Enocean Alliance Now with More Than 170 Members (01/2011)

Total Page:16

File Type:pdf, Size:1020Kb

Enocean Alliance Now with More Than 170 Members (01/2011) The way into the future. The EnOcean Standard for sustainable buildings. Energy-efficient. Interoperable. Practice-proven. Self-powered wireless technology from EnOcean. Everything else is prior art. ENOCEAN IS THE KEY TO INTELLIGENT GREEN BUILDINGS. Due to the unique combination of miniaturised energy converters with reliable radio technology, these wireless sensor networks operate for decades without maintenance, are flexible, and ensure cost reductions and energy savings in buildings and industrial installations alike: n Building automation optimizes energy savings and reduces operating costs lowering total cost of ownership. It furthermore, enhances security, protection and convenience. n Wireless radio technology is essential to the success of building automation. It permits the required number, functionality and flexibility of the necessary sensors. Radio technology minimizes installation times and reduces system costs. n No batteries is a mandatory requirement for larger installations. The cost to monitor, replace and recycle batteries increases with the number of installed nodes. Batteryless EnOcean radio solutions are eco-friendly, comply with the principles of building biology, and save key resources. PREMINO II, MUNICH New office building 2007: cross-facility solution Application Building automation with WAGO I/O, DALI, sunshield, heating control, ceilings with integrated cooling Solution n 55 window contacts n 352 lighting switches n 321 blind switches n 303 room temperature sensors n Room controllers in ceilings and floors Benefits n Flexible room structure n Simple installation and service n Full interoperability of products ENOCEAN WIRELESS STANDARD FOR SUSTAINABLE BUILDING. Self-powered Only EnOcean wireless technology supports batteryless and maintenance-free sensors that can be freely positioned: switches next to doors, temperature sensors at the workplace, and motion detectors in the middle of rooms. Compared to a wired solution, buildings can be planned, constructed and operated with greater flexibility and at lower cost. Sensors harvest energy from their surroundings – tiny changes in movement, pressure, light, temperature or vibration are all that is needed. Interoperable wireless standard Interoperable technology and products. HVAC&R, monitoring and lighting control systems are readily available and a wide-ranging portfolio of products exists, based on an interoperable standard technology together with interfaces to established automation solutions such as LON, KNX/EIB, BACnet and TCP/IP. Proven technology for sustainable buildings Tried and tested. EnOcean-enabled wireless networks have been installed in 10,000s of buildings; making it the most pervasive and field-tested wireless building automation standard in the world. From retrofitting older structures to designing new buildings, the EnOcean technology is empowering the imagination and energizing creativity; helping to make sustainable buildings a reality. ADVANTAGES OF SELF-POWERED WIRELESS TECHNOLOGY FROM ENOCEAN ... The combination of award-winning standard technology from EnOcean with a fully compatible range of products from OEM partners creates an uncomplicated, thoroughly engineered and maintenance-free solution for every requirements. ... for building specialists: architects, system integrators, planners and installers n Flexibility n Installation interoperability n Simple installation n Environmentally friendly n Future-assured ... for builders, facility managers, private clients n Energy savings n Cost benefits n Flexibility and comfort n Simple operation Convincing comparison. Wired system versus EnOcean wireless sensor technology. Typical office with 4 luminaires, 2 windows, 2 radiators CONVENTIONAL WIRING, FLEXIBLE INSTALLATION WITH ENOCEAN TECHNOLOGY, NO AUTOMATION SEMI-AUTOMATION = 100% energy consumption, no flexibility = 30% energy saving, 100% flexibility Luminaire Luminaire Switch Switch Temperature monitor Temperature monitor Valve control Valve control M detector M detector Window contact Heating Window contact Blinds Heating EnOcean actuator Blinds lighting EnOcean actuator EnOcean actuator blinds lighting EnOcean actuator EnOcean actuator WIRED BUILDING AUTOMATION heating valveBUILDING AUTOMATION WITH ENOCEAN TECHNOLOGY blinds EnOcean actuator = 30% energy saving, no flexibility = 30% energy saving, 100% flexibility, 70% less cable heating valve Area Area controller controller WHERE TO OBTAIN PRODUCTS WITH ENOCEAN TECHNOLOGY? Direct from manufacturers EnOcean-enabled products are obtainable direct from manufacturers or through their sales network. For more information about manufacturers and their products, visit www.enocean-alliance.org/products. Wholesalers EnOcean-enabled end-products for installation and operation in buildings can be obtained from electrical