Lecture 9 – Modeling, Simulation, and Systems Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 9 – Modeling, Simulation, and Systems Engineering Lecture 9 – Modeling, Simulation, and Systems Engineering • Development steps • Model-based control engineering • Modeling and simulation • Systems platform: hardware, systems software. EE392m - Spring 2005 Control Engineering 9-1 Gorinevsky Control Engineering Technology • Science – abstraction – concepts – simplified models • Engineering – building new things – constrained resources: time, money, • Technology – repeatable processes • Control platform technology • Control engineering technology EE392m - Spring 2005 Control Engineering 9-2 Gorinevsky Controls development cycle • Analysis and modeling – Control algorithm design using a simplified model – System trade study - defines overall system design • Simulation – Detailed model: physics, or empirical, or data driven – Design validation using detailed performance model • System development – Control application software – Real-time software platform – Hardware platform • Validation and verification – Performance against initial specs – Software verification – Certification/commissioning EE392m - Spring 2005 Control Engineering 9-3 Gorinevsky Algorithms/Analysis Much more than real-time control feedback computations • modeling • identification • tuning • optimization • feedforward • feedback • estimation and navigation • user interface • diagnostics and system self-test • system level logic, mode change EE392m - Spring 2005 Control Engineering 9-4 Gorinevsky Model-based Control Development Conceptual Control design model: Conceptual control sis algorithm: y Analysis x(t+1) = x(t) + u(t) u = -k(x-xd) Application Detailed simulation Detailed control application: code: Simulink model saturation, initialization, BIT, Controls anal Controls fault recovery, bumpless transfer Systems platform: Validation and Hardware-in-the- Prototype Run-time code, OS verification loop sim Hardware platform controller Deployed Deployment Physical plant stem and software controller y S EE392m - Spring 2005 Control Engineering 9-5 Gorinevsky Controls Analysis Conceptual Data model Identification & tuning Analysis Accomodation x(t+1)Fault = x( tmodel) + u(t) algorithm: Control design model: Conceptualu = -k(x-xd control) algorithm: x(t+1) = x(t) + u(t) u = -k(x-xd) Application Detailed Detailed control application: code: simulation saturation, initialization, BIT, model fault recovery, manual/auto Simulink mode, bumpless transfer, startup/shutdown EE392m - Spring 2005 Control Engineering 9-6 Gorinevsky The rest of the lecture • Modeling and Simulation • Deployment Platform • Controls Software Development EE392m - Spring 2005 Control Engineering 9-7 Gorinevsky Modeling in Control Engineering Physical system • Control in a Measurement Control Control system computing handles system Sensors Actuators perspective • Control analysis Physical perspective system Control computing Measurement System model Control model handle model EE392m - Spring 2005 Control Engineering 9-8 Gorinevsky Models • Why spend much time talking about models? – Modeling and simulation could take 80% of control analysis effort. • Model is a mathematical representations of a system – Models allow simulating and analyzing the system – Models are never exact • Modeling depends on your goal – A single system may have many models – Large ‘libraries’ of standard model templates exist – A conceptually new model is a big deal (economics, biology) • Main goals of modeling in control engineering – conceptual analysis – detailed simulation EE392m - Spring 2005 Control Engineering 9-9 Gorinevsky Modeling approaches • Controls analysis uses deterministic models. Randomness and uncertainty are usually not dominant. • White box models: physics described by ODE and/or PDE • Dynamics, Newton mechanics x& = f (x,t) • Space flight: add control inputs u and measured outputs y x& = f (x,u,t) y = g(x,u,t) EE392m - Spring 2005 Control Engineering 9-10 Gorinevsky Orbital mechanics example • Newton’s mechanics – fundamental laws – dynamics = −γ ⋅ r + v& m 3 Fpert (t) r v 1643-1736 r r& = v ⎡ r1 ⎤ • Laplace ⎢r ⎥ ⎢ 2 ⎥ – computational dynamics ⎢r3 ⎥ (pencil & paper computations) x& = f (x,t) x = ⎢ ⎥ v – deterministic model-based ⎢ 1 ⎥ prediction ⎢v2 ⎥ 1749-1827 EE392m - Spring 2005 Control