Theoretical Approach to the Interaction Between the Meta-System Schemas of the Artificial (Built) Environment and Nature

Total Page:16

File Type:pdf, Size:1020Kb

Theoretical Approach to the Interaction Between the Meta-System Schemas of the Artificial (Built) Environment and Nature Theoretical Approach to the Interaction Between the Meta-system Schemas of the Artificial (Built) Environment and Nature José L. Fernández-Solís, Ph. D. Kent D. Palmer, Ph. D. Timothy Ferris, Ph. D. Texas A&M University, 3137 TAMU, College Station, TX 77843-3137 USA P.O. Box 1632, CA 92867 USA University of South Australia, Mawson Lakes Blvd., Mawson Lakes, 5095 AU Emails: [email protected] ; [email protected] ; [email protected] Abstract: This is an exploration of how the artificial environment links with the natural environment and requires a conceptual construct that bridges these two environments. Palmer’s General Schema Theory, a highly theoretical work, elaborated on in a dissertation by Fernández-Solís (2006), provides a theory of schemas and a theory of the schema of meta-systems which will be useful for interpreting the relationship between the artificial and natural environment. The concept of meta-system is used first to generate and then to validate the concept of meta-industry. This paper argues that the building construction industry (which produces the built or artificial environment) that is categorized as an ‘industry’ by academia, actually acts as a meta-industry. Meta-industry is a concept that encapsulates an ‘industry of industries,’ which implies that the artificial and the natural environment interact at the meta-level. Climate change is construed as the reaction of the natural to the artificial environment at the meta- level. The approach to this pre-paradigmatic work uses the tools of philosophical and critical thinking, rationality and logic. General Schemas thinking at the meta- systemic level is presented as a new approach towards the formation of a novel paradigm of the artificial environment. Keywords: Artificial (built) Environment, Natural Environment, Meta-system, Paradigm, General Schemas Theory 1. A Definition of Meta-systems An interpretation of the concept of meta-system (Palmer 2006) can be made by linking the concepts of ‘system’ and ‘meta’ together, as suggested by Gadomski (2007). Gadomski assumes that meta-systems are schemas which provide the environment for systems and are composed of the common properties of particular systems but not related to the properties of particular systems. According to V. Turchin, and C. Joslyn (Palmer 2006), this "natural" definition is not sufficient for the Theory of Meta-system Transition, (which is a transition between configurations), nor is it congruent with the definition of system of systems as normally understood in the field of Systems Engineering. The definition of meta- system as proposed by Palmer (2000a), uncovers a categorical inverse of the system which can be characterized as that which is ‘beyond’ the system. Meta-systems provide an Environment of Systems that extends from their boundary outward to the horizon. Once the difference between Meta-systems and Systems is understood, then we can provide a more meaningful context for locating Special Systems which are partially systems and partially meta-systems i.e. systems that are thresholds between the system and its environment. These thresholds have special properties that are called Holonomic, which is to say that they are organized as holons and thus are both part and whole at the same time . These holonomic special systems have the special property of ultra-efficiency. There are three types of such Special Systems, they are: Reflexive Social, Autopoietic Symbiotic, and Dissipative Ordering. According to Palmer’s (2000b) definition of Special Systems, Reflexive Social is based on the works of Sandywell (1980, 1995, 1996) and O’Malley (1972) who are Reflexive Sociologists in England. Autopoietic Symbiotic is based on the work of Maturana and Varella (2001), who are Chilean Biologists who coined the term, and finally, Dissipative Ordering, which is based on the work of Prigogine (1984) Nobel Price winner, who coined the term Dissipative Structures for spreading order in negentropic systems in environments far from equilibrium. A key concept of systems and systems interaction is efficiency . Special Systems are intrinsically ultra-efficacious which means extremely efficient and effective at the same time due to the slight lifting of the pressure of entropy on these systems locally which is compensated for globally. Where systems are judged in terms of efficiency and effectiveness, Special Systems are extremely efficient and effective while Meta- systems are less efficient and effective due to their intrinsic lacks rather than surpluses. 1.1. Totally Efficient Systems Following Garcia Bacca’s (1989) definition of invention as “first time technology” and everything else as “other than first time technology,” from one position we can ideally postulate that: At one end we ideally conceive of a totally efficient system , but alternatively we also perceive other than completely efficient systems . A completely efficient system is one in which the whole equals the sum of its parts (that is at an optimum without any surplus or insufficiency). Such systems are theoretically posited as anomalous and rare in nature. They have special properties such as holonomic , ultra-efficient , non-dual , integral , and we call them holoidal . Holonomic indicates that they are ordered as holons, i.e. as both parts and wholes at the same time (Koestler 1967). Ultra efficiency indicates that there is a slight negative entropy to these systems, and thus the pressure of entropy is slightly lifted from them within a confined region. Beyond that region entropy is