity and Traps Stephen R. Carpenter 1 and William A. Brock 1 ABSTRACT. Adaptive capacity is the ability of a living system, such as a social–ecological system, to adjust responses to changing internal demands and external drivers. Although adaptive capacity is a frequent topic of study in the resilience literature, there are few formal models. This paper introduces such a model and uses it to explore adaptive capacity by contrast with the opposite condition, or traps. In a social– ecological rigidity trap, strong self-reinforcing controls prevent the flexibility needed for adaptation. In the model, too much control erodes adaptive capacity and thereby increases the risk of catastrophic breakdown. In a social–ecological poverty trap, loose connections prevent the mobilization of ideas and resources to solve problems. In the model, too little control impedes the focus needed for adaptation. Fluctuations of internal demand or external shocks generate pulses of adaptive capacity, which may gain traction and pull the system out of the poverty trap. The model suggests some general properties of traps in social–ecological systems. It is general and flexible, so it can be used as a building block in more specific and detailed models of adaptive capacity for a particular region. Key Words: adaptation; allostasis; model; poverty trap; resilience; rigidity trap; transformation INTRODUCTION it seems empty of ideas, it will be abandoned or transformed into something else.
    [Show full text]
  • Control Theory
    Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data.
    [Show full text]
  • The Effects of Feedback Interventions on Performance: a Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory
    Psychological Bulletin Copyright 1996 by the American Psychological Association, Inc. 1996, Vol. II9, No. 2, 254-284 0033-2909/96/S3.00 The Effects of Feedback Interventions on Performance: A Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory Avraham N. Kluger Angelo DeNisi The Hebrew University of Jerusalem Rutgers University Since the beginning of the century, feedback interventions (FIs) produced negative—but largely ignored—effects on performance. A meta-analysis (607 effect sizes; 23,663 observations) suggests that FIs improved performance on average (d = .41) but that over '/3 of the FIs decreased perfor- mance. This finding cannot be explained by sampling error, feedback sign, or existing theories. The authors proposed a preliminary FI theory (FIT) and tested it with moderator analyses. The central assumption of FIT is that FIs change the locus of attention among 3 general and hierarchically organized levels of control: task learning, task motivation, and meta-tasks (including self-related) processes. The results suggest that FI effectiveness decreases as attention moves up the hierarchy closer to the self and away from the task. These findings are further moderated by task characteristics that are still poorly understood. To relate feedback directly to behavior is very confusing. Results able has been historically disregarded by most FI researchers. This are contradictory and seldom straight-forward. (Ilgen, Fisher, & disregard has led to a widely shared assumption that FIs consis- Taylor, 1979, p. 368) tently improve performance. Fortunately, several FI researchers The effects of manipulation of KR [knowledge of results] on motor (see epigraphs) have recently recognized that FIs have highly vari- learning.
    [Show full text]
  • Systems That Adapt to Their Users
    Systems That Adapt to Their Users Anthony Jameson and Krzysztof Z. Gajos DFKI, German Research Center for Artificial Intelligence Harvard School of Engineering and Applied Sciences Introduction This chapter covers a broad range of interactive systems which have one idea in common: that it can be worthwhile for a system to learn something about individual users and adapt its behavior to them in some nontrivial way. A representative example is shown in Figure 20.1: the COMMUNITYCOMMANDS recommender plug-in for AUTO- CAD (introduced by Matejka, Li, Grossman, & Fitzmau- rice, 2009, and discussed more extensively by Li, Mate- jka, Grossman, Konstan, & Fitzmaurice, 2011). To help users deal with the hundreds of commands that AUTO- CAD offers—of which most users know only a few dozen— COMMUNITYCOMMANDS (a) gives the user easy access to several recently used commands, which the user may want to invoke again soon; and (b) more proactively suggests com- mands that this user has not yet used but may find useful, Figure 20.1: Screenshot showing how COMMUNITY- given the type of work they have been doing recently. COMMANDS recommends commands to a user. (Image supplied by Justin Matejka. The length of the darker bar for a com- Concepts mand reflects its estimated relevance to the user’s activities. When the user A key idea embodied in COMMUNITYCOMMANDS and the hovers over a command in this interface, a tooltip appears that explains the command and might show usage hints provided by colleagues. See also other systems discussed in this chapter is that of adapta- http://www.autodesk.com/research.) tion to the individual user.