wholesalers. End-users EnOcean-enabled end-products for home builders are obtainable from retailers and through installers or from web shops. EnOcean pays back. New building or conversion – short-term and long-term Part of building: 30 x 15 m 26 light switches 14 blind switches 12 temperature monitors 30 window contacts 26 lamp circuits 14 blind circuits 30 heating valves 1 controllers / gateways Application: new office building for thorough-going flexibility Solution: use of bus technology; wireless switches with EnOcean technology are recommended for increased flexibility and faster implementation of changes in purpose Conventional installation Material Wireless technology Material (wired) 1st step Wiring of line power 304 m 1st step Wiring of line power 304 m 2nd step Install junction boxes and connect wires 14 pcs 2nd step Install junction boxes and connect wires 14 pcs 3rd step Wiring of bus 472 m 3rd step Wiring of bus (only gateway) 40 m Install and connect gateway Install and connect gateway 4th step Install bus components in subdistributor 4th step Install bus components in subdistributor Install power supply, bus coupler in subdistributor 1 pc Power supply, bus coupler 1 pc Lighting actuators 4-channel 7 pcs Lighting actuators 4-channel 7 pcs Blind actuators 2-channel 7 pcs Blind actuators 2-channel 7 pcs 5th step Flush boxes for bus switches 40 pcs 5th step n/a 6th step Install and connect bus switches 40 pcs 6th step Install wireless switches 40 pcs 7th step Startup 54 addresses 7th step Startup 54 addresses Total cost 7.712 € Total cost 6.435 € Advantage: approx. 20% cost savings and significant time savings through use of EnOcean wireless technology Application: conversion of an office building with new room arrangement and repositioning of partition walls Solution: minimal outlay because line power, lighting and shutters are already in place, and only bus cabling to switches has to be adapted and flush boxes/bus switches need to be newly set Conventional installation Material Wireless technology Material (wired) 1st step Wiring of bus 210 m 1st step n/a 2nd step Flush boxes for bus switches 15 pcs 2nd step n/a 3rd step Install and connect bus switches 15 pcs 3rd step Install wireless switches 15 pcs 4th step Startup 15 addresses 4th step Startup 15 addresses Total cost 935 € Total cost 408 € Advantage: approx. 60% cost savings and significant time savings through use of EnOcean wireless technology EnOcean turns a building into a smart and energy-efficient showpiece. Energy-efficiency & Flexibility “Enabled by Enocean” KNX, DALI, LON, Gateway / BMS BACnet,TCP/IP Room Controller Direct Control 3 7 8 2 9 6 4 1 5 Lighting Application HVAC Application 1 Batteryless wireless switches control lighting 4 Room temperature sensor for minimal energy and shading. consumption and maximum comfort. 2 5 Batteryless outdoor light sensors automatically Climatic sensors (humidity and CO2) monitor indoor match lighting to daylight. air quality. 3 Occupancy sensor adjusts temperature and 6 7 Position sensors – window handle and window turns off lights when a room is not in use. contact – cut out heating and air-conditioning when windows are open. 8 Central control on a touch panel or PC/notebook. 9 Remote monitoring and control by a mobile phone or on the Internet. References Juwi HQ (D) Promutuel Insurance, TORRE ESPACIO (E) IBM Zurich (CH) Montreal, Quebec (CAN) The world’s most energy- Lighting and HVAC applications The world’s tallest, wireless New energy-efficient efficient office building. in new office building. sensor-automated building construction. is home to 4,000 EnOcean- enabled controls. Benefits: Benefits: Benefits: Benefits: n Autonomous energy n Reduced energy n Unlimited flexibility n Cost and time savings n Efficiency and comfort consumption n Simple installation in installation n Possible integration of other n Unlimited flexibility n Low cost of installation, n Freely combined room systems n Simple installation operation, energy and modules redevelopment Your Payback/ROI n 15% cost savings in new construction Further Buildings n 70% cost savings in retrofits “Enabled by ENOcean”: n 40% energy savings n Office Buildings n Unlimited Flexibility n Hotels n Residential Buildings n Hospitals n Retail Buildings n Schools n Industrial Buildings n Historical Buildings CONTACT Become part of the EnOcean standard for sustainable building. Contact following partner for planning support or information on where to obtain products: PROMOTER EnOcean Alliance now with more than 170 members (01/2011). ENOCEAN ALLIANCE The EnOcean Alliance is a consortium of companies dedicated to the advancement of self-powered interoperable wireless building control systems. Alliance innovations create interoperable standard solutions helping to make buildings more energy-efficient, flexible and cost-effective. The EnOcean Alliance has the largest installed base of field-proven wireless building automation networks in the world. www.enocean-alliance.org.
