Rock Glaciers and Periglacial Rock-Ice Features in the Eastern Sierra Nevada; Updates on Classification, Mapping, Climate Relati

Total Page:16

File Type:pdf, Size:1020Kb

Rock Glaciers and Periglacial Rock-Ice Features in the Eastern Sierra Nevada; Updates on Classification, Mapping, Climate Relati ROCK GLACIERS AND PERIGLACIAL ROCK-ICE FEATURES IN THE EASTERN SIERRA NEVADA; UPDATES ON CLASSIFICATION, MAPPING, CLIMATE RELATIONS, AND MONITORING CONSTANCE MILLAR 1, DAVID CLOW 2, JESSICA LUNDQUIST 3, AND ROBERT WESTFALL 1 1 USDA Forest Service, Sierra Nevada Research Center, Berkeley, CA 2 USGS, Water Resources Division, Denver, CO 3 NOAA, Earth Systems Laboratory, Boulder, CO BACKGROUND Rock glaciers and related periglacial rock-ice (R-I) features are common but little-studied landforms in high mountains where conditions are relatively dry and adequate sources of shattered rock exist. While many of these features in temperate mountains appear to be Pleistocene relicts, a large proportion shows indications of activity, suggesting persistent embedded or underlying ice. Recent retreat of “clean glaciers” worldwide has been related to global warming. Rock-mantling and rock matrices, however, insulate rock glaciers and R-I features, and their activity and equilibrium with climate appear to considerably lag clean glaciers. They remain potentially important mountain reservoirs, yet overlooked in hydrologic research. For this and other reasons, research attention to the distribution, activity, genesis, and hydrology of rock glaciers has increased in recent years. Debate on the glaciogenic vs. periglacial (permafrost) origins of these features (Clark et al. 1998) has been confounded by inconsistent terms and definitions, lack of a sufficient classification, and by the varying expression of processes that occur under climatic and environmental conditions in different regions. Rock glaciers and R-I features are abundant in cirques and canyons of the Sierra Nevada south of Lake Tahoe, especially along the eastern escarpment, where they occur in diverse forms (Figs. 1 & 2). Several large valley rock glaciers have been studied for their climatic and neo-glacial relationships (Clark, pers. comm.; Konrad & Clark 1998), and a few Pleistocene relict rock glaciers are indicated on high-resolution geologic maps of the Sierra. These features are mentioned in passing in Sierran scientific and popular natural-history literature, but aside from Clark and his students’ research, no systematic studies have been published. While several papers from Europe and North America describe types of rock glaciers, define terms, and offer classifications, none proved sufficient to identify and map the range of features in the Sierra Nevada. We undertook work described here in hope that field-based mapping and a field- friendly taxonomy will assist future mapping, for example, from aerial photography. With the reconnaissance-level monitoring we are beginning, we further hope to encourage glacial, hydrologic, and ecologic research on these landforms. We include a wider range of features in our classification than is usually discussed to highlight potential physical interrelationships of these features and possible hydrologic significance of overlooked forms. GOALS: Relative to rock glaciers and associated periglacial R-I features of the Sierra Nevada: • Develop a taxonomic classification and nomenclature • Compile maps and geo-referenced databases derived from field-mapping • Analyze geographic and climatic relations of the features • Form tentative hypotheses of process and origins • Initiate reconnaissance monitoring of rock glacier and R-I feature 1) movement, 2) meltwater, including flow, seasonal persistence, temperature, and chemistry and 3) lichen and plant cover and ages. METHODS Fig 1. Goethe Rock Glacier Fig 2. Rock Glacier near Taboose Pass Mapping and Classification During field seasons of 2000-2005, Millar mapped discrete R-I features whose location and morphology suggested glacial or periglacial origins – e.g., rock glaciers, active moraines, protalus ramparts, solifluction slumps, patterned-ground circles, nets, stripes, and intermediate features. Conventional clean glaciers and persistent snowfields without associated decomposed rock mantling were not included. Each feature was field-mapped at coarse resolution on topographic maps and later characterized with digital maps (TOPO!) for latitude and longitude (center of feature), elevation range, and local aspect. Feature size was described in four ranks (400 ha, 50ha, 5 ha, 0.5 ha); three shape ranks were scored (wider