Theoretical Approach to the Interaction Between the Meta-System Schemas of the Artificial (Built) Environment and Nature
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is a Complex Adaptive System?
PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006). -
Capabilities in Systems Engineering: an Overview
Capabilities in Systems Engineering: An Overview Gon¸caloAntunes and Jos´eBorbinha INESC-ID, Rua Alves Redol, 9 1000-029 Lisboa Portugal {goncalo.antunes,jlb}@ist.utl.pt, WWW home page: http://web.ist.utl.pt/goncalo.antunes Abstract. The concept of capability has been deemed relevant over the years, which can be attested by its adoption in varied domains. It is an abstract concept, but simple to understand by business stakeholders and yet capable of making the bridge to technical aspects. Capabilities seem to bear similarities with services, namely their low coupling and high cohesion. However, the concepts are different since the concept of service seems to rest between that of capability and those directly related to the implementation. Nonetheless, the articulation of the concept of ca- pability with the concept of service can be used to promote business/IT alignment, since both concepts can be used to bridge different concep- tual layers of an enterprise architecture. This work offers an overview of the different uses of this concept, its usefulness, and its relation to the concept of service. Key words: capability, service, alignment, information systems, sys- tems engineering, strategic management, economics 1 Introduction The concept of capability can be defined as \the quality or state of being capable" [19] or \the power or ability to do something" [39]. Although simple, it is a powerful concept, as it can be used to provide an abstract, high-level view of a product, system, or even organizations, offering new ways of dealing with complexity. As such, it has been widely adopted in many areas. -
Existing Cybernetics Foundations - B
SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Existing Cybernetics Foundations - B. M. Vladimirski EXISTING CYBERNETICS FOUNDATIONS B. M. Vladimirski Rostov State University, Russia Keywords: Cybernetics, system, control, black box, entropy, information theory, mathematical modeling, feedback, homeostasis, hierarchy. Contents 1. Introduction 2. Organization 2.1 Systems and Complexity 2.2 Organizability 2.3 Black Box 3. Modeling 4. Information 4.1 Notion of Information 4.2 Generalized Communication System 4.3 Information Theory 4.4 Principle of Necessary Variety 5. Control 5.1 Essence of Control 5.2 Structure and Functions of a Control System 5.3 Feedback and Homeostasis 6. Conclusions Glossary Bibliography Biographical Sketch Summary Cybernetics is a science that studies systems of any nature that are capable of perceiving, storing, and processing information, as well as of using it for control and regulation. UNESCO – EOLSS The second title of the Norbert Wiener’s book “Cybernetics” reads “Control and Communication in the Animal and the Machine”. However, it is not recognition of the external similaritySAMPLE between the functions of animalsCHAPTERS and machines that Norbert Wiener is credited with. That had been done well before and can be traced back to La Mettrie and Descartes. Nor is it his contribution that he introduced the notion of feedback; that has been known since the times of the creation of the first irrigation systems in ancient Babylon. His distinctive contribution lies in demonstrating that both animals and machines can be combined into a new, wider class of objects which is characterized by the presence of control systems; furthermore, living organisms, including humans and machines, can be talked about in the same language that is suitable for a description of any teleological (goal-directed) systems. -
Introduction to Cybernetics and the Design of Systems
Introduction to Cybernetics and the Design of Systems © Hugh Dubberly & Paul Pangaro 2004 Cybernetics named From Greek ‘kubernetes’ — same root as ‘steering’ — becomes ‘governor’ in Latin Steering wind or tide course set Steering wind or tide course set Steering wind or tide course set Steering wind or tide course set correction of error Steering wind or tide course set correction of error Steering wind or tide course set correction of error correction of error Steering wind or tide course set correction of error correction of error Steering wind or tide course set correction of error correction of error Cybernetics named From Greek ‘kubernetes’ — same root as ‘steering’ — becomes ‘governor’ in Latin Cybernetic point-of-view - system has goal - system acts, aims toward the goal - environment affects aim - information returns to system — ‘feedback’ - system measures difference between state and goal — detects ‘error’ - system corrects action to aim toward goal - repeat Steering as a feedback loop compares heading with goal of reaching port adjusts rudder to correct heading ship’s heading Steering as a feedback loop detection of error compares heading with goal of reaching port adjusts rudder feedback to correct heading correction of error ship’s heading Automation of feedback thermostat heater temperature of room air Automation of feedback thermostat compares to setpoint and, if below, activates measured by heater raises temperature of room air The feedback loop ‘Cybernetics introduces for the first time — and not only by saying it, but -
Thomas Kuhn on Paradigms