Recommended publications
  • Programmable Fieldbus Controllers 61
    Programmable Fieldbus Cont rollers ŻŻ Section 2 Ż Section 3.1 Prog rammable Fieldbus Cont rollers Section 3.3 Ź PERSPECTO ® Control Panels PFC200 • Decentralized intelligence based on Prog rammable Fieldbus Cont rolle r XT R fieldbus couplers • Merging control and visualization • Maximum performance in a minimum • Programmable to IEC 61131-3 For demanding applications where the • 8.9 cm ... 38.1 cm (3.5” … 15”) space • WAGO-I/O-SYSTEM 750, modular following are critical: • High processing speed • Extreme temperature stability • Additional operating controls • Immunity to interference and (e.g., start/stop switch) impulse-voltage withstand • Based on Linux® also in • Vibration and shock resistance high-level language Cont rolle rs 3 Programmable Fieldbus Controllers 61 Page General Product Information 62 Ve rsions 63 Inte rf aces and Configurations 63 Installation Inst ructions 64 Item Numbe r Keys 65 Standa rds and Rated Conditions 65 ETHERNET TCP S S Net/IP r OFIBU R BACnet/IP IP KNX P CANopen Ethe CPU MODBU Othe rs Description Item No. IEC 60870-5 750-880 66 32-bit x x IEC 61850 ETHERNET Controller IEC 61400-25 750-881 68 750-885 70 x x Media redundancy ETHERNET Controller 32-bit 750-882 72 MODBUS RTU IEC 60870-5 32-bit x x IEC 61850 Telecontrol Controller 750-872 74 IEC 61400-25 3.2 ETHERNET TCP/IP Controller, x x MODBUS RTU 76 32-bit RS-232 750-873 PFC 32-bit x x ETHERNET Controller 750-852 78 32-bit x x KNX IP Controller 750-889 80 x x BACnet/IP Controller 750-831 82 32 Bit x x BACnet/IP Controller 750-830 84 32 Bit x BACnet MS/TP
    [Show full text]
  • KNX the Smart Guide
    The Smart Guide KNX The Smart Guide Image disclaimer: All photographs used in this Smart Guide are of projects that have been completed by mySmartCTI. Photographs used may show installations that do not currently utilize the KNX protocol. Design » Deliver » Optimise » Guarantee The Smart Guide Contents: KNX – The worldwide STANDARD Welcome to the first edition of the 4 for building control mySmartCTI KNX Smart Guide. This guide aims to detail all of the Why open protocol? 5 information a consultant may require KNX Overview of Applications 6 when researching a KNX solution for specification in a commercial building. KNX Available Interfaces 7 This guide includes information on KNX, applications The Integrated Approach 8 for KNX, KNX topologies and interfacing KNX to other Advantages of Integration with KNX 9 building controls. It also includes common KNX solutions including fully converged buildings, also known as ‘baby Systems Layout & Installation Details 10 BMS’, lighting, façade automation, smart metering, audio- visual and HVAC. A typical KNX Bus network 11 with mixed devices We hope you find this guide beneficial and we look Standard KNX Bus Cable Specifications 12 forward to working with you to deliver many KNX projects in the future. KNX in Australia 13 Peter Garrett Converged Buildings 14 Managing Director, mySmartCTI Integrated Switching and GUIs 15 Visualisation & head-end Software 15 Lighting Control 16 Façade Automation 16 Metering 17 HVAC 17 Audio Visual 18 enGauge 18 About mySmartCTI 19 3 KNX The Smart Guide The worldwide STANDARD for building control KNX is now the world’s only truly open protocol endorsed A standard piece of manufacturer independent software by worldwide standards.