    [Show full text]
  • Complexity of Social Systems and Paradoxes of Contemporary Security Theory and Policy Making
    Czeslaw Mesjasz Cracow University of Economics Kraków, Poland [email protected] Complexity of social systems and paradoxes of contemporary security theory and policy making Paper presented at the CEEISA-ISA 2016 Joint International Conference Ljubljana, Slovenia 23-25 June 2016 (A very preliminary crude draft version, not for quotation) 1. Introduction The grand ideas such as, for example, the risk society of Beck [1992], complexity-stimulated crises discussed by Tainter [1988, 2000], Diamond [1997, 2005], ingenuity gap of Homer-Dixon [2002], and other similar, less publicized visions, lead to the following question. Was the world simpler and less risky in the past? The question brings about several paradoxes embodying actors and issues relating to broadly defined security. On the one hand we are intuitively aware that the present global society with development of IT and all its consequences, increasing number of societal interactions and environmental threats is becoming more difficult to comprehend. On the other, modern science allows for better understanding of the world. It may be then hypothesize that the contemporary discourse on the risk society and complexity of society is not correct when compared with the state of the world in any time in the past and much lower level of understanding of the world in that time. It may be even stated provocatively that although the number of social scientists is increasing only a relatively small of them have a deepened knowledge about the modern social proceses. The above paradox is used as a point of departure of the study of the links between complexity of society in the past and at present, and occurrence of large scale socioeconomic crises (countries, regions, continents, global scale).
    [Show full text]
  • Are Living Beings Extended Autopoietic Systems? an Embodied Reply
    Article Adaptive Behavior 1–11 Ó The Author(s) 2019 Are living beings extended autopoietic Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1059712318823723 systems? An embodied reply journals.sagepub.com/home/adb Mario Villalobos1,2 and Pablo Razeto-Barry2,3 Abstract Building on the original formulation of the autopoietic theory (AT), extended enactivism argues that living beings are autopoietic systems that extend beyond the spatial boundaries of the organism. In this article, we argue that extended enactivism, despite having some basis in AT’s original formulation, mistakes AT’s definition of living beings as autopoietic entities. We offer, as a reply to this interpretation, a more embodied reformulation of autopoiesis, which we think is nec- essary to counterbalance the (excessively) disembodied spirit of AT’s original formulation. The article aims to clarify and correct what we take to be a misinterpretation of ATas a research program. AT, contrary to what some enactivists seem to believe, did not (and does not) intend to motivate an extended conception of living beings. AT’s primary purpose, we argue, was (and is) to provide a universal individuation criterion for living beings, these understood as discrete bodies that are embedded in, but not constituted by, the environment that surrounds them. However, by giving a more expli- citly embodied definition of living beings, AT can rectify and accommodate, so we argue, the enactive extended interpre- tation of autopoiesis, showing that although living beings do not extend beyond their boundaries as autopoietic unities, they do form part, in normal conditions, of broader autopoietic systems that include the environment.
    [Show full text]
  • An Analysis of Power and Stress Using Cybernetic Epistemology Randall Robert Lyle Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 An analysis of power and stress using cybernetic epistemology Randall Robert Lyle Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Educational Psychology Commons, Family, Life Course, and Society Commons, and the Philosophy Commons Recommended Citation Lyle, Randall Robert, "An analysis of power and stress using cybernetic epistemology " (1992). Retrospective Theses and Dissertations. 10131. https://lib.dr.iastate.edu/rtd/10131 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from lefr to right in equal sections with small overlaps.
    [Show full text]
  • An Accidental Resource: the Social Ecological System Framework Applied to Small Wetlands in Sierran Foothill Oak Woodlands1
    An Accidental Resource: the Social Ecological System Framework Applied to Small Wetlands in Sierran Foothill Oak 1 Woodlands 2 2 3 Tracy V. Hruska, Lynn Huntsinger, and Jose L. Oviedo, Abstract An ongoing study of the small wetlands in the northern Sierra Nevada foothill oak woodlands that provide habitat for the state-threatened California black rail (Laterallus jamaicensis coturniculus) offers an example of the way that the social ecological systems (SES) framework can be used to analyze a natural resource problem. At the outset, it was hypothesized that the area’s hydrology, West Nile Virus from wetland mosquitos, the population ecology of the bird, and the decisions of landowners would have important impacts on the wetlands and birds. A SES framework was applied to identify and understand the interactions among ecological and human factors. The case of irrigated wetlands in Sierra foothill woodlands turns out to be an example of a fractured SES. Actions within the social system are having profound impacts on the natural system, but these resulting changes in the natural system appear to have little or no feedback to the social system. Intervention points identified include education of landowners, influencing water districts, and incentivizing conservation. Key words: California black rail, irrigation, pasture, water conservation, wildlife Introduction: social ecological systems Small wetlands in the northern Sierra Nevada foothill oak woodlands provide habitat for the state-threatened California black rail (Laterallus jamaicensis coturniculus). One ongoing study of the sustainability of the wetlands offers an example of the way that the social ecological systems (SES) framework can be used to analyze a natural resource problem.