than long, ~equal length & width, longer than wide). Current activity (embedded ice) is difficult to determine by casual observation. A feature was tentatively scored Active if it was: 1) within the elevation range of clean glaciers and persistent snowfields; and had 2) oversteepened front and sides (rock glacier types only); 3) angular rocks with no or little lichen growth; 4) plant cover absent or minimal; and 5) persistent spring or stream or presence of phreatophytes (e.g., willows, rushes) at the feature’s toe. Based on observations of ~300 features, a preliminary taxonomy and nomenclature were developed. This was tested by revisits to ~20% of the originally mapped features, and addition of ~100 new features, which led to the revised classification presented here. Climate Location data for all R-I features were imported into GIS as point coverages (lat/long of centers). These were intersected with 4km2 gridded data from the PRISM climate model (Daly et al., 1994), and adjusted to site-specific elevations using lapse rates from PRISM. We extracted layers for annual, January, and July minimum and maximum temperatures, respectively, and annual, January, and July precipitation, respectively, for the period of record, 1960-1999. The PRISM grids were converted to polygons and sequentially intersected with the locations of the R-I features, grouped by the six Location Classes (see Results). GIS analyses were done in ARC/Info. To determine differences among Location Classes, we subjected the merged R-I-feature/PRISM-climate data to discriminant analysis. We classified the analysis by Location Class with the climatic measures as variables, maximizing R-I-feature differences in multivariate climate space. We then computed mean climatic data from the PRISM model for the classified groups. Monitoring Reconnaissance monitoring was initiated in summer, 2005 (Table 1). We report preliminary results for water chemistry only; other elements await downloading and/or first measurements in summer 2006. Water Chemistry. On Oct 24-25, 2005, we sampled water from springs and streams emanating at the bases of six R-I features for chemical analysis. Water sampling and analytic methods followed Clow et al., 2002. To assess differences among sites, we used principal component analysis (PCA), with ln-transformed data to normalize the distribution. We used PCA and discriminant analysis on ln- transformed data to resolve clusters and then test differences of the rock-ice meltwater chemistry data to values previously analyzed from Yosemite National Park precipitation (6 samples, 2003-04), snow (2 samples, 2005), river (123 samples, 2003-05), and lake (15 samples, 2003-05) sources (Clow et al., 2002). Water Temperature and Depth. Water temperature is being recorded by ten small dataloggers (iButtons), programmed for four readings/day and seven larger level-loggers (solinsts), programmed to read every half hour. We placed all instruments in shallow pools (15-30 cm) at the spring heads or where meltwater streams first surfaced from R-I features (Figs. 3 and 4). Readings will give indications of temperature persistence and variability, timing in change of state from liquid to frozen, and timing of spring/stream drying, if any – all of which will help interpret the internal hydrologic structure of the features. Leveloggers also record water pressure, which, together with barometric pressure measured from barologgers installed at Tuolumne Meadows, Yosemite NP (2600 m; Lundquist, ongoing research), will enable calculation of water depth. Rock-Ice Feature Movement. We installed rudimentary transects to monitor movement of boulders on the steep front of one rock glacier (RGV, see Results), upper surfaces of two other rock glaciers (RGC), and across the bases of three boulder streams (BSC). Paint spots were sprayed on boulders every 1.7 m along an azimuth perpendicular to the inferred flow direction, with base-points on bedrock off the edge of the R-I features. Transects will be re-visited to determine if paint spots moved. Fig 3. Spring, Kidney Lk Boulder Stream Fig 4. Stream surfacing, Kuna Crest Rock Glacier RESULTS & DISCUSSION Classification and Mapping From field surveys, 395 R-I features were mapped (Appendix 1). A taxonomic classification, in which geomorphic relationships are inferred by taxonomic relationship, is proposed (Table 2). The classification describes three hierarchic levels: 4 Condition States, 6 Location Classes, and 18 Position Types. Condition States are the major categories of R-I features; Location Classes describe the location of features within the Condition State; and Position Types are the terminal categories. Type localities for each of the Position Types are identified, and a subset is illustrated (Figs 5-12). The classification is based on morphology and location, does not rely on inference of glacial vs. periglacial origins, and is intended for easy field use. Fig 5. RGC-V, Mt. Gibbs Fig 6. RGC-M, Mt. Kuna Fig 13. Slope aspects for Location Classes Summary of Main Groups Geographic location, size, and shape means for the Condition States and Location Classes are given in Table 3, and aspects are indicated by wind rose diagrams for the Location Classes in Fig. 13. Rock Glaciers/Periglaciers:
Recommended publications
  • The Pennsylvania State University the Graduate School College of Earth and Mineral Sciences a RECORD of COUPLED HILLSLOPE and CH
    The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences A RECORD OF COUPLED HILLSLOPE AND CHANNEL RESPONSE TO PLEISTOCENE PERIGLACIAL EROSION IN A SANDSTONE HEADWATER VALLEY, CENTRAL PENNSYLVANIA A Thesis in Geosciences by Joanmarie Del Vecchio © 2017 Joanmarie Del Vecchio Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2017 The thesis of Joanmarie Del Vecchio was reviewed and approved* by the following: Roman A. DiBiase Assistant Professor of Geosciences Thesis Advisor Li Li Associate Professor of Civil and Environmental Engineering Susan L. Brantley Professor of Geosciences Tim Bralower Professor of Geosciences Interim Head, Department of Geosciences *Signatures are on file in the Graduate School. ii Abstract Outside of the Last Glacial Maximum ice extent, landscapes in the central Valley and Ridge physiographic province of Appalachia preserve soils and thick colluvial deposits indicating extensive periglacial landscape modification. The preservation of periglacial landforms in the present interglacial suggests active hillslope sediment transport in cold climates followed by limited modification in the Holocene. However, the timing and extent of these processes are poorly constrained, and it is unclear whether, and how much, this signature is due to LGM or older periglaciations. Here, we pair geomorphic mapping with in situ cosmogenic 10Be and 26Al measurements of surface material and buried clasts to estimate the residence time and depositional history of colluvium within Garner Run, a 1 km2 sandstone headwater valley in central Appalachia containing relict Pleistocene periglacial features including solifluction lobes, boulder fields, and thick colluvial footslope deposits. 10Be concentrations of stream sediment and hillslope regolith indicate slow erosion rates (6.3 m ± 0.5 m m.y.-1) over the past 38-140 kyr.
    [Show full text]
  • High-Mountain Permafrost in the Austrian Alps (Europe)
    HIGH-MOUNTAIN PERMAFROST IN THE AUSTRIAN ALPS (EUROPE) Gerhard Karl Lieb Institute of Geography University of Graz Heinrichstrasse 36 A-8010 Graz e-mail: [email protected] Abstract Permafrost research in the Austrian Alps (Eastern Alps) is based on a variety of methods, including at large scales, the measurement of the temperature of springs and of the base of winter snow cover, and at small scales, mainly an inventory of some 1450 rock glaciers. Taking all the information available into consideration, the lower limit of discontinuous permafrost is situated near 2500 m in most of the Austrian Alps. These results can be used for modelling the permafrost distribution within a geographical information system. Detailed investi- gations were carried out in the Doesen Valley (Hohe Tauern range) using additional methods, including several geophysical soundings. In this way, realistic estimates of certain permafrost characteristics and the volume of a large active rock glacier (some 15x106m3) were possible. This rock glacier has been chosen as a monitoring site to observe the effects of past and future climatic change. Introduction snow cover (BTS) and geophysical soundings, such as seismic, geoelectric, electromagnetic and ground pene- Although mountain permafrost in the Austrian Alps trating radar surveys have been published (survey and has caused construction problems and damage to buil- references in Lieb, 1996). The best results for mapping dings at several high-altitude locations, specific investi- the mere existence of permafrost were obtained by mea- gations of permafrost did not start until 1980. Since suring spring temperatures and BTS, both procedures then, studies of the distribution and certain characteris- being easily applicable and providing quite accurate tics of permafrost have been carried out at a number of interpretation.