    [Show full text]
  • Wireless & Self-Powered Internet of Things
    Wireless & self-powered Internet of Things The Dolphin products are based on miniaturized energy converters, ultra-low power electronics and robust radio technology in open standards like EnOcean, zigbee and Bluetooth Low Energy for OEM product manufacturers. Building automation Smart home LED lighting M2M Our technology The Dolphin modules and white label products use the energy harvesting principle, in which energy is obtained from the surroundings, to supply self-powered wireless sensor networks. The modules are based on miniaturized energy converters that convert motion, light or temperature differences into electrical energy. Together with an efficient energy management system, the energy harvesting technology facilitates communication between maintenance-free IoT devices based on open wireless standards, such as EnOcean, zigbee and Bluetooth Low Energy. The solutions are used in building automation, smart homes, LED lighting control systems as well as industrial applications. Energy harvesting Wireless Ultra-low power The Dolphin portfolio for OEM product manufacturers The Dolphin portfolio includes the product lines “868 MHz EnOcean” for Europe, “902 MHz EnOcean” for North America and “928 MHz EnOcean” in Japan based on the EnOcean wireless standard introduced by the EnOcean Alliance (ISO/IEC 14543-3-1X) on the sub 1 GHz band, which has proven to be a resounding success in building automation and smart homes. The Dolphin porftolio also includes the “2.4 GHz zigbee” product line in the 2.4 GHz band, which can be used in smart home applications all over the world, and the “2.4 GHz BLE” portfolio for Bluetooth systems for modern lighting control. Energy converter Energy harvesting Energy harvesting Controlers Tools wireless switches wireless sensors Products in 868 MHz EnOcean for Europe Products with 868 MHz are suitable for Europe and other countries adopting RED.
    [Show full text]
  • Zach-2010-Monitoring for Simulation Validation-182.Pdf
    MONITORING FOR SIMULATION VALIDATION Robert Zach and Ardeshir Mahdavi Department of Building Physics and Building Ecology, Vienna University of Technology, Austria building data streams are not exploited. Such benefits ABSTRACT include: One of the key problems in building simulation is to i) Energy optimization through improved determine the accuracy of a simulation model. Due to management of technical building systems. the complexity of a building, a comprehensive and exhaustive mathematical proof is usually not ii) Increased awareness of building users possible. Therefore, an appropriate way to validate a regarding their impact on buildings’ energy building model is to compare simulation results with use. measurements obtained from real buildings. Such iii) Early detection (and treatment) of comparisons not only allow for the validation of deficiencies and malfunctions in energy simulation models used in the context of building systems and devices, thus effectively design support, but also provide calibrated simulation supporting a preventive maintenance models to be applied in the context of real-time regime. simulation-assisted building systems control. iv) Successive building performance INTRODUCTION improvement and optimization via the analyses of dynamically updated building This paper deals with the monitoring infrastructure energy and performance data bases. necessary to validate building simulation models and implement simulation-based control strategies v) Long-term accumulation of empirical (Mahdavi et al. 2009, Orehounig et al. 2010). information on buildings' energy and Required sensors are discussed and technologies for environmental performance toward different domains are compared and assessed. improving the design, construction, and Possible network infrastructures to collect the operation of existing and new buildings. measured data are discussed.