    [Show full text]
  • Learning and Complex Adaptive Systems
    LEARNING AND COMPLEX ADAPTIVE SYSTEMS (Article by Diana Stirling, Associate Researcher, Learning Development Institute) EDITORIAL NOTE The following article on Learning and Complex Adaptive Systems by LDI Associate Researcher Diana Stirling was first published in a translated version in Japanese. It appears here for the first time in English, the language in which it was originally written. For citation purposes, the English version should reflect access via this site and should read as follows (MLA style): Stirling, Diana. "Learning and Complex Adaptive Systems." Learning Development Institute. 31 May 2014. Web. The reference for the originally published paper in Japanese is: Stirling, Diana. "Learning and Complex Adaptive Systems." Aichi Universities English Education Research Journal. 30 (2013): 183-226. Trans. Mitsuo Kondo. Print. We thank the Aichi Universities English Education Research Journal for permission to publish this paper on the learndev.org site in accordance with an agreement made with the author. Learning Development Institute, June 1, 2014 JV Learning and Complex Adaptive Systems Diana Stirling Part 1: Complex Adaptive Systems Introduction to Complex Adaptive Systems The science of complexity and complex adaptive systems has engendered a view of the beauty of self-organization which arises as a result of continual transformation, via nonlinear interactions, within and between co-creating systems. Through this lens, learning is seen as a continuous dynamic, the inevitable actualization of an innate biological potential. When the human individual is viewed as a complex adaptive system and learning is seen as an essential dynamic on which the system depends for survival, conscious learning is recognized as the tip of the learning iceberg.
    [Show full text]
  • Systems Theory
    1 Systems Theory BRUCE D. FRIEDMAN AND KAREN NEUMAN ALLEN iopsychosocial assessment and the develop - nature of the clinical enterprise, others have chal - Bment of appropriate intervention strategies for lenged the suitability of systems theory as an orga - a particular client require consideration of the indi - nizing framework for clinical practice (Fook, Ryan, vidual in relation to a larger social context. To & Hawkins, 1997; Wakefield, 1996a, 1996b). accomplish this, we use principles and concepts The term system emerged from Émile Durkheim’s derived from systems theory. Systems theory is a early study of social systems (Robbins, Chatterjee, way of elaborating increasingly complex systems & Canda, 2006), as well as from the work of across a continuum that encompasses the person-in- Talcott Parsons. However, within social work, sys - environment (Anderson, Carter, & Lowe, 1999). tems thinking has been more heavily influenced by Systems theory also enables us to understand the the work of the biologist Ludwig von Bertalanffy components and dynamics of client systems in order and later adaptations by the social psychologist Uri to interpret problems and develop balanced inter - Bronfenbrenner, who examined human biological vention strategies, with the goal of enhancing the systems within an ecological environment. With “goodness of fit” between individuals and their its roots in von Bertalanffy’s systems theory and environments. Systems theory does not specify par - Bronfenbrenner’s ecological environment, the ticular theoretical frameworks for understanding ecosys tems perspective provides a framework that problems, and it does not direct the social worker to permits users to draw on theories from different dis - specific intervention strategies.
    [Show full text]
  • Information Systems Foundations Theory, Representation and Reality
    Information Systems Foundations Theory, Representation and Reality Information Systems Foundations Theory, Representation and Reality Dennis N. Hart and Shirley D. Gregor (Editors) Workshop Chair Shirley D. Gregor ANU Program Chairs Dennis N. Hart ANU Shirley D. Gregor ANU Program Committee Bob Colomb University of Queensland Walter Fernandez ANU Steven Fraser ANU Sigi Goode ANU Peter Green University of Queensland Robert Johnston University of Melbourne Sumit Lodhia ANU Mike Metcalfe University of South Australia Graham Pervan Curtin University of Technology Michael Rosemann Queensland University of Technology Graeme Shanks University of Melbourne Tim Turner Australian Defence Force Academy Leoni Warne Defence Science and Technology Organisation David Wilson University of Technology, Sydney Published by ANU E Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] This title is also available online at: http://epress.anu.edu.au/info_systems02_citation.html National Library of Australia Cataloguing-in-Publication entry Information systems foundations : theory, representation and reality Bibliography. ISBN 9781921313134 (pbk.) ISBN 9781921313141 (online) 1. Management information systems–Congresses. 2. Information resources management–Congresses. 658.4038 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design by Brendon McKinley with logo by Michael Gregor Authors’ photographs on back cover: ANU Photography Printed by University Printing Services, ANU This edition © 2007 ANU E Press Table of Contents Preface vii The Papers ix Theory Designing for Mutability in Information Systems Artifacts, Shirley Gregor and Juhani Iivari 3 The Eect of the Application Domain in IS Problem Solving: A Theoretical Analysis, Iris Vessey 25 Towards a Unied Theory of Fit: Task, Technology and Individual, Michael J.
    [Show full text]