increased in the highly energetic environment in which these systems exist which is far from equilibrium. Non-duality implies that they are organized as something other than one thing or many things, or as a conglomerate produced by juxtaposition and conjunction, like a swarm. Integral connotes that such systems have their own internal coherence based on hypercomplex algebras and other mathematical forms such as non-orientable surfaces. Artificial or built systems are alleopoietic, in other words they are other created rather than autopoietic which is self-produced . In general, manufacturing and industry, as arenas of built systems, may use this paradigm in order to determine their own limits in terms of the possibility of self-organization and self-adaptation of the building industry. A meta-system theoretical viewpoint is one that looks at the field between systems and is concerned with the integration of systems within a domain or world (i.e. the artificial environment within the natural environment). It also looks at the context, situation, environment, etc. in order to understand how the system fits into the meta- system. Our interest is to explore the possibility that this theory can serve as a basis for a better schematic construct than ‘systems theory.’ The goal is to be able to capture the reality of the artificial in relation to the natural environment or ecosystem. 1.2. Concepts of System to System Interactions at a Meta-level Our concern is that the construction industry, up to this point, has been developing ‘systems’ and ‘systems that interact with systems,’ but not ‘systems within a meta- system.’ First, meta-systems are the opposite of the concept that a system is ‘more than the sum of its parts’. Meta-systems are the inverse opposite, something that is ‘less than the sum of its parts,’ and contain singularities, paradoxes and incongruities. These aspects of meta-systems are anathema to systemic thinking, which attempts to eliminate singularities, paradoxes and incongruities. In contrast, higher schemas projected on nature (such as domain, world, universe) have lower levels of efficiency and less integral balance within the whole, as well as multiple and differing feedback levels. In meta-systems, systems are nested holistically (as in holons) or as both parts and wholes at the same time (Koestler 1967, 1979). This nesting progresses up the hierarchy of schemas being transformed at each level. Here we are concentrating just on the interface between systems and meta-systems where special systems arise, but the same analysis could be taken higher as we explore thresholds wider in scope within the emergent hierarchy of the schemas. 2. A Schema is needed as a Framework for an Artificial Environment Paradigm Unfortunately, this lack of understanding of the interaction between the artificial and the natural environments is a major contributor to our environmental predicament. At a simplistic level, human needs and wants drive production which requires processes that employ energy and the transformation of materials of products that become permanent consumers of energy. This energy produces emissions harmful to the natural environment. We can attempt to solve the problem of emissions by patching technologies onto the offending technologies or we can attempt to create first time technologies that will augment supply and eventually displace the offending technology. The appearance of first time technologies is often an emergent event for the society in which that advent occurs. A problem is created when the forces behind human needs and wants are given free reign because the technology that serves those boundless desires of humans becomes out of control. The general economy is predicated on continual acceleration of growth and all social and cultural forces are aligned for this unmitigated consumption. IPCC (2007) estimates that the Global GDP is projected to double in fourteen years (2006 to 2020) from $45T (trillions, one thousand billions)
Recommended publications
  • What Is a Complex Adaptive System?
    PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006).
    [Show full text]
  • Capabilities in Systems Engineering: an Overview
    Capabilities in Systems Engineering: An Overview Gon¸caloAntunes and Jos´eBorbinha INESC-ID, Rua Alves Redol, 9 1000-029 Lisboa Portugal {goncalo.antunes,jlb}@ist.utl.pt, WWW home page: http://web.ist.utl.pt/goncalo.antunes Abstract. The concept of capability has been deemed relevant over the years, which can be attested by its adoption in varied domains. It is an abstract concept, but simple to understand by business stakeholders and yet capable of making the bridge to technical aspects. Capabilities seem to bear similarities with services, namely their low coupling and high cohesion. However, the concepts are different since the concept of service seems to rest between that of capability and those directly related to the implementation. Nonetheless, the articulation of the concept of ca- pability with the concept of service can be used to promote business/IT alignment, since both concepts can be used to bridge different concep- tual layers of an enterprise architecture. This work offers an overview of the different uses of this concept, its usefulness, and its relation to the concept of service. Key words: capability, service, alignment, information systems, sys- tems engineering, strategic management, economics 1 Introduction The concept of capability can be defined as \the quality or state of being capable" [19] or \the power or ability to do something" [39]. Although simple, it is a powerful concept, as it can be used to provide an abstract, high-level view of a product, system, or even organizations, offering new ways of dealing with complexity. As such, it has been widely adopted in many areas.
