Comparative Transcriptomic Analysis of Deep- And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snps) in the Northeast Pacific Intertidal Gooseneck Barnacle, Pollicipes Polymerus
University of Alberta New insights about barnacle reproduction: Spermcast mating, aerial copulation and population genetic consequences by Marjan Barazandeh A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Systematics and Evolution Department of Biological Sciences ©Marjan Barazandeh Spring 2014 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Abstract Barnacles are mostly hermaphroditic and they are believed to mate via copulation or, in a few species, by self-fertilization. However, isolated individuals of two species that are thought not to self-fertilize, Pollicipes polymerus and Balanus glandula, nonetheless carried fertilized embryo-masses. These observations raise the possibility that individuals may have been fertilized by waterborne sperm, a possibility that has never been seriously considered in barnacles. Using molecular tools (Single Nucleotide Polymorphisms; SNP), I examined spermcast mating in P. polymerus and B. glandula as well as Chthamalus dalli (which is reported to self-fertilize) in Barkley Sound, British Columbia, Canada. -
1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al. -
Download Download
Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives. -
Balanus Trigonus
Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Settlement of the barnacle Balanus trigonus BRAZILIAN CRUSTACEAN SOCIETY Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico e-ISSN 2358-2936 www.scielo.br/nau 1 orcid.org/0000-0001-9187-6080 www.crustacea.org.br Michel E. Hendrickx Evlin Ramírez-Félix2 orcid.org/0000-0002-5136-5283 1 Unidad académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. A.P. 811, Mazatlán, Sinaloa, 82000, Mexico 2 Oficina de INAPESCA Mazatlán, Instituto Nacional de Pesca y Acuacultura. Sábalo- Cerritos s/n., Col. Estero El Yugo, Mazatlán, 82112, Sinaloa, Mexico. ZOOBANK http://zoobank.org/urn:lsid:zoobank.org:pub:74B93F4F-0E5E-4D69- A7F5-5F423DA3762E ABSTRACT A large number of specimens (2765) of the acorn barnacle Balanus trigonus Darwin, 1854, were observed on the spiny lobster Panulirus gracilis Streets, 1871, in western Mexico, including recently settled cypris (1019 individuals or 37%) and encrusted specimens (1746) of different sizes: <1.99 mm, 88%; 1.99 to 2.82 mm, 8%; >2.82 mm, 4%). Cypris settled predominantly on the carapace (67%), mostly on the gastric area (40%), on the left or right orbital areas (35%), on the head appendages, and on the pereiopods 1–3. Encrusting individuals were mostly small (84%); medium-sized specimens accounted for 11% and large for 5%. On the cephalothorax, most were observed in branchial (661) and orbital areas (240). Only 40–41 individuals were found on gastric and cardiac areas. Some individuals (246), mostly small (95%), were observed on the dorsal portion of somites. -
A Checklist of Turtle and Whale Barnacles
Journal of the Marine Biological Association of the United Kingdom, 2013, 93(1), 143–182. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S0025315412000847 A checklist of turtle and whale barnacles (Cirripedia: Thoracica: Coronuloidea) ryota hayashi1,2 1International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan, 2Marine Biology and Ecology Research Program, Extremobiosphere Research Center, Japan Agency for Marine–Earth Science and Technology A checklist of published records of coronuloid barnacles (Cirripedia: Thoracica: Coronuloidea) attached to marine vertebrates is presented, with 44 species (including 15 fossil species) belonging to 14 genera (including 3 fossil genera) and 3 families recorded. Also included is information on their geographical distribution and the hosts with which they occur. Keywords: checklist, turtle barnacles, whale barnacles, Chelonibiidae, Emersoniidae, Coronulidae, Platylepadidae, host and distribution Submitted 10 May 2012; accepted 16 May 2012; first published online 10 August 2012 INTRODUCTION Superorder THORACICA Darwin, 1854 Order SESSILIA Lamarck, 1818 In this paper, a checklist of barnacles of the superfamily Suborder BALANOMORPHA Pilsbry, 1916 Coronuloidea occurring on marine animals is presented. Superfamily CORONULOIDEA Newman & Ross, 1976 The systematic arrangement used herein follows Newman Family CHELONIBIIDAE Pilsbry, 1916 (1996) rather than Ross & Frick (2011) for reasons taken up in Hayashi (2012) in some detail. The present author Genus Chelonibia Leach, 1817 deems the subfamilies of the Cheonibiidae (Chelonibiinae, Chelonibia caretta (Spengler, 1790) Emersoniinae and Protochelonibiinae) proposed by Harzhauser et al. (2011), as well as those included of Ross & Lepas caretta Spengler, 1790: 185, plate 6, figure 5. -