Engineering 9-11 ⎢ ⎥ Gorinevsky ⎣v3 ⎦ Sampled and continuous time • Sampled and continuous time together • Continuous time physical system + digital controller – ZOH = Zero Order Hold A/D, Sample Control D/A, ZOH computing Sensors Physical Actuators system EE392m - Spring 2005 Control Engineering 9-12 Gorinevsky Servo-system modeling • Mid-term problem • First principle model: electro-mechanical + computer sampling • Parameters follow from the specs c F u g m M β b m&y& + βy& + b( y& − x&) + c( y − x) = F M&x& + b(x& − y&) + c(x − y) = 0 = + = F fI, TI I& I gu EE392m - Spring 2005 Control Engineering 9-13 Gorinevsky Finite state machines • TCP/IP State Machine EE392m - Spring 2005 Control Engineering 9-14 Gorinevsky Hybrid systems • Combination of continuous-time dynamics and a state machine • Thermostat example • Analytical tools are not fully established yet • Simulation analysis tools are available – Stateflow by Mathworks offx = 70 on = = − x 72 x& = −Kx x& K (h x)x x ≥ 70 x ≤ 75 x = 75 EE392m - Spring 2005 Control Engineering 9-15 Gorinevsky PDE models • Include functions of spatial Example: sideways heat equation variables x – electromagnetic fields – mass and heat transfer Tinside=u Toutside=0 – fluid dynamics – structural deformations • For ‘controls’ simulation, model y heat flux reduction step is necessary – Usually done with FEM/CFD data ∂T ∂2T = k – Example: fit step response ∂t ∂x2 T (0) = u; T (1) = 0 ∂T y = ∂ x x=1 EE392m - Spring 2005 Control Engineering 9-16 Gorinevsky Simulation • ODE solution – dynamical model: x& = f (x,t) – Euler integration method: x(t + d ) = x(t) + d ⋅ f ()x(t),t – Runge-Kutta method: ode45 in Matlab • Can do simple problems by integrating ODEs • Issues with modeling of engineered systems: – stiff systems, algebraic loops – mixture of continuous and sampled time – state machines and hybrid logic (conditions) – systems build of many subsystems – large projects, many people contribute different subsystems EE392m - Spring 2005 Control Engineering 9-17 Gorinevsky Simulation environment • Simulink by Mathworks • Matlab functions and analysis • Stateflow state machines • Ptolemeus - UC Berkeley • Block libraries • Subsystem blocks developed independently • Engineered for developing large simulation models • Controller can be designed in the same environment • Supports generation of run-rimeEE392m control - Spring 2005code Control Engineering 9-18 Gorinevsky Model development and validation • Model development is a skill • White box models: first principles • Black box models: data driven • Gray box models: with some unknown parameters • Identification of model parameters – necessary step – Assume known model structure – Collect plant data: special experiment or normal operation – Tweak model parameters to achieve a good fit EE392m - Spring 2005 Control Engineering 9-19 Gorinevsky First Principle Models - Aerospace Airbus 380: $13B development • Aircraft models • Component and subsystem modeling and testing • CFD analysis • Wind tunnel tests – to adjust models (fugde factors) • Flight tests – update aerodynamic tables and flight dynamics models NASA Langley – 1998 HARV – F/A-18 EE392m - Spring 2005 Control Engineering 9-20 Gorinevsky Step Response Model - Process • Dynamical control inputs matrix control (DMC) • Industrial processes measured outputs EE392m - Spring 2005 Control Engineering 9-21 Gorinevsky Approximate Maps • Analytical expressions are rarely sufficient in practice • Models are computable off line – pre-compute simple approximation – on-line approximation • Models contain data identified in the experiments – nonlinear maps – interpolation or look-up tables – AI approximation methods • Neural networks • Fuzzy logic • Direct data driven models EE392m - Spring 2005 Control Engineering 9-22 Gorinevsky Empirical Models - Maps • Aerospace and automotive – have most developed modeling approaches Example • Aerodynamic tables • Engine maps – turbines – jet engines – automotive - ICE TEF=Trailing Edge Flap EE392m - Spring 2005 Control Engineering 9-23 Gorinevsky Empirical Models - Maps • Process control mostly uses empirical models • Process maps in semiconductor manufacturing • Epitaxial growth (semiconductor process) – process map for run-to-run control EE392m - Spring 2005 Control Engineering 9-24 Gorinevsky Multivariable B-splines • Regular grid in multiple variables • Tensor product of B-splines • Used as a basis of finite-element models = y(u,v) ∑ w j,k B j (u)Bk (v) j,k EE392m - Spring 2005 Control Engineering 9-25 Gorinevsky Neural Networks • Any nonlinear approximator might be called a Neural Network – RBF Neural Network – Polynomial Neural Network Linear in parameters – B-spline Neural Network – Wavelet Neural Network • MPL - Multilayered Perceptron – Nonlinear in parameters – Works for many inputs ⎛ ⎞ ⎛ ⎞ y(x) = w + f ⎜ w y1 ⎟, y1 = w + f ⎜ w x ⎟ 1,0 ⎜∑ 1, j j ⎟ j 2,0 ⎜∑ 2, j j ⎟ ⎝ j ⎠ ⎝ j ⎠ 1− e− x y f (x) = y=f(x) 1+ e−x x EE392m - Spring 2005 Control Engineering 9-26 Gorinevsky Multi-Layered Perceptrons • Network parameter computation [ (1) ( N ) ] – training data set Y = y K y – parameter identification (1) ( N ) x K x y(x) = F(x;θ ) • Noninear LS problem 2 V = ∑ y( j) − F(x ( j);θ ) → min j • Iterative NLS optimization – Levenberg-Marquardt • Backpropagation – variation of a gradient descent EE392m - Spring 2005
Recommended publications
  • Capabilities in Systems Engineering: an Overview
    Capabilities in Systems Engineering: An Overview Gon¸caloAntunes and Jos´eBorbinha INESC-ID, Rua Alves Redol, 9 1000-029 Lisboa Portugal {goncalo.antunes,jlb}@ist.utl.pt, WWW home page: http://web.ist.utl.pt/goncalo.antunes Abstract. The concept of capability has been deemed relevant over the years, which can be attested by its adoption in varied domains. It is an abstract concept, but simple to understand by business stakeholders and yet capable of making the bridge to technical aspects. Capabilities seem to bear similarities with services, namely their low coupling and high cohesion. However, the concepts are different since the concept of service seems to rest between that of capability and those directly related to the implementation. Nonetheless, the articulation of the concept of ca- pability with the concept of service can be used to promote business/IT alignment, since both concepts can be used to bridge different concep- tual layers of an enterprise architecture. This work offers an overview of the different uses of this concept, its usefulness, and its relation to the concept of service. Key words: capability, service, alignment, information systems, sys- tems engineering, strategic management, economics 1 Introduction The concept of capability can be defined as \the quality or state of being capable" [19] or \the power or ability to do something" [39]. Although simple, it is a powerful concept, as it can be used to provide an abstract, high-level view of a product, system, or even organizations, offering new ways of dealing with complexity. As such, it has been widely adopted in many areas.
    [Show full text]
  • Metallurgical Engineering
    ENSURING THE EXPERTISE TO GROW SOUTH AFRICA Discipline-specific Training Guideline for Candidate Engineers in Metallurgical Engineering R-05-MET-PE Revision No.: 2: 25 July 2019 ENGINEERING COUNCIL OF SOUTH AFRICA Tel: 011 6079500 | Fax: 011 6229295 Email: [email protected] | Website: www.ecsa.co.za ENSURING THE Document No.: Effective Date: Revision No.: 2 R-05-MET-PE 25/07/2019 Subject: Discipline-specific Training Guideline for Candidate Engineers in Metallurgical Engineering Compiler: Approving Officer: Next Review Date: Page 2 of 46 MB Mtshali EL Nxumalo 25/07/2023 TABLE OF CONTENTS DEFINITIONS ............................................................................................................................ 3 BACKGROUND ......................................................................................................................... 5 1. PURPOSE OF THIS DOCUMENT ......................................................................................... 5 2. AUDIENCE............................................................................................................................. 6 3. PERSONS NOT REGISTERED AS CANDIDATES OR NOT BEING TRAINED UNDER COMMITMENT AND UNDERTAKING (C&U) ..................................................... 7 4. ORGANISING FRAMEWORK FOR OCCUPATIONS ............................................................. 7 4.1 Extractive Metallurgical Engineering ..................................................................................... 8 4.2 Mineral Processing Engineering ..........................................................................................