    [Show full text]
  • Existing Cybernetics Foundations - B
    SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Existing Cybernetics Foundations - B. M. Vladimirski EXISTING CYBERNETICS FOUNDATIONS B. M. Vladimirski Rostov State University, Russia Keywords: Cybernetics, system, control, black box, entropy, information theory, mathematical modeling, feedback, homeostasis, hierarchy. Contents 1. Introduction 2. Organization 2.1 Systems and Complexity 2.2 Organizability 2.3 Black Box 3. Modeling 4. Information 4.1 Notion of Information 4.2 Generalized Communication System 4.3 Information Theory 4.4 Principle of Necessary Variety 5. Control 5.1 Essence of Control 5.2 Structure and Functions of a Control System 5.3 Feedback and Homeostasis 6. Conclusions Glossary Bibliography Biographical Sketch Summary Cybernetics is a science that studies systems of any nature that are capable of perceiving, storing, and processing information, as well as of using it for control and regulation. UNESCO – EOLSS The second title of the Norbert Wiener’s book “Cybernetics” reads “Control and Communication in the Animal and the Machine”. However, it is not recognition of the external similaritySAMPLE between the functions of animalsCHAPTERS and machines that Norbert Wiener is credited with. That had been done well before and can be traced back to La Mettrie and Descartes. Nor is it his contribution that he introduced the notion of feedback; that has been known since the times of the creation of the first irrigation systems in ancient Babylon. His distinctive contribution lies in demonstrating that both animals and machines can be combined into a new, wider class of objects which is characterized by the presence of control systems; furthermore, living organisms, including humans and machines, can be talked about in the same language that is suitable for a description of any teleological (goal-directed) systems.
    [Show full text]
  • Introduction to Cybernetics and the Design of Systems
    Introduction to Cybernetics and the Design of Systems © Hugh Dubberly & Paul Pangaro 2004 Cybernetics named From Greek ‘kubernetes’ — same root as ‘steering’ — becomes ‘governor’ in Latin Steering wind or tide course set Steering wind or tide course set Steering wind or tide course set Steering wind or tide course set correction of error Steering wind or tide course set correction of error Steering wind or tide course set correction of error correction of error Steering wind or tide course set correction of error correction of error Steering wind or tide course set correction of error correction of error Cybernetics named From Greek ‘kubernetes’ — same root as ‘steering’ — becomes ‘governor’ in Latin Cybernetic point-of-view - system has goal - system acts, aims toward the goal - environment affects aim - information returns to system — ‘feedback’ - system measures difference between state and goal — detects ‘error’ - system corrects action to aim toward goal - repeat Steering as a feedback loop compares heading with goal of reaching port adjusts rudder to correct heading ship’s heading Steering as a feedback loop detection of error compares heading with goal of reaching port adjusts rudder feedback to correct heading correction of error ship’s heading Automation of feedback thermostat heater temperature of room air Automation of feedback thermostat compares to setpoint and, if below, activates measured by heater raises temperature of room air The feedback loop ‘Cybernetics introduces for the first time — and not only by saying it, but
    [Show full text]
  • Thomas Kuhn on Paradigms
    Vol. 29, No. 7, July 2020, pp. 1650–1657 DOI 10.1111/poms.13188 ISSN 1059-1478|EISSN 1937-5956|20|2907|1650 © 2020 Production and Operations Management Society Thomas Kuhn on Paradigms Gopesh Anand Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 469 Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] Eric C. Larson Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 8 Wohlers Hall, 1206 S. Sixth, Champaign, Illinois 61820, USA, [email protected] Joseph T. Mahoney* Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 140C Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] his study provides key arguments and contributions of Kuhn (1970) concerning paradigms, paradigm shifts, and sci- T entific revolutions. We provide interpretations of Kuhn’s (1970) key ideas and concepts, especially as they relate to business management research. We conclude by considering the practical implications of paradigms and paradigm shifts for contemporary business management researchers and suggest that ethical rules of conversation are at least as critical for the health of a scientific community as methodological rules (e.g., the rules of logical positivism) derived from the phi- losophy of science. Key words: Paradigms; paradigm shifts; scientific revolutions; normal science History: Received: February 2019; Accepted: March 2020 by Kalyan Singhal, after 3 revisions. The Structure of Scientific Revolutions the rich descriptions of the process of advancing this theory. SSR showed that science primarily advances Thomas S.