Zootaxa, Pollicipes Caboverdensis Sp. Nov. (Crustacea: Cirripedia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portal do Conhecimento Zootaxa 2557: 29–38 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Pollicipes caboverdensis sp. nov. (Crustacea: Cirripedia: Scalpelliformes), an intertidal barnacle from the Cape Verde Islands JOANA N. FERNANDES1, 2, 3, TERESA CRUZ1, 2 & ROBERT VAN SYOC4 1Laboratório de Ciências do Mar, Universidade de Évora, Apartado 190, 7520-903 Sines, Portugal 2Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 3Section of Evolution and Ecology, University of California, Davis, CA 95616, USA 4Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr, San Francisco, CA 94118-4599, USA Abstract Recently, genetic evidence supported the existence of a new species of the genus Pollicipes from the Cape Verde Islands, previously considered a population of P. pollicipes. However, P. pollicipes was not sampled at its southern limit of distribution (Dakar, Senegal), which is geographically separated from the Cape Verde Islands by about 500 km. Herein we describe Pollicipes caboverdensis sp. nov. from the Cape Verde Islands and compare its morphology with the other three species of Pollicipes: P. pollicipes, P. elegans and P. po l y me ru s . Pollicipes pollicipes was sampled at both the middle (Portugal) and southern limit (Dakar, Senegal) of its geographical distribution. The genetic divergence among and within these two regions and Cape Verde was calculated through the analysis of partial mtDNA CO1 gene sequences. -
Western Australian Museum Annual Report 2003-2004
Western Australian Museum Annual Report 2003-2004 Aboriginal Advisory Committee Member Ken Colbung performs a Smoking Ceremony in the new Collections and Research Centre, Welshpool © Western Australian Museum, 2004 Coordinated by Ann Ousey and Nick Mayman Edited by Roger Bourke Designed by Charmaine Cave Layout by Gregory Jackson Published by the Western Australian Museum Locked Bag 49, Welshpool DC, Western Australia 6986 49 Kew Street, Welshpool, Western Australia 6106 www.museum.wa.gov.au ISSN 0083-87212204-6127 2 WESTERN AUSTRALIAN MUSEUM ANNUAL REPORT 2003–2004 contents Public Access 4 Letter to the Minister 5 A Message from the Minister 6 PART 1: Introduction 7 Introducing the Western Australian Museum 8 The Museum’s Vision, Mission Functions, Strategic Aims 9 Executive Director’s Review 11 Relocation Report 13 Visitors to Western Australian Museum Sites 15 Organisational Structure 16 Trustees, Boards and Committees 17 Western Australian Museum Foundation 20 Friends of the Western Australian Museum 22 PART 2: The Year Under Review 25 Western Australian Museum–Science and Culture 26 Western Australian Maritime Museum 41 Regional Sites 54 Western Australian Museum–Albany 55 Western Australian Museum–Geraldton 57 Western Australian Museum–Kalgoorlie-Boulder 62 Visitor Services 64 Museum Services 72 Corporate Operations 77 PART 3: Compliance Requirements 85 Accounts and Financial Statements 86 Outcomes, Outputs and Performance Indicators 106 APPENDICES 112 A Sponsors, Benefactors and Granting Agencies 113 BVolunteers 115 CStaff List -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
The lower bathyal and abyssal seafloor fauna of eastern Australia T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, D. Bray, I. Burghardt, N. Budaeva, F. Criscione, A. Crowther, et al. To cite this version: T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, et al.. The lower bathyal and abyssal seafloor fauna of eastern Australia. Marine Biodiversity Records, Cambridge University Press, 2020, 13 (1), 10.1186/s41200-020-00194-1. hal-03090213 HAL Id: hal-03090213 https://hal.archives-ouvertes.fr/hal-03090213 Submitted on 29 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. -
Benvenuto, C and SC Weeks. 2020