    [Show full text]
  • Late Wisconsin Climate Inferences from Rock Glaciers in South-Central
    LateWisconsin climatic inlerences from rock glaciers in south-centraland west-central New Mexico andeast-central Arizona byJohn W. Blagbrough, P0 Box8063, Albuquerque, NewMexico 87198 Abstract Inactive rock glaciersof late Wisconsin age occur at seven sites in south-central and west-central New Mexico and in east-centralArizona. They are at the base of steep talus in the heads of canyons and ravines and have surfacefeatures indicating they are ice-cemented (permafrost) forms that moved by the flow of interstitial ice. The rock glaciersindicate zones of alpine permafrost with lower levels that rise from approximately 2,400m in the east region to 2,950 m in the west. Within the zones the mean annual temperaturewas below freezing, and the climatewas marked by much diurnal freezing and thawing resulting in the production of large volumes of talus in favorableterrain. The snow cover was thin and of short duration, which fa- vored ground freezing and cryofraction. The rock glaciers in the east region occur near the late Wisconsin 0'C air isotherm and implv that the mean annual temperature was depressedapproximately 7 to 8'C during a periglacial episodein the late Wisconsin.A dry continental climate with a seasonaldistribution of precipitation similar to that of the present probably prevailed, and timberline former timberlines. may have been depresseda minimum of 1,240m. The rise in elevation of the rock glaciersfrom east to west acrossthe region is attributed to greater snowfall in west-centralNew Mexico and east-centralArizona, which reducedthe inten- sity and depth of ground freezing near the late Wisconsin 0"C air isotherm.
    [Show full text]
  • Mesofauna at the Soil-Scree Interface in a Deep Karst Environment
    diversity Article Mesofauna at the Soil-Scree Interface in a Deep Karst Environment Nikola Jureková 1,* , Natália Raschmanová 1 , Dana Miklisová 2 and L’ubomír Kováˇc 1 1 Department of Zoology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, SK-04180 Košice, Slovakia; [email protected] (N.R.); [email protected] (L’.K.) 2 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected] Abstract: The community patterns of Collembola (Hexapoda) were studied at two sites along a microclimatically inversed scree slope in a deep karst valley in the Western Carpathians, Slovakia, in warm and cold periods of the year, respectively. Significantly lower average temperatures in the scree profile were noted at the gorge bottom in both periods, meaning that the site in the lower part of the scree, near the bank of creek, was considerably colder and wetter compared to the warmer and drier site at upper part of the scree slope. Relatively high diversity of Collembola was observed at two fieldwork scree sites, where cold-adapted species, considered climatic relicts, showed considerable abundance. The gorge bottom, with a cold and wet microclimate and high carbon content even in the deeper MSS horizons, provided suitable environmental conditions for numerous psychrophilic and subterranean species. Ecological groups such as trogloxenes and subtroglophiles showed decreasing trends of abundance with depth, in contrast to eutroglophiles and a troglobiont showing an opposite distributional pattern at scree sites in both periods. Our study documented that in terms of soil and Citation: Jureková, N.; subterranean mesofauna, colluvial screes of deep karst gorges represent (1) a transition zone between Raschmanová, N.; Miklisová, D.; the surface and the deep subterranean environment, and (2) important climate change refugia.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • Periglacial Processes, Features & Landscape Development 3.1.4.3/4
    Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months.
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]
  • Landslides and the Weathering of Granitic Rocks
    Geological Society of America Reviews in Engineering Geology, Volume III © 1977 7 Landslides and the weathering of granitic rocks PHILIP B. DURGIN Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeley, California 94701 (stationed at Arcata, California 95521) ABSTRACT decomposition, so they commonly occur as mountainous ero- sional remnants. Nevertheless, granitoids undergo progressive Granitic batholiths around the Pacific Ocean basin provide physical, chemical, and biological weathering that weakens examples of landslide types that characterize progressive stages the rock and prepares it for mass movement. Rainstorms and of weathering. The stages include (1) fresh rock, (2) core- earthquakes then trigger slides at susceptible sites. stones, (3) decomposed granitoid, and (4) saprolite. Fresh The minerals of granitic rock weather according to this granitoid is subject to rockfalls, rockslides, and block glides. sequence: plagioclase feldspar, biotite, potassium feldspar, They are all controlled by factors related to jointing. Smooth muscovite, and quartz. Biotite is a particularly active agent in surfaces of sheeted fresh granite encourage debris avalanches the weathering process of granite. It expands to form hydro- or debris slides in the overlying material. The corestone phase biotite that helps disintegrate the rock into grus (Wahrhaftig, is characterized by unweathered granitic blocks or boulders 1965; Isherwood and Street, 1976). The feldspars break down within decomposed rock. Hazards at this stage are rockfall by hyrolysis and hydration into clays and colloids, which may avalanches and rolling rocks. Decomposed granitoid is rock migrate from the rock. Muscovite and quartz grains weather that has undergone granular disintegration. Its characteristic slowly and usually form the skeleton of saprolite.
    [Show full text]
  • Maternal Defensive Behavior of Mountain Goats Against Predation by Golden Eagles
    Western North American Naturalist Volume 69 Number 1 Article 13 4-24-2009 Maternal defensive behavior of mountain goats against predation by Golden Eagles Sandra Hamel Université Laval, Québec, Canada, [email protected] Steeve D. Côté Université Laval, Québec, Canada, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Hamel, Sandra and Côté, Steeve D. (2009) "Maternal defensive behavior of mountain goats against predation by Golden Eagles," Western North American Naturalist: Vol. 69 : No. 1 , Article 13. Available at: https://scholarsarchive.byu.edu/wnan/vol69/iss1/13 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 69(1), © 2009, pp. 115–118 MATERNAL DEFENSIVE BEHAVIOR OF MOUNTAIN GOATS AGAINST PREDATION BY GOLDEN EAGLES Sandra Hamel1,2 and Steeve D. Côté1 ABSTRACT.—Maternal defensive behavior against predators may appear risky but is common in many species. Herein we describe maternal defensive behavior of mountain goats (Oreamnos americanus) against Golden Eagle (Aquila chrysaetos) predatory attempts. We found that Golden Eagles attacked goats in 1.9% of sightings (n = 311 sightings of active Golden Eagles over 12 years) but were never successful. Mothers always defended their young against Golden Eagle attacks. Predation by Golden Eagles on young-of-the-year appears low for most ungulate species, including mountain goats.
    [Show full text]
  • Inventory and Distribution of Rock Glaciers in Northeastern Yakutia
    land Article Inventory and Distribution of Rock Glaciers in Northeastern Yakutia Vasylii Lytkin Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia; [email protected] Received: 2 September 2020; Accepted: 8 October 2020; Published: 10 October 2020 Abstract: Rock glaciers are common forms of relief of the periglacial belt of many mountain structures in the world. They are potential sources of water in arid and semi-arid regions, and therefore their analysis is important in assessing water reserves. Mountain structures in the north-east of Yakutia have optimal conditions for the formation of rock glaciers, but they have not yet been studied in this regard. In this article, for the first time, we present a detailed list of rock glaciers in this region. Based on geoinformation mapping using remote sensing data and field studies within the Chersky, Verkhoyansk, Momsky and Suntar-Khayata ranges, 4503 rock glaciers with a total area of 224.6 km2 were discovered. They are located within absolute altitudes, from 503 to 2496 m. Their average minimum altitude was at 1456 m above sea level, and the maximum at 1527 m. Most of these formations are located on the sides of the trough valleys, and form extended sloping types of rock glaciers. An assessment of the exposure of the slopes where the rock glaciers are located showed that most of the rock glaciers are facing north and south. Keywords: rock glacier; permafrost; inventory; northeastern Yakutia; remote sensing 1. Introduction The geography of distribution of rock glaciers is quite extensive. They are found in many mountainous regions of Europe, North and South America and Asia, including some circumpolar regions [1–18].
    [Show full text]
  • The Ice Age in Pennsylvania 13
    Educational Series 6 PENNSYLVANIA AND THE ICE AGE An Equal Opportunity/ Affirmative Action Employer Recycled Paper 2200–BK–DCNR3061 COMMONWEALTH OF PENNSYLVANIA Tom Ridge, Governor DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES John C. Oliver, Secretary OFFICE OF CONSERVATION AND ENGINEERING SERVICES Richard G. Sprenkle, Deputy Secretary BUREAU OF TOPOGRAPHIC AND GEOLOGIC SURVEY Donald M. Hoskins, Director FRONT COVER: The wooly mammoth—a Pennsylvania resident during the Ice Age (modified from Thomas, D. J., and others, 1987, Pleistocene and Holocene geology of a dynamic coast, Annual Field Conference of Pennsyl- vania Geologists, 52nd, Erie, Pa., Guidebook, front cover). Educational Series 6 Pennsylvania and the Ice Age by W. D. Sevon and Gary M. Fleeger PENNSYLVANIA GEOLOGICAL SURVEY FOURTH SERIES HARRISBURG 1999 When reproducing material from this book, please cite the source as follows: Sevon, W. D., and Fleeger, G. M., 1999, Pennsylvania and the Ice Age (2nd ed.): Pennsylvania Geological Survey, 4th ser., Educational Series 6, 30 p. Pennsylvania World Wide Web site: www.state.pa.us Department of Conservation and Natural Resources World Wide Web site: www.dcnr.state.pa.us Bureau of Topographic and Geologic Survey World Wide Web site: www.dcnr.state.pa.us/topogeo Illustrations drafted by John G. Kuchinski First Edition, 1962 Fifth Printing, May 1978 Second Edition, May 1999 PENNSYLVANIA AND THE ICE AGE by W. D. Sevon and Gary M. Fleeger Have you heard the story of the Ice Age, a time when large sheets of moving ice (glaciers) blanketed the northern half of North America? Unbelievable though it may seem, half of our continent was once buried beneath thousands of feet of ice.
    [Show full text]
  • Present-Day Solifluction Processes in the Semi-Arid Range of Sierra Nevada (Spain)
    Arctic, Antarctic, and Alpine Research An Interdisciplinary Journal ISSN: 1523-0430 (Print) 1938-4246 (Online) Journal homepage: http://www.tandfonline.com/loi/uaar20 Present-Day Solifluction Processes in the Semi-Arid Range of Sierra Nevada (Spain) Marc Oliva, Antonio Gómez Ortiz, Ferran Salvador Franch & Montserrat Salvà Catarineu To cite this article: Marc Oliva, Antonio Gómez Ortiz, Ferran Salvador Franch & Montserrat Salvà Catarineu (2014) Present-Day Solifluction Processes in the Semi-Arid Range of Sierra Nevada (Spain), Arctic, Antarctic, and Alpine Research, 46:2, 365-370, DOI: 10.1657/1938-4246-46.2.365 To link to this article: https://doi.org/10.1657/1938-4246-46.2.365 © 2014 Regents of the University of Colorado Published online: 16 Jan 2018. Submit your article to this journal Article views: 32 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uaar20 Arctic, Antarctic, and Alpine Research, Vol. 46, No. 2, 2014, pp. 365–370 Present-Day Solifluction Processes in the Semi-arid Range of Sierra Nevada (Spain) Marc Oliva* Abstract Antonio Gómez Ortiz† In the highest land of the Sierra Nevada National Park, an experiment to monitor solif- Ferran Salvador Franch† and luction rates together with the thermal regime of the ground was implemented during the period 2005–2011. Data show evidence of the low activity of solifluction pro- Montserrat Salvà Catarineu† cesses in the present-day periglacial belt of Sierra Nevada. Annual displacement rates *Corresponding author: Institute of were lower than 1 cm yr–1 both in northern and southern slopes.
    [Show full text]