    [Show full text]
  • Need Means Analysis
    The Systems Engineering Tool Box Dr Stuart Burge “Give us the tools and we will finish the job” Winston Churchill Needs Means Analysis (NMA) What is it and what does it do? Needs Means Analysis (NMA) is a systems thinking tool aimed at exploring alternative system solutions at different levels in order to help define the boundary of the system of interest. It is based around identifying the “need” that a system satisfies and using this to investigate alternative solutions at levels higher, the same and lower than the system of interest. Why do it? At any point in time there is usually a “current” or “preferred” solution to a particular problem. In consequence organizations will develop their operations and infrastructure to support and optimise that solution. This preferred solution is known as the Meta-Solution. For example Toyota, Ford, General Motors, Volkswagen et al all have the same meta-solution when it comes to automobile – in simple terms two-boxes with wheel at each corner. All of the automotive companies have slowly evolved in to an industry aimed at optimising this meta-solution. Systems Thinking encourages us to “step back” from the solution to consider the underlying problem or purpose. In the case of an automobile, the purpose is to “transport passengers and their baggage from one point to another” This is also the purpose of a civil aircraft, passenger train and bicycle! In other words for a given purpose there are alternative meta-solutions. The idea of a pre-eminent meta-solution has also been discussed by Pugh (1991) who introduced the idea of dynamic and static design concepts.
    [Show full text]
  • Collection System Manager
    CITY OF DALY CITY JOB SPECIFICATION EXEMPT POSITION COLLECTION SYSTEM MANAGER DEFINITION Under the general direction of the Director of Water and Wastewater Resources or authorized representative, supervises all activities of the Collection System Maintenance Division, including wastewater collection and recycled water systems, and performs other duties as assigned. EXAMPLES OF DUTIES Manage, supervise, schedule, and review the work of maintenance personnel in the maintenance, inspection and repair of wastewater collection and recycled water distribution systems in the Collection System Maintenance Division of the Department of Water and Wastewater Resources; ensure safe, efficient and effective compliance with local, state and federal laws, rules and regulations, and industrial practices. Implement City, Department and Division Rules and Regulations, policies, procedures and practices. Ensure that required records are accurately maintained. Oversee a comprehensive preventive maintenance program of facilities. Ensure that supervisors conduct regular safety training and maintain a safe work environment. Develop and maintain training programs for employees; ensure that employees maintain required certification. Formally evaluate or ensure the evaluation and satisfactory job performance of assigned employees. Manage crews in support of City departments in maintenance operations, such as the storm drain collection system maintenance and construction program. Work to complete Department and Division goals and objectives. Prepare and manage the Division budget; propose, develop and manage capital projects and manage contracts for the Division. Prepare reports, and make presentations to the City Manager, City Council or others as required. When required, maintain 24-hour availability to address Division emergencies. Develop and maintain good working relationships with supervisors, coworkers, elected officials, professional peer groups and the public.
    [Show full text]
  • Rocket D3 Database Management System
    datasheet Rocket® D3 Database Management System Delivering Proven Multidimensional Technology to the Evolving Enterprise Ecient Performance: C#, and C++. In addition, Java developers can access Delivers high performance via Proven Technology the D3 data files using its Java API. The MVS Toolkit ecient le management For over 30 years, the Pick Universal Data Model (Pick provides access to data and business processes via that requires minimal system UDM) has been synonymous with performance and and memory resources both SOAP and RESTful Web Services. reliability; providing the flexible multidimensional Scalability and Flexibility: database infrastructure to develop critical transac- Scales with your enterprise, tional and analytical business applications. Based on from one to thousands of Why Developers the Pick UDM, the Rocket® D3 Database Manage- users ment System offers enterprise-level scalability and Choose D3 D3 is the choice of more than a thousand applica- Seamless Interoperability: efficiency to support the dynamic growth of any tion developers world-wide—serving top industries Interoperates with varied organization. databases and host including manufacturing, distribution, healthcare, environments through government, retail, and other vertical markets. connectivity tools Rapid application development and application Rocket D3 database-centric development environ- customization requires an underlying data structure Data Security: ment provides software developers with all the that can respond effectively to ever-changing Provides secure, simultaneous necessary tools to quickly adapt to changes and access to the database from business requirements. Rocket D3 is simplistic in its build critical business applications in a fraction of the remote or disparate locations structure, yet allows for complex definitions of data time as compared to other databases; without worldwide structures and program logic.
