The Parameterized Complexity of Finding Point Sets with Hereditary Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Session 9: Pigeon Hole Principle and Ramsey Theory - Handout
Session 9: Pigeon Hole Principle and Ramsey Theory - Handout “Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world’s best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack.” image: Frank P. Ramsey (1903-1926) quote: Paul Erd¨os (1913-1996) The following dots are in general position (i.e. no three lie on a straight line). 1) If it exists, find a convex quadrilateral in this cluster of dots. 2) If it exists, find a convex pentagon in this cluster of dots. 3) If it exists, find a convex hexagon in this cluster of dots. 4) If it exists, find a convex heptagon in this cluster of dots. 5) If it exists, find a convex octagon in this cluster of dots. 6) Draw 8 points in general position in such a way that the points do not contain a convex pentagon. 7) In my family there are 2 adults and 3 children. When our family arrives home how many of us must enter the house in order to ensure there is at least one adult in the house? 8) Show that among any collection of 7 natural numbers there must be two whose sum or difference is divisible by 10. 9) Suppose a party has six people. -
The Parameterized Complexity of Finding Point Sets with Hereditary Properties
The Parameterized Complexity of Finding Point Sets with Hereditary Properties David Eppstein1 Computer Science Department, University of California, Irvine, USA [email protected] Daniel Lokshtanov2 Department of Informatics, University of Bergen, Norway [email protected] Abstract We consider problems where the input is a set of points in the plane and an integer k, and the task is to find a subset S of the input points of size k such that S satisfies some property. We focus on properties that depend only on the order type of the points and are monotone under point removals. We show that not all such problems are fixed-parameter tractable parameterized by k, by exhibiting a property defined by three forbidden patterns for which finding a k-point subset with the property is W[1]-complete and (assuming the exponential time hypothesis) cannot be solved in time no(k/ log k). However, we show that problems of this type are fixed-parameter tractable for all properties that include all collinear point sets, properties that exclude at least one convex polygon, and properties defined by a single forbidden pattern. 2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms Keywords and phrases parameterized complexity, fixed-parameter tractability, point set pattern matching, largest pattern-avoiding subset, order type 1 Introduction In this work, we study the parameterized complexity of finding subsets of planar point sets having hereditary properties, by analogy to past work on hereditary properties of graphs. In graph theory, a hereditary properties of graphs is a property closed under induced subgraphs. -
Single Digits
...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library -
Mechanical Proving for ERDÖS-SZEKERES Problem
2016 6th International Conference on Applied Science, Engineering and Technology (ICASET 2016) Mechanical Proving for ERDÖS-SZEKERES Problem 1Meijing Shan Institute of Information science and Technology, East China University of Political Science and Law, Shanghai, China. 201620 [email protected] Keywords: Erdös-Szekeres problem, Automated deduction, Mechanical proving Abstract:The Erdös-Szekeres problem was an open unsolved problem in computational geometry and related fields from 1935. Many results about it have been shown. The main concern of this paper is not only show how to prove this problem with automated deduction methods and tools but also contribute to the significance of automated theorem proving in mathematics using advanced computing technology. The present case is engaged in contributing to prove or disprove this conjecture and then solve this problem. The key advantage of our method is to utilize the mechanical proving instead of the traditional proof and this method could improve the arithmetic efficiency. Introduction The following famous problem has attracted more and more attention of many mathematicians [3, 6, 12, 16] due to its beauty and elementary character. Finding the exact value of N(n) turns out to be a very challenging problem. The problem is very easy to explain and understand. The Erdös-Szekeres Problem 1.1 [4, 15]. For any integer n ≥ 3, determine the smallest positive integer N(n) such that any set of at least N(n) points in generalposition in the plane contains n points that are the vertices of a convex n-gon. A set of points in the plane is said to be in the general position if it contains no three points on a line. -
On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal
On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal Konrad K. Dabrowski1 Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0001-9515-6945 Matthew Johnson2 Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0002-7295-2663 Giacomo Paesani Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0002-2383-1339 Daniël Paulusma3 Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0001-5945-9287 Viktor Zamaraev4 Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0001-5755-4141 Abstract Let vc(G), fvs(G) and oct(G) denote, respectively, the size of a minimum vertex cover, minimum feedback vertex set and minimum odd cycle transversal in a graph G. One can ask, when looking for these sets in a graph, how much bigger might they be if we require that they are independent; that is, what is the price of independence? If G has a vertex cover, feedback vertex set or odd cycle transversal that is an independent set, then we let, respectively, ivc(G), ifvs(G) or ioct(G) denote the minimum size of such a set. We investigate for which graphs H the values of ivc(G), ifvs(G) and ioct(G) are bounded in terms of vc(G), fvs(G) and oct(G), respectively, when the graph G belongs to the class of H-free graphs. -
Forbidden Configurations in Discrete Geometry
FORBIDDEN CONFIGURATIONS IN DISCRETE GEOMETRY This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry and listing many open prob- lems. It unifies these mathematical and computational views using for- bidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of fig- ures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathe- matics including number theory, graph theory, and the theory of per- mutation patterns. Pseudocode is included for many algorithms that compute properties of point sets. David Eppstein is Chancellor’s Professor of Computer Science at the University of California, Irvine. He has more than 350 publications on subjects including discrete and computational geometry, graph the- ory, graph algorithms, data structures, robust statistics, social network analysis and visualization, mesh generation, biosequence comparison, exponential algorithms, and recreational mathematics. He has been the moderator for data structures and algorithms -
Arxiv:1909.03896V2 [Cs.DM] 17 Mar 2020 Approximation Schemes, Triangle-Free Subgraph
Bipartite Subgraph of Geometric Intersection Graphs I Satyabrata Janaa,∗, Anil Maheshwarib, Saeed Mehrabib, Sasanka Roya aIndian Statistical Institute, Kolkata, India bSchool of Computer Science, Carleton University, Ottawa, Canada Abstract We study the Maximum Bipartite Subgraph (MBS) problem, which is defined as follows. Given a set S of n geometric objects in the plane, we want to compute a maximum-size subset S0 ⊆ S such that the intersection graph of the objects in S0 is bipartite. We first give a simple O(n)-time algorithm that solves the MBS problem on a set of n intervals. We also give an O(n2)-time algorithm that computes a near-optimal solution for the problem on circular-arc graphs. We show that the MBS problem is NP-hard on geometric graphs for which the maximum independent set is NP-hard (hence, it is NP-hard even on unit squares and unit disks). On the other hand, we give a PTAS for the problem on unit squares and unit disks. Moreover, we show fast approximation algorithms with small-constant factors for the problem on unit squares, unit disks and unit- height rectangles. Finally, we study a closely related geometric problem, called Maximum Triangle-free Subgraph (MTFS), where the objective is the same as that of MBS except the intersection graph induced by the set S0 needs to be triangle-free only (instead of being bipartite). Keywords: Bipartite subgraph, Geometric intersection graphs, NP-hardness, arXiv:1909.03896v2 [cs.DM] 17 Mar 2020 Approximation schemes, Triangle-free subgraph IA preliminary version of this paper appeared in the The 14th International Conference and Workshops on Algorithms and Computation (WALCOM 2020). -
Proquest Dissertations
UNIVERSITY OF CALGARY Convexity Problems in Spaces of Constant Curvature and in Normed Spaces by Zsolt Langi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MATHEMATICS AND STATISTICS CALGARY, ALBERTA JULY, 2008 © Zsolt Langi 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-44355-2 Our file Notre reference ISBN: 978-0-494-44355-2 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. -
1. Math Olympiad Dark Arts
Preface In A Mathematical Olympiad Primer , Geoff Smith described the technique of inversion as a ‘dark art’. It is difficult to define precisely what is meant by this phrase, although a suitable definition is ‘an advanced technique, which can offer considerable advantage in solving certain problems’. These ideas are not usually taught in schools, mainstream olympiad textbooks or even IMO training camps. One case example is projective geometry, which does not feature in great detail in either Plane Euclidean Geometry or Crossing the Bridge , two of the most comprehensive and respected British olympiad geometry books. In this volume, I have attempted to amass an arsenal of the more obscure and interesting techniques for problem solving, together with a plethora of problems (from various sources, including many of the extant mathematical olympiads) for you to practice these techniques in conjunction with your own problem-solving abilities. Indeed, the majority of theorems are left as exercises to the reader, with solutions included at the end of each chapter. Each problem should take between 1 and 90 minutes, depending on the difficulty. The book is not exclusively aimed at contestants in mathematical olympiads; it is hoped that anyone sufficiently interested would find this an enjoyable and informative read. All areas of mathematics are interconnected, so some chapters build on ideas explored in earlier chapters. However, in order to make this book intelligible, it was necessary to order them in such a way that no knowledge is required of ideas explored in later chapters! Hence, there is what is known as a partial order imposed on the book. -