    [Show full text]
  • Network & Wireless
    NETWORK & WIRELESS HUMIDITY & WIRELESS Kele Has Doubled the Offering of Network and Wireless Solutions, NETWORK and Continues to Add to Our Options to Meet Your Needs. Babel Buster | p. 719 L-VIS Series | p. 721 BASRT-B | p. 727 Series 110A | p. 733 ValuPoint VP4-23 | p. 744 EKI Series | p. 738 Series NETWORK & WIRELESS Products manufactured MODEL/SERIES PAGE in the United States Network Display and Control Panels Wireless EnOcean and ZigBee Devices L-VIS Series — BACnet and LON Touch Panel . 721 and Systems (cont.) Products that are BBC-SD — BACnet Graphic Display . 724 E3T-SxE Series — EnOcean Wireless European new to the catalog WebOP Series — Touchscreen Operator Display Light Switches . 826 Panel . 725 E3T-S2H Series — EnOcean Wireless Handheld Remote . 827 Network Gateways EasySens Thanos — EnOcean Room Operating ETH-1000 — Provides connectivity between Ethernet Panel . .. 830 and RS-485 based networks . 713 EasySens Receiver Gateways — EnOcean Receiver XLTR-1000 — Provides Connectivity Between Two Gateways . 831 Rs-485 Based Networks . 714 EasySens SRC Receiver Controllers — EnOcean Raptor Protocol Converter — RLE Technologies Receiver Controllers . 832 Protocol Coverter . 715 EasySens Repeater — EnOcean Wireless LGATE-9xx Series — Lonworks/Bacnet And Repeater . 833 Universal Gateways . 717 EasySens Switches — EnOcean Lighting, Blinds Babel Buster Series — BACnet - Modbus - SNMP and Shutters Switches . 834 Gateways . 719 EasySens Specialty Wireless Transmitters — AddMe® Series — BACnet - Modbus Network I/O . 743 EnOcean Remote Control, Key Card Switch, Window/Door Contact . 835 Network I/O Modules EasySens Room Sensors — EnOcean Temperature, Humidity and CO2 Sensors . 836 L-IOB Series — BACnet and LON I/O Module . 739 EasySens Temperature Sensors — EnOcean i.CanDoIt Series — Embedded Network Servers 742 Surface, Duct, Remote and Outdoor AddMe® Series — BACnet - Modbus Network I/O .
    [Show full text]
  • Maintenance and Decoding of Field Buses
    MAINTENANCE AND DECODING OF FIELD BUSES Today, most of the electrical appliances that we use include internal electronics. These circuits often need to communicate via data buses, either with ancillary systems, such Maintenance as remote sensors, or with control systems. This is particularly true in industry, where a single PLC remotely manages multiple sensors and actuators. Formerly, communication with these buses took place via an analogue signal using the “4-20 mA” network. This communication mode had many disadvantages, including Measurements the need for extensive equipment and complex wiring, thus increasing the time required for installation. For this reason, digital communication standards have been developed and are now widely used to avoid these problems. “Fieldbus” is a general term which corresponds to a method of communication between different systems. There are many standards: those specific to manufacturers Analysis and those standardized according to the equipment involved. Here are a few examples of fieldbuses used in different sectors of activity: Diagnostics The example of the automotive sector The new means of intra-system communication have allowed This provides numerous advantages: developments in the systems. The most obvious example is in the • less wiring automotive industry. In this sector, with the development of safety and • lower production costs due to savings on equipment analysis systems such as airbags, anti-lock braking systems (ABS) and • easier maintenance as there is only one communication channel electronic stability programs (ESP), the number of sensors and actuators on vehicles is constantly increasing. Each of these systems could be In addition, performance is improved because the linked directly to the vehicle’s computer via data buses, but this would data are available at all points on the require too much cable.
    [Show full text]
  • X2rail-1 Deliverable D7.1 Analysis of Existing Lines and Economic Models
    X2Rail-1 Project Title: Start-up activities for Advanced Signalling and Automation Systems Starting date: 01/09/2016 Duration in months: 36 Call (part) identifier: H2020-S2RJU-CFM-2015-01-1 Grant agreement no: 730640 Deliverable D7.1 Analysis of existing lines and economic models Due date of deliverable Month 09 Actual submission date 18-02-2019 Organization name of lead contractor for this deliverable 18-TTS Dissemination level PU Revision DB-001-02-R2 Deliverable template version: 02 (09/11/16) X2Rail-1 Deliverable D7.1 Analysis of existing lines and economic models Authors Author(s) Alstom Transport S.A. (ALS) Pierre Damien Jourdain AZD Praha SRO (AZD) Michal Pavel Lukas Michalik BOMBARDIER TRANSPORTATION SWEDEN AB (BTSE) Jorgen Mattisson INDRA (INDRA) Francisco Parrilla Thales Transportation Systems GMBH (TTS) Ana Millán Belen Losada Trafikverket – TRV (TRV) Jan Bystrom Contributor(s) ANSALDO STS S.p.A. (ASTS) Giovanni Canepa CAF Signalling S.L. (CAF) Ignacio Gonzalez Deutsche Bahn AG (DB) Julian Mohr MERMEC SPA (MERMEC) Vito Caliandro Siemens (SIE) Jose Manuel Mellado GA 730640 Page 2 of 165 X2Rail-1 Deliverable D7.1 Analysis of existing lines and economic models 1. Executive Summary The present document constitutes the first issue of Deliverable D7.1 “Analysis of existing lines and economic models” in the framework of the Project titled “Start-up activities for Advanced Signalling and Automation Systems” (Project Acronym: X2Rail-1; Grant Agreement No 730640). Although modern signalling systems are going to considerably reduce trackside equipment in the next years, a source of the innovation step proposed by the X2Rail-1 WP7 is to provide fully distributed control of remote trackside objects such as points, level crossings, etc., without requiring the necessity to install specialized trackside cabling and associated cable routes, ducting etc.