    [Show full text]
  • PDF Download Starting with Science Strategies for Introducing Young Children to Inquiry 1St Edition Ebook
    STARTING WITH SCIENCE STRATEGIES FOR INTRODUCING YOUNG CHILDREN TO INQUIRY 1ST EDITION PDF, EPUB, EBOOK Marcia Talhelm Edson | 9781571108074 | | | | | Starting with Science Strategies for Introducing Young Children to Inquiry 1st edition PDF Book The presentation of the material is as good as the material utilizing star trek analogies, ancient wisdom and literature and so much more. Using Multivariate Statistics. Michael Gramling examines the impact of policy on practice in early childhood education. Part of a series on. Schauble and colleagues , for example, found that fifth grade students designed better experiments after instruction about the purpose of experimentation. For example, some suggest that learning about NoS enables children to understand the tentative and developmental NoS and science as a human activity, which makes science more interesting for children to learn Abd-El-Khalick a ; Driver et al. Research on teaching and learning of nature of science. The authors begin with theory in a cultural context as a foundation. What makes professional development effective? Frequently, the term NoS is utilised when considering matters about science. This book is a documentary account of a young intern who worked in the Reggio system in Italy and how she brought this pedagogy home to her school in St. Taking Science to School answers such questions as:. The content of the inquiries in science in the professional development programme was based on the different strands of the primary science curriculum, namely Living Things, Energy and Forces, Materials and Environmental Awareness and Care DES Exit interview. Begin to address the necessity of understanding other usually peer positions before they can discuss or comment on those positions.
    [Show full text]
  • Putting Systems to Work
    i PUTTING SYSTEMS TO WORK Derek K. Hitchins Professor ii iii To my beloved wife, without whom ... very little. iv v Contents About the Book ........................................................................xi Part A—Foundation and Theory Chapter 1—Understanding Systems.......................................... 3 An Introduction to Systems.................................................... 3 Gestalt and Gestalten............................................................. 6 Hard and Soft, Open and Closed ............................................. 6 Emergence and Hierarchy ..................................................... 10 Cybernetics ........................................................................... 11 Machine Age versus Systems Age .......................................... 13 Present Limitations in Systems Engineering Methods............ 14 Enquiring Systems................................................................ 18 Chaos.................................................................................... 23 Chaos and Self-organized Criticality...................................... 24 Conclusion............................................................................ 26 Chapter 2—The Human Element in Systems ......................... 27 Human ‘Design’..................................................................... 27 Human Predictability ........................................................... 29 Personality ............................................................................ 31 Social
    [Show full text]
  • The Effects of Feedback Interventions on Performance: a Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory
    Psychological Bulletin Copyright 1996 by the American Psychological Association, Inc. 1996, Vol. II9, No. 2, 254-284 0033-2909/96/S3.00 The Effects of Feedback Interventions on Performance: A Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory Avraham N. Kluger Angelo DeNisi The Hebrew University of Jerusalem Rutgers University Since the beginning of the century, feedback interventions (FIs) produced negative—but largely ignored—effects on performance. A meta-analysis (607 effect sizes; 23,663 observations) suggests that FIs improved performance on average (d = .41) but that over '/3 of the FIs decreased perfor- mance. This finding cannot be explained by sampling error, feedback sign, or existing theories. The authors proposed a preliminary FI theory (FIT) and tested it with moderator analyses. The central assumption of FIT is that FIs change the locus of attention among 3 general and hierarchically organized levels of control: task learning, task motivation, and meta-tasks (including self-related) processes. The results suggest that FI effectiveness decreases as attention moves up the hierarchy closer to the self and away from the task. These findings are further moderated by task characteristics that are still poorly understood. To relate feedback directly to behavior is very confusing. Results able has been historically disregarded by most FI researchers. This are contradictory and seldom straight-forward. (Ilgen, Fisher, & disregard has led to a widely shared assumption that FIs consis- Taylor, 1979, p. 368) tently improve performance. Fortunately, several FI researchers The effects of manipulation of KR [knowledge of results] on motor (see epigraphs) have recently recognized that FIs have highly vari- learning.
    [Show full text]
  • An Analysis of Power and Stress Using Cybernetic Epistemology Randall Robert Lyle Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 An analysis of power and stress using cybernetic epistemology Randall Robert Lyle Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Educational Psychology Commons, Family, Life Course, and Society Commons, and the Philosophy Commons Recommended Citation Lyle, Randall Robert, "An analysis of power and stress using cybernetic epistemology " (1992). Retrospective Theses and Dissertations. 10131. https://lib.dr.iastate.edu/rtd/10131 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from lefr to right in equal sections with small overlaps.
    [Show full text]