Nature Medicine Essay

Total Page:16

File Type:pdf, Size:1020Kb

Nature Medicine Essay LASKER~KOSHLAND SPECIAL ACHIEVEMENT IN MEDICAL SCIENCE AWARD ESSAY On the road from classical to modern molecular biology Tom Maniatis I graduated from the University of Colorado in a Boulder in 1965, and, while browsing through the university bookstore, I noticed a new book called Molecular Biology of the Gene by James Watson. When I read it, I was captivated by the elegance and power of an exciting new field that combined structure, genetics and biochemistry. Delving more deeply, I was fas- cinated by the classic paper of Francois Jacob and Jacque Monod on the operon theory and the subsequent identification of the Lac and l phage repressors by Walter Gilbert and Mark Ptashne, respectively. These breakthroughs in our understanding of gene regulation in b prokaryotes, which were based on a combi- nation of ingenuity, genetics and biochemis- try, defined classical molecular biology and inspired me to seek a PhD in the new field and, ultimately, to study the mechanisms of gene regulation in eukaryotes. On the basis of my interest in molecular biology, Joseph Daniel, my undergraduate research advisor at Colorado, suggested that I contact Leonard Lerman, who had recently moved from the University of Colorado Medical School to the new Department of Figure 1 Photos of me and my colleagues taken circa 1976–1978. (a) Tom Maniatis, Richard Axel and Molecular Biology at Vanderbilt University. Hal Weintraub. (b) Argiris Efstratiadis and Fotis Kafatos. Courtesy of the Cold Spring Harbor Archives. I took Joe’s advice and ultimately joined Leonard’s lab, where I studied the structure of My postdoctoral project was the characteriza- and mentor. Fred’s quiet brilliance and modesty highly compacted DNA by small-angle X-ray tion of the l repressor/operator protein–DNA affected everyone fortunate to work with him. scattering. Leonard was an excellent men- complex. I found that the repressor binds coop- It was a particularly exciting time in Fred’s lab, tor who encouraged critical thinking, and I eratively to multiple adjacent DNA sequences in as he and Allen Coulson were developing the enjoyed learning a new field. Toward the end the l operators and that mutations in these sites Sanger sequencing method (and back home, at of my thesis research, Mark Ptashne visited weakened DNA binding in vitro and increased Harvard, Allan Maxam and Walter were devel- Vanderbilt, and during his dinner with the expression in vivo. This early use of restriction oping an alternative approach to sequencing). graduate students I had the opportunity to enzymes and DNA binding assays presaged As these methods were still in development, discuss my interests in his work. That conver- my later studies of eukaryotic promoters and Mark and I worked with Bart Barrell and John sation ultimately led to an offer to join Mark’s enhancers. To determine the DNA sequence Donelson using an older, more cumbersome lab at Harvard for postdoctoral studies. of the l operators, Mark trapped Fred Sanger procedure to determine the DNA sequence of a on a ski lift at Keystone and coerced him into 27–base-pair λ operator, which required nearly Tom Maniatis is in the Department of Biochemistry hosting us in his lab at the UK Medical Research a full year to complete. Over the next several & Biophysics, Columbia University, New York, Council laboratory in Cambridge. We were ini- years, Mark and his lab went on to show how New York, USA. tially the unwelcome American duo, but Fred the organization of the operators has a funda- e-mail: [email protected] quickly warmed to us and was a gracious host mental role in the l ‘genetic switch’. I benefited NATURE MEDICINE VOLUME 18 | NUMBER 10 | OCTOBER 2012 xxix ESSAY Globin mRNA Plasmid PMB9 agated in bacteria, and Dale Kaiser and Paul 5ʹ 3ʹ AAAA Berg’s labs had shown that double-stranded dT 15 Reverse DNA molecules could be joined by dA:dT transcriptase joining. David Hogness exploited this method to clone and characterize random fragments of AAAA dT Drosophila genomic DNA, and his laboratory cDNA 15 EcoRI went on to transform Drosophila developmen- Alkali 5ʹ 3ʹ tal biology through the elegant application of genetics and genomic cloning methods. dT Our strategy for cDNA cloning was to 15 λ exonuclease perfect a method for generating full-length DNA polymerase I double-stranded cDNA, which could then be inserted into a plasmid by dA:dT tailing. cDNA Terminal However, our goal of cloning cDNAs was sDNA transferase derailed by the recombinant DNA controversy in Cambridge, Massachussetts, which led to a SI nuclease dA 100 moratorium on recombinant DNA research in dA 100 July 1976. The moratorium was the result of a complex mix of genuine concerns for safety, Anneal Double-stranded post-Vietnam social activism, historic town- globin DNA and-gown antagonisms, city and scientific poli- tics and intellectual dishonesty. The latter led to λ Exonuclease AA an infamous recital of a ‘slow-death scenario’ A T T A TT A T T A T at a city council meeting by an opponent of the A A T T T A T A research in the guise of providing ‘scientific’ advice to the mayor. The end result was that we Terminal transferase were unable to insert our in vitro–synthesized DNA into a bacterial plasmid. dT 100 Fortunately, however, we were rescued dT 100 by Jim Watson, who offered me a place to work at the CSHL, where recombinant DNA Figure 2 Schematic illustrating the synthesis and cloning of double-stranded cDNA from purified rabbit b-globin mRNA using the sequential activities of reverse transcriptase and DNA polymerase I. Reverse research was allowed. CSHL was a beehive transcriptase generates a short hairpin that functions as a primer for second-strand synthesis. S1 nuclease of activity when we arrived. Jim Watson had cleaves the hairpin, the ends are prepared for the terminal transferase reaction by l exonuclease treatment, recruited an exceptional group of young and oligo-dT is added to the ends. The plasmid PM9 vector is cleaved by EcoRI and subjected to oligo-dA investigators, including Joe Sambrook, Phil addition by terminal transferase. The cDNA is annealed to the plasmid DNA through dA:dT base pairing, Sharp, Rich Roberts, Mike Botchan and and the hybrid DNA molecule is introduced into E. coli. Redrawn from ref. 2. many more. Restriction enzymes were being used to create genetic and physical maps of enormously from my time in Mark’s lab. Mark ball shoes, and only rarely could we accom- viral and eukaryotic genomic DNA in Joe was an excellent and intellectually demanding modate Richard’s expensive tastes like dining Sambrook’s lab, and these tools contrib- mentor, and he deeply influenced my think- at a Michelin-rated restaurant. On one occa- uted to the discovery of RNA splicing by ing and writing. He is the best I have known sion, Hal appeared very much out of place in a Rich Roberts and his colleagues, who were at designing clever, incisive experiments that spectacular restaurant when an elegant French also producing dozens of new restriction address deep, mechanistic questions. gentlemen sitting at the next table turned to enzymes (RNA splicing was independently While still a postdoc at Harvard, I attended Hal and said “nice shoes.” The gentleman was discovered in Phil Sharp’s lab at MIT