Vol. 29, No. 7, July 2020, pp. 1650–1657 DOI 10.1111/poms.13188 ISSN 1059-1478|EISSN 1937-5956|20|2907|1650 © 2020 Production and Operations Management Society Thomas Kuhn on Paradigms Gopesh Anand Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 469 Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] Eric C. Larson Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 8 Wohlers Hall, 1206 S. Sixth, Champaign, Illinois 61820, USA, [email protected] Joseph T. Mahoney* Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 140C Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] his study provides key arguments and contributions of Kuhn (1970) concerning paradigms, paradigm shifts, and sci- T entific revolutions. We provide interpretations of Kuhn’s (1970) key ideas and concepts, especially as they relate to business management research. We conclude by considering the practical implications of paradigms and paradigm shifts for contemporary business management researchers and suggest that ethical rules of conversation are at least as critical for the health of a scientific community as methodological rules (e.g., the rules of logical positivism) derived from the phi- losophy of science. Key words: Paradigms; paradigm shifts; scientific revolutions; normal science History: Received: February 2019; Accepted: March 2020 by Kalyan Singhal, after 3 revisions. The Structure of Scientific Revolutions the rich descriptions of the process of advancing this theory. SSR showed that science primarily advances Thomas S. -
Need Means Analysis
The Systems Engineering Tool Box Dr Stuart Burge “Give us the tools and we will finish the job” Winston Churchill Needs Means Analysis (NMA) What is it and what does it do? Needs Means Analysis (NMA) is a systems thinking tool aimed at exploring alternative system solutions at different levels in order to help define the boundary of the system of interest. It is based around identifying the “need” that a system satisfies and using this to investigate alternative solutions at levels higher, the same and lower than the system of interest. Why do it? At any point in time there is usually a “current” or “preferred” solution to a particular problem. In consequence organizations will develop their operations and infrastructure to support and optimise that solution. This preferred solution is known as the Meta-Solution. For example Toyota, Ford, General Motors, Volkswagen et al all have the same meta-solution when it comes to automobile – in simple terms two-boxes with wheel at each corner. All of the automotive companies have slowly evolved in to an industry aimed at optimising this meta-solution. Systems Thinking encourages us to “step back” from the solution to consider the underlying problem or purpose. In the case of an automobile, the purpose is to “transport passengers and their baggage from one point to another” This is also the purpose of a civil aircraft, passenger train and bicycle! In other words for a given purpose there are alternative meta-solutions. The idea of a pre-eminent meta-solution has also been discussed by Pugh (1991) who introduced the idea of dynamic and static design concepts. -
Collection System Manager
CITY OF DALY CITY JOB SPECIFICATION EXEMPT POSITION COLLECTION SYSTEM MANAGER DEFINITION Under the general direction of the Director of Water and Wastewater Resources or authorized representative, supervises all activities of the Collection System Maintenance Division, including wastewater collection and recycled water systems, and performs other duties as assigned. EXAMPLES OF DUTIES Manage, supervise, schedule, and review the work of maintenance personnel in the maintenance, inspection and repair of wastewater collection and recycled water distribution systems in the Collection System Maintenance Division of the Department of Water and Wastewater Resources; ensure safe, efficient and effective compliance with local, state and federal laws, rules and regulations, and industrial practices. Implement City, Department and Division Rules and Regulations, policies, procedures and practices. Ensure that required records are accurately maintained. Oversee a comprehensive preventive maintenance program of facilities. Ensure that supervisors conduct regular safety training and maintain a safe work environment. Develop and maintain training programs for employees; ensure that employees maintain required certification. Formally evaluate or ensure the evaluation and satisfactory job performance of assigned employees. Manage crews in support of City departments in maintenance operations, such as the storm drain collection system maintenance and construction program. Work to complete Department and Division goals and objectives. Prepare and manage the Division budget; propose, develop and manage capital projects and manage contracts for the Division. Prepare reports, and make presentations to the City Manager, City Council or others as required. When required, maintain 24-hour availability to address Division emergencies. Develop and maintain good working relationships with supervisors, coworkers, elected officials, professional peer groups and the public. -
Rocket D3 Database Management System
datasheet Rocket® D3 Database Management System Delivering Proven Multidimensional Technology to the Evolving Enterprise Ecient Performance: C#, and C++. In addition, Java developers can access Delivers high performance via Proven Technology the D3 data files using its Java API. The MVS Toolkit ecient le management For over 30 years, the Pick Universal Data Model (Pick provides access to data and business processes via that requires minimal system UDM) has been synonymous with performance and and memory resources both SOAP and RESTful Web Services. reliability; providing the flexible multidimensional Scalability and Flexibility: database infrastructure to develop critical transac- Scales with your enterprise, tional and analytical business applications. Based on from one to thousands of Why Developers the Pick UDM, the Rocket® D3 Database Manage- users ment System offers enterprise-level scalability and Choose D3 D3 is the choice of more than a thousand applica- Seamless Interoperability: efficiency to support the dynamic growth of any tion developers world-wide—serving top industries Interoperates with varied organization. databases and host including manufacturing, distribution, healthcare, environments through government, retail, and other vertical markets. connectivity tools Rapid application development and application Rocket D3 database-centric development environ- customization requires an underlying data structure Data Security: ment provides software developers with all the that can respond effectively to ever-changing Provides secure, simultaneous necessary tools to quickly adapt to changes and access to the database from business requirements. Rocket D3 is simplistic in its build critical business applications in a fraction of the remote or disparate locations structure, yet allows for complex definitions of data time as compared to other databases; without worldwide structures and program logic. -