    [Show full text]
  • Control in Robotics
    Control in Robotics Mark W. Spong and Masayuki Fujita Introduction The interplay between robotics and control theory has a rich history extending back over half a century. We begin this section of the report by briefly reviewing the history of this interplay, focusing on fundamentals—how control theory has enabled solutions to fundamental problems in robotics and how problems in robotics have motivated the development of new control theory. We focus primarily on the early years, as the importance of new results often takes considerable time to be fully appreciated and to have an impact on practical applications. Progress in robotics has been especially rapid in the last decade or two, and the future continues to look bright. Robotics was dominated early on by the machine tool industry. As such, the early philosophy in the design of robots was to design mechanisms to be as stiff as possible with each axis (joint) controlled independently as a single-input/single-output (SISO) linear system. Point-to-point control enabled simple tasks such as materials transfer and spot welding. Continuous-path tracking enabled more complex tasks such as arc welding and spray painting. Sensing of the external environment was limited or nonexistent. Consideration of more advanced tasks such as assembly required regulation of contact forces and moments. Higher speed operation and higher payload-to-weight ratios required an increased understanding of the complex, interconnected nonlinear dynamics of robots. This requirement motivated the development of new theoretical results in nonlinear, robust, and adaptive control, which in turn enabled more sophisticated applications. Today, robot control systems are highly advanced with integrated force and vision systems.
    [Show full text]
  • Technical Report 05-73 the Methodology Center, Pennsylvania State University
    Engineering Control Approaches for the Design and Analysis of Adaptive, Time-Varying Interventions Daniel E. Rivera and Michael D. Pew Control Systems Engineering Laboratory Department of Chemical and Materials Engineering Arizona State University Tempe, Arizona 85287-6006 Linda M. Collins The Methodology Center and Department of Human Development and Family Studies Penn State University State College, PA Susan A. Murphy Institute for Social Research and Department of Statistics University of Michigan Ann Arbor, MI May 30, 2005 Technical Report 05-73 The Methodology Center, Pennsylvania State University 1 Abstract Control engineering is the field that examines how to transform dynamical system behavior from undesirable conditions to desirable ones. Cruise control in automobiles, the home thermostat, and the insulin pump are all examples of control engineering at work. In the last few decades, signifi- cant improvements in computing and information technology, increasing access to information, and novel methods for sensing and actuation have enabled the extensive application of control engi- neering concepts to physical systems. While engineering control principles are meaningful as well to problems in the behavioral sciences, the application of this topic to this field remains largely unexplored. This technical report examines how engineering control principles can play a role in the be- havioral sciences through the analysis and design of adaptive, time-varying interventions in the prevention field. The basic conceptual framework for this work draws from the paper by Collins et al. (2004). In the initial portion of the report, a general overview of control engineering principles is presented and illustrated with a simple physical example. From this description, a qualitative description of adaptive time-varying interventions as a form of classical feedback control is devel- oped, which is depicted in the form of a block diagram (i.e., a control-oriented signal and systems representation).
    [Show full text]
  • Need Means Analysis
    The Systems Engineering Tool Box Dr Stuart Burge “Give us the tools and we will finish the job” Winston Churchill Needs Means Analysis (NMA) What is it and what does it do? Needs Means Analysis (NMA) is a systems thinking tool aimed at exploring alternative system solutions at different levels in order to help define the boundary of the system of interest. It is based around identifying the “need” that a system satisfies and using this to investigate alternative solutions at levels higher, the same and lower than the system of interest. Why do it? At any point in time there is usually a “current” or “preferred” solution to a particular problem. In consequence organizations will develop their operations and infrastructure to support and optimise that solution. This preferred solution is known as the Meta-Solution. For example Toyota, Ford, General Motors, Volkswagen et al all have the same meta-solution when it comes to automobile – in simple terms two-boxes with wheel at each corner. All of the automotive companies have slowly evolved in to an industry aimed at optimising this meta-solution. Systems Thinking encourages us to “step back” from the solution to consider the underlying problem or purpose. In the case of an automobile, the purpose is to “transport passengers and their baggage from one point to another” This is also the purpose of a civil aircraft, passenger train and bicycle! In other words for a given purpose there are alternative meta-solutions. The idea of a pre-eminent meta-solution has also been discussed by Pugh (1991) who introduced the idea of dynamic and static design concepts.
    [Show full text]
  • Control Theory
    Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data.