    [Show full text]
  • Authenticating Wireless Nodes in Building Automation: Challenges and Approaches
    Authenticating Wireless Nodes in Building Automation: Challenges and Approaches Aurelio Schellenbaum, Tobias Schläpfer, Christian Oskar Camenzind Stauffer and Andreas Rüst Zurich University of Applied Science (ZHAW) Siemens Building Technologies Institute of Embedded Systems (InES) Zug, Switzerland Winterthur, Switzerland [email protected] [email protected] Abstract — Modern wireless nodes in building gateways with routers significantly simplifies a building automation systems interconnect natively through automation system and enables new applications. the Internet Protocol (IP). As a result, the emerging Employing IP communication, a central automation coalescence of existing IT networks with networks on station can directly and uniformly access sensor and the field level presents many challenges. Specifically, actuator services on field nodes. mutual authentication of devices in an IT Consequently, to become a full-fledged member of an environment is one of the main issues. Moreover, this IT domain, a constrained node on the field level has to mutual authentication has to take place with fulfill specific security requirements. However, embedded devices in the field that feature manifold implementing such requirements is especially constraints and require a simple but secure challenging on constrained low power and low cost provisioning. The Fairhair Alliance is in the process nodes. Such nodes typically have decidedly lower of standardizing an autonomic secure bootstrapping resources with regard to compute performance, memory process to tackle these challenges. The paper outlines and network connectivity. Nevertheless, such nodes this automated approach and shows the successful require a mutual authentication during the provisioning implementation of a real-life prototype. This into an individual IT domain. Specifically, several trust demonstrates that the required cryptographic relationships need to be established.
    [Show full text]
  • Open Systems for Homes and Buildings: Comparing Lonworks and KNX Alan Kell Peter Colebrook I&I Limited
    Open Systems for Homes and Buildings: Comparing LonWorks and KNX Alan Kell Peter Colebrook i&i limited No part of this publication may be transmitted or reproduced in any form or by any means, electronic or mechanical, for any purpose, without the prior written permission of i&i limited. Trademarks and Logos i&i and Proplan are trademarks of i&i limited. KNX, EIB, European Installation Bus, EHS, European Home Systems and BatiBUS are trademarks of The Konnex Association and its constituent associations; European Installation Bus Association (EIBA), European Home Systems Association (EHSA) and Club BatiBUS International (BCI). Echelon, LON, LONWORKS, LONMARK, LonBuilder, NodeBuilder, LonManager, LonTalk, LonUsers, LonPoint, Digital Home, Neuron, 3120, 3150, LNS, i.LON, LONWORLD, the Echelon logo, and the LonUsers logo are trademarks of Echelon Corporation registered in the United States and other countries. LonMaker, Panoramix, and Networked Energy Services Powered by Echelon are trademarks of Echelon Corporation. All other brand names and product names are trademarks or registered trademarks of their respective holders. About i&i limited Alan Kell was the principal author of the 1993 study by DEGW etl1 entitled “Bus Systems for Building Control” which was the first detailed study in this area to compare, among others, EIB and LONWORKS in the context of building control. Peter Colebrook collaborated closely with Siemens in Regensburg in the late 1980’s, was one of the 12 founder signatories of the European Installation Bus Association (EIBA) and subsequently served as a Director of that Association. He was also one of the founders of the LONMARK Interoperability Association and similarly served as a Director of that Association.