--- Not for reuse or distribution --- 8 HERMAPHRODITISM AND GONOCHORISM Chiara Benvenuto and Stephen C. Weeks Abstract This chapter compares two sexual systems: hermaphroditism (each individual can produce gametes of either sex) and gonochorism (each individual produces gametes of only one of the two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative modes of reproduction, which are of great interest from applied and theoretical perspectives. The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual systems, centering on their evolutionary transitions. The ecological correlates of each reproduc- tive system are also explored. In particular, the prevalence of “unusual” (non- gonochoristic) re- productive strategies has been identified under low population densities and in unpredictable/ unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in colonizing species. Finally, population- level consequences of some sexual systems are consid- ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview of the evolution, adaptation, ecological constraints, and implications of the various reproductive modes in this extraordinarily successful group of organisms. INTRODUCTION 1 Historical Overview of the Study of Crustacean Reproduction Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which play important roles in many ecosystems and are economically important. Thus, it is not surprising that numerous studies focus on their reproductive biology. However, these reviews mainly target specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean Reproductive Biology. Edited by Rickey D. Cothran and Martin Thiel. -
Barnacle Paper.PUB
Proc. Isle Wight nat. Hist. archaeol. Soc . 24 : 42-56. BARNACLES (CRUSTACEA: CIRRIPEDIA) OF THE SOLENT & ISLE OF WIGHT Dr Roger J.H. Herbert & Erik Muxagata To coincide with the bicentenary of the birth of the naturalist Charles Darwin (1809-1889) a list of barnacles (Crustacea:Cirripedia) recorded from around the Solent and Isle of Wight coast is pre- sented, including notes on their distribution. Following the Beagle expedition, and prior to the publication of his seminal work Origin of Species in 1859, Darwin spent eight years studying bar- nacles. During this time he tested his developing ideas of natural selection and evolution through precise observation and systematic recording of anatomical variation. To this day, his monographs of living and fossil cirripedia (Darwin 1851a, 1851b, 1854a, 1854b) are still valuable reference works. Darwin visited the Isle of Wight on three occasions (P. Bingham, pers.com) however it is unlikely he carried out any field work on the shore. He does however describe fossil cirripedia from Eocene strata on the Isle of Wight (Darwin 1851b, 1854b) and presented specimens, that were supplied to him by other collectors, to the Natural History Museum (Appendix). Barnacles can be the most numerous of macrobenthic species on hard substrata. The acorn and stalked (pedunculate) barnacles have a familiar sessile adult stage that is preceded by a planktonic larval phase comprising of six naupliar stages, prior to the metamorphosis of a non-feeding cypris that eventually settles on suitable substrate (for reviews on barnacle biology see Rainbow 1984; Anderson, 1994). Additionally, the Rhizocephalans, an ectoparasitic group, are mainly recognis- able as barnacles by the external characteristics of their planktonic nauplii. -
Stalked Barnacles
*Manuscript Click here to view linked References Stalked barnacles (Cirripedia, Thoracica) from the Upper Jurassic (Tithonian) Kimmeridge Clay of Dorset, UK; palaeoecology and bearing on the evolution of living forms Andy Gale School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL; E-mail address: [email protected] A B S T R A C T New thoracican cirripede material from the Kimmeridge Clay (Upper Jurassic, Tithonian) is described. This includes a log, encrusted on the lower surface with hundreds of perfectly preserved, articulated specimens of Etcheslepas durotrigensis Gale, 2014, and fewer specimens of Concinnalepas costata (Withers, 1928). Some individuals are preserved in life position, hanging from the underside of the wood, and the material provides new morphological information on both species. It appears that Martillepas ovalis (Withers, 1928), which occurs at the same level (Freshwater Steps Stone Band, pectinatus Zone) attached preferentially to ammonites, whereas E. durotrigensis and C. costata used wood as a substrate for their epiplanktonic lifestyle. Two regurgitates containing abundant barnacle valves, mostly broken, and some bivalve fragments, have been found in the Kimmeridge Clay. These were produced by a fish grazing on epiplanktonic species, and are only the second example of regurgitates containing barnacle valves known from the fossil record. The evolution of modern barnacle groups is discussed in the light of the new Jurassic material as well as recently published molecular phylogenies. New clades defined herein are called the Phosphatothoracica, the Calamida and the Unilatera. Keywords Epiplanktonic barnacles Kimmeridge Clay predation 1. INTRODUCTION Amongst the most remarkable fossils collected by Steve Etches from the Kimmeridge Clay of Dorset are articulated stalked barnacles.