    [Show full text]
  • Operations Research and Simulation in Master's
    Proceedings of the 2013 Winter Simulation Conference R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds OPERATIONS RESEARCH AND SIMULATION IN MASTER’S DEGREES: A CASE STUDY REGARDING DIFFERENT UNIVERSITIES IN SPAIN Alex Grasas Angel A. Juan Helena Ramalhinho Dept. of Economics and Business Dept. of Computer Science Universitat Pompeu Fabra / IN3 – Open University of Catalonia / Barcelona GSE Autonomous University of Barcelona Barcelona, 08005, SPAIN Barcelona, 08018, SPAIN ABSTRACT This paper presents several experiences regarding Operations Research (OR) and Simulation education activities in three master programs, each of them offered at a different university. The paper discusses the importance of teaching these contents in most managerial and engineering masters. After a brief overview of existing related work, the paper provides some recommendations –based on our own teaching experi- ences– that instructors should keep in mind when designing OR/Simulation courses, either in traditional face-to-face as well as in pure online learning models. The case studies exposed here include students from business management, computer science, and aeronautical management degrees, respectively. For each type of student, different OR/Simulation tools are employed in the courses, ranging from easy-to-use optimization and simulation software to simulation-based algorithms developed from scratch using a pro- gramming language. 1 INTRODUCTION Operations Research (OR) can be defined as the application of advanced analytical methods to support complex decision-making processes. Among others, some of these analytical methods are: simulation, da- ta analysis, mathematical optimization, and metaheuristics. Thus, OR is an interdisciplinary area which borrows methods and techniques from many fields, including: mathematics, computer science, statistics, and business management.
    [Show full text]
  • Putting Systems to Work
    i PUTTING SYSTEMS TO WORK Derek K. Hitchins Professor ii iii To my beloved wife, without whom ... very little. iv v Contents About the Book ........................................................................xi Part A—Foundation and Theory Chapter 1—Understanding Systems.......................................... 3 An Introduction to Systems.................................................... 3 Gestalt and Gestalten............................................................. 6 Hard and Soft, Open and Closed ............................................. 6 Emergence and Hierarchy ..................................................... 10 Cybernetics ........................................................................... 11 Machine Age versus Systems Age .......................................... 13 Present Limitations in Systems Engineering Methods............ 14 Enquiring Systems................................................................ 18 Chaos.................................................................................... 23 Chaos and Self-organized Criticality...................................... 24 Conclusion............................................................................ 26 Chapter 2—The Human Element in Systems ......................... 27 Human ‘Design’..................................................................... 27 Human Predictability ........................................................... 29 Personality ............................................................................ 31 Social
    [Show full text]
  • Module 1 (Computer Modeling and Simulation) Introduction
    Module 1: Modeling and Simulation MODULE 1 (COMPUTER MODELING AND SIMULATION) INTRODUCTION Module Name: Introduction to Computer Modeling and Simulation Content of this Introduction: 1. Overview of the Module 2. Prerequisite knowledge and assumptions encompassed by the Module 3. Standards covered by the Module 4. Materials needed for the Module 5. Pacing Guides for 6 Lessons, including Learning Objectives and Assessment Questions 1. Overview of the Module This module introduces basic concepts in modeling complex systems through hands-on activities and participatory simulations. A scaffolded series of highly-engaging design and build activities guide students through developing their first computer model in StarLogo Nova, a modeling and simulation environment developed at Massachusetts Institute of Technology. Students practice designing and running experiments using a computer model as a virtual test bed. 2. Prerequisite knowledge and assumptions encompassed by the Module There are no prerequisites for Module 1. The module was designed to be an introduction to computer modeling and simulation for students with no prior background in the topic. It is necessary to complete this module prior to commencing the Earth, Life or Physical Science module. 3. Standards covered by the Module Please see the Standards Document for a detailed description of Standards covered by this Module, Lesson by Lesson. 4. Materials needed for this Module You will need the following materials to teach this module: • Computer and projector • What is a CAS? document