    [Show full text]
  • Bacnet Over KNX
    BACnet over KNX Wolfgang Granzer Wolfgang Kastner Automation Systems Group Institute of Automation Vienna University of Technology Treitlstraße 1-3, A-1040 Vienna, Austria {w,k} @ auto.tuwien.ac.at The Building Automation and Control Network Protocol (BACnet) has been devel- oped to provide a solution for building automation and control systems of all sizes and types. While BACnet specifies an application model as well as different routing services, the underlying network medium is not defined. BACnet messages can, in principle, be conveyed over any network. However, a number of network types are recommended in the BACnet standard. Since KNX with all its benefits has not been considered as a network medium for BACnet, we provide an approach that uses KNX TP 1 as network medium for BACnet. Additionally, a first proof-of-concept implementation is presented in this paper. 1 Introduction In [1], a standard model for all kinds of Building Automation Systems (BAS) is described. In this model, the system functionality is divided into three levels which are ordered hierarchically. At the field level, environmental data are measured and parameters of the environment are physically controlled. Automatic control is performed at the automation level whereas global configuration and managements tasks are realized at the management level. Nowadays, the standard three level functional hierarchy model can be implemented as a flatter, two-level architecture [2]. This is for two reasons. First, so called intelligent field devices incorporate more functionality than ordinary ones. Second, information technology (IT) and its infrastructure became accepted not only at the management level, but also at the automation level.
    [Show full text]
  • Sneak Into Buildings with Knxnet/IP Claire Vacherot
    Sneak into buildings with KNXnet/IP Claire Vacherot To cite this version: Claire Vacherot. Sneak into buildings with KNXnet/IP. Sneak into buildings with KNXnet/IP, Nov 2020, Lyon, France. hal-03022310 HAL Id: hal-03022310 https://hal.archives-ouvertes.fr/hal-03022310 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sneak into buildings with KNXnet/IP Claire Vacherot∗, Orange Cyberdefense, 2020 Abstract. Building Management Systems (BMS) centralize and automate essential assets in a building. They are often linked to the LAN and sometimes reachable on the Internet, exposing building automation devices and network protocols that are usually not designed to handle cybersecurity issues. The paper focuses on the BMS protocol KNX, which has been left aside by the cybersecurity community so far. We discuss its technical details and the cybersecurity concerns raised by implementations. We provide a Python library to perform basic KNX discovery, communication operations and to write advanced testing scripts. We explain how to use it through fuzzing script examples. We hope that this library will be used to find and fix vulnerabilities in building management systems and as a handy tool for other research material on BMS protocols.
    [Show full text]
  • No Wires. No Batteries. No Limits
    Introducing the EnOcean ecosystem ii © COPYRIGHT 2016 ENOCEAN ALLIANCE INC. ALL RIGHTS RESERVED. Introducing the EnOcean ecosystem Abstract EnOcean’s award-winning patented and battery-less, self-powered wireless sensor radio technology provides a robust, low cost and low power energy efficient solution for home, commercial building and industry environments. ‘Introducing the EnOcean ecosystem’ offers the reader a reflective and historical narrative covering the technology’s relatively short and successful history, as well as introducing the benefits of EnOcean Alliance membership whilst sharing some of the attributes that succinctly characterises EnOcean’s energy harvesting technolo- gy. What’s more, we’ll explore EnOcean’s current product portfolio and discuss the technology’s market scope. Likewise, we’ll better understand how EnOcean fares with its competitors and examine several differentiators that uniquely distinguish EnOcean from its competition. Finally, we’ll explore in some detail, the Dolphin hardware and software architectures, as well as the equipment pro- files that provide EnOcean with its application-base. © COPYRIGHT 2016 ENOCEAN ALLIANCE INC. ALL RIGHTS RESERVED. iii Introducing the EnOcean ecosystem iv © COPYRIGHT 2016 ENOCEAN ALLIANCE INC. ALL RIGHTS RESERVED. Introducing the EnOcean ecosystem Contents About this book viii Publisher viii Acknowledgements viii Your feedback ix 1 INTRODUCTION 3 1.1 What is renewable energy? 3 1.2 Siemens Research spin-off 4 1.3 Membership with the EnOcean Alliance 5 1.3.1 Membership
    [Show full text]