Abstract Directed Graphs: Fixed-Parameter
ABSTRACT Title of dissertation: DIRECTED GRAPHS: FIXED-PARAMETER TRACTABILITY & BEYOND Rajesh Chitnis, Doctor of Philosophy, 2014 Dissertation directed by: Professor MohammadTaghi Hajiaghayi Department of Computer Science Most interesting optimization problems on graphs are NP-hard, implying that (un- less P = NP) there is no polynomial time algorithm that solves all the instances of an NP-hard problem exactly. However, classical complexity measures the running time as a function of only the overall input size. The paradigm of parameterized complexity was introduced by Downey and Fellows to allow for a more refined multivariate analy- sis of the running time. In parameterized complexity, each problem comes along with a secondary measure k which is called the parameter. The goal of parameterized com- plexity is to design efficient algorithms for NP-hard problems when the parameter k is small, even if the input size is large. Formally, we say that a parameterized problem is fixed-parameter tractable (FPT) if instances of size n and parameter k can be solved in f (k) nO(1) time, where f is a computable function which does not depend on n. A pa- · rameterized problem belongs to the class XP if instances of size n and parameter k can be solved in f (k) nO(g(k)) time, where f and g are both computable functions. · In this thesis we focus on the parameterized complexity of transversal and connec- tivity problems on directed graphs. This research direction has been hitherto relatively unexplored: usually the directed version of the problems require significantly different and more involved ideas than the ones for the undirected version. -
On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal∗
On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal∗ Konrad K. Dabrowski1 Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0001-9515-6945 Matthew Johnson2 Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0002-7295-2663 Giacomo Paesani Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0002-2383-1339 Daniël Paulusma3 Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0001-5945-9287 Viktor Zamaraev4 Department of Computer Science, Durham University, UK [email protected] https://orcid.org/0000-0001-5755-4141 Abstract Let vc(G), fvs(G) and oct(G), respectively, denote the size of a minimum vertex cover, minimum feedback vertex set and minimum odd cycle transversal in a graph G. One can ask, when looking for these sets in a graph, how much bigger might they be if we require that they are independent; that is, what is the price of independence? If G has a vertex cover, feedback vertex set or odd cycle transversal that is an independent set, then we let ivc(G), ifvs(G) or ioct(G), respectively, denote the minimum size of such a set. Similar to a recent study on the price of connectivity (Hartinger et al. EuJC 2016), we investigate for which graphs H the values of ivc(G), ifvs(G) and ioct(G) are bounded in terms of vc(G), fvs(G) and oct(G), respectively, when the graph G belongs to the class of H-free graphs. -
Experimental Analysis of Fixed Parameter Algorithms for Odd Cycle Transversals and Feedback Vertex Sets
www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962 Volume-5, Issue-5, October-2015 International Journal of Engineering and Management Research Page Number: 656-667 Experimental Analysis of Fixed Parameter Algorithms for Odd Cycle Transversals and Feedback Vertex Sets S. Shivaprasad1, Dr. M Sadanandam2, Anand Agrawal3 1,3Assistant Professor, Vignan’s Univeristy, INDIA 2Assistant Professor, Kakatiya University, INDIA ABSTRACT natural way to cope with problems that are As implementing approximation considered intractable according to the classical P algorithms for NP-hard problems seems to be versus NP dichotomy. In practice, large instances impractical, a fixed-parameter algorithm is one that of NP-complete problems are solved exactly every provides an optimal solution to a discrete day. The reason for why this is possible is that combinatorial problem. The fundamental idea is to problem instances that occur naturally often have a re- strict the corresponding, seemingly unavoidable, combinatorial explosion that causes the exponential hidden structure. The basic idea of Parameterized growth in the running time of certain problem- Algorithms and Complexity is to extract and specific parameters.An odd cycle transversal (OCT) is harness the power of this structure. In a subset of the vertices of a graph G that hits all the Parameterized Algorithms and Complexity every odd cycles in G. Clearly the deletion of such a vertex problem instance comes with a relevant secondary set leaves a bipartite graph. Thus the problem of measurement k, called a parameter . The parameter finding an odd cycle transversal of min- imum measures how difficult the instance is, the larger the cardinality is just the classical graph bipartization parameter, the harder the instance.