    [Show full text]
  • Fundamentals of Systems Engineering
    Fundamentals of Systems Engineering Prof. Olivier L. de Weck Session 12 Future of Systems Engineering 1 2 Status quo approach for managing complexity in SE MIL-STD-499A (1969) systems engineering SWaP used as a proxy metric for cost, and dis- System decomposed process: as employed today Conventional V&V techniques incentivizes abstraction based on arbitrary do not scale to highly complex in design cleavage lines . or adaptable systems–with large or infinite numbers of possible states/configurations Re-Design Cost System Functional System Verification Optimization Specification Layout & Validation SWaP Subsystem Subsystem . Resulting Optimization Design Testing architectures are fragile point designs SWaP Component Component Optimization Power Data & Control Thermal Mgmt . Design Testing . and detailed design Unmodeled and undesired occurs within these interactions lead to emergent functional stovepipes behaviors during integration SWaP = Size, Weight, and Power Desirable interactions (data, power, forces & torques) V&V = Verification & Validation Undesirable interactions (thermal, vibrations, EMI) 3 Change Request Generation Patterns Change Requests Written per Month Discovered new change “ ” 1500 pattern: late ripple system integration and test 1200 bug [Eckert, Clarkson 2004] fixes 900 subsystem Number Written Number Written design 600 major milestones or management changes component design 300 0 1 5 9 77 81 85 89 93 73 17 21 25 29 33 37 41 45 49 53 57 61 65 69 13 Month © Olivier de Weck, December 2015, 4 Historical schedule trends
    [Show full text]
  • University Master´S Degree in Systems and Control Engineering
    UNIVERSITY MASTER´S DEGREE IN SYSTEMS AND CONTROL ENGINEERING English Version University Master’s Degree in Systems and Control Engineering INFORMATION IDENTIFYING THE QUALIFICATION Name and status of awarding institution Universidad Complutense de Madrid y la Universidad Nacional de Educación a Distancia. Public universities. Name of qualification and title conferred in original language Máster Universitario en Ingeniería de Sistemas y de Control por la Universidad Complutense de Madrid y la Universidad Nacional de Educación a Distancia. Status National validity. Approved by Accord of the Council of Ministers on July 1st, 2011. Main field(s) of study for the qualification The study is included in the field of Engineering and Architecture. Language(s) of instruction/examination The degree is taught in Spanish. INFORMATION ON THE LEVEL OF THE QUALIFICATION Level of qualification Level 3 (Master) in the Spanish Framework of Higher Education (MECES) is equivalent to level 7 of European Qualification Framework (EQF). Official length of programme The official length of programme is 60 ECTS and 1 year full time. Access requirements Engineering or Bachelor’s Degree in Computer Sciences or scientific- technological degrees related to Systems, Automation, Electronics, Communications or Computer Engineering. Doctorate on Automatic or Computer Sciences 2 INFORMATION ON THE CONTENTS Mode of study Blended learning to full time. Programme requirements The programme of studies is composed of 42 selective ECTS, 6 external practices and 12 Master's Dissertation
    [Show full text]
  • ESD.00 Introduction to Systems Engineering, Lecture 3 Notes
    Introduction to Engineering Systems, ESD.00 System Dynamics Lecture 3 Dr. Afreen Siddiqi From Last Time: Systems Thinking • “we can’t do just one thing” – things are interconnected and our actions have Decisions numerous effects that we often do not anticipate or realize. Goals • Many times our policies and efforts aimed towards some objective fail to produce the desired outcomes, rather we often make Environment matters worse Image by MIT OpenCourseWare. Ref: Figure 1-4, J. Sterman, Business Dynamics: Systems • Systems Thinking involves holistic Thinking and Modeling for a complex world, McGraw Hill, 2000 consideration of our actions Dynamic Complexity • Dynamic (changing over time) • Governed by feedback (actions feedback on themselves) • Nonlinear (effect is rarely proportional to cause, and what happens locally often doesn’t apply in distant regions) • History‐dependent (taking one road often precludes taking others and determines your destination, you can’t unscramble an egg) • Adaptive (the capabilities and decision rules of agents in complex systems change over time) • Counterintuitive (cause and effect are distant in time and space) • Policy resistant (many seemingly obvious solutions to problems fail or actually worsen the situation) • Char acterized by trade‐offs (h(the l ong run is often differ ent f rom the short‐run response, due to time delays. High leverage policies often cause worse‐before‐better behavior while low leverage policies often generate transitory improvement before the problem grows worse. Modes of Behavior Exponential Growth Goal Seeking S-shaped Growth Time Time Time Oscillation Growth with Overshoot Overshoot and Collapse Time Time Time Image by MIT OpenCourseWare. Ref: Figure 4-1, J.
    [Show full text]