PDF Download Starting with Science Strategies for Introducing Young Children to Inquiry 1St Edition Ebook
STARTING WITH SCIENCE STRATEGIES FOR INTRODUCING YOUNG CHILDREN TO INQUIRY 1ST EDITION PDF, EPUB, EBOOK Marcia Talhelm Edson | 9781571108074 | | | | | Starting with Science Strategies for Introducing Young Children to Inquiry 1st edition PDF Book The presentation of the material is as good as the material utilizing star trek analogies, ancient wisdom and literature and so much more. Using Multivariate Statistics. Michael Gramling examines the impact of policy on practice in early childhood education. Part of a series on. Schauble and colleagues , for example, found that fifth grade students designed better experiments after instruction about the purpose of experimentation. For example, some suggest that learning about NoS enables children to understand the tentative and developmental NoS and science as a human activity, which makes science more interesting for children to learn Abd-El-Khalick a ; Driver et al. Research on teaching and learning of nature of science. The authors begin with theory in a cultural context as a foundation. What makes professional development effective? Frequently, the term NoS is utilised when considering matters about science. This book is a documentary account of a young intern who worked in the Reggio system in Italy and how she brought this pedagogy home to her school in St. Taking Science to School answers such questions as:. The content of the inquiries in science in the professional development programme was based on the different strands of the primary science curriculum, namely Living Things, Energy and Forces, Materials and Environmental Awareness and Care DES Exit interview. Begin to address the necessity of understanding other usually peer positions before they can discuss or comment on those positions. -
Putting Systems to Work
i PUTTING SYSTEMS TO WORK Derek K. Hitchins Professor ii iii To my beloved wife, without whom ... very little. iv v Contents About the Book ........................................................................xi Part A—Foundation and Theory Chapter 1—Understanding Systems.......................................... 3 An Introduction to Systems.................................................... 3 Gestalt and Gestalten............................................................. 6 Hard and Soft, Open and Closed ............................................. 6 Emergence and Hierarchy ..................................................... 10 Cybernetics ........................................................................... 11 Machine Age versus Systems Age .......................................... 13 Present Limitations in Systems Engineering Methods............ 14 Enquiring Systems................................................................ 18 Chaos.................................................................................... 23 Chaos and Self-organized Criticality...................................... 24 Conclusion............................................................................ 26 Chapter 2—The Human Element in Systems ......................... 27 Human ‘Design’..................................................................... 27 Human Predictability ........................................................... 29 Personality ............................................................................ 31 Social -
The Effects of Feedback Interventions on Performance: a Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory
Psychological Bulletin Copyright 1996 by the American Psychological Association, Inc. 1996, Vol. II9, No. 2, 254-284 0033-2909/96/S3.00 The Effects of Feedback Interventions on Performance: A Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory Avraham N. Kluger Angelo DeNisi The Hebrew University of Jerusalem Rutgers University Since the beginning of the century, feedback interventions (FIs) produced negative—but largely ignored—effects on performance. A meta-analysis (607 effect sizes; 23,663 observations) suggests that FIs improved performance on average (d = .41) but that over '/3 of the FIs decreased perfor- mance. This finding cannot be explained by sampling error, feedback sign, or existing theories. The authors proposed a preliminary FI theory (FIT) and tested it with moderator analyses. The central assumption of FIT is that FIs change the locus of attention among 3 general and hierarchically organized levels of control: task learning, task motivation, and meta-tasks (including self-related) processes. The results suggest that FI effectiveness decreases as attention moves up the hierarchy closer to the self and away from the task. These findings are further moderated by task characteristics that are still poorly understood. To relate feedback directly to behavior is very confusing. Results able has been historically disregarded by most FI researchers. This are contradictory and seldom straight-forward. (Ilgen, Fisher, & disregard has led to a widely shared assumption that FIs consis- Taylor, 1979, p. 368) tently improve performance. Fortunately, several FI researchers The effects of manipulation of KR [knowledge of results] on motor (see epigraphs) have recently recognized that FIs have highly vari- learning. -
An Analysis of Power and Stress Using Cybernetic Epistemology Randall Robert Lyle Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 An analysis of power and stress using cybernetic epistemology Randall Robert Lyle Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Educational Psychology Commons, Family, Life Course, and Society Commons, and the Philosophy Commons Recommended Citation Lyle, Randall Robert, "An analysis of power and stress using cybernetic epistemology " (1992). Retrospective Theses and Dissertations. 10131. https://lib.dr.iastate.edu/rtd/10131 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from lefr to right in equal sections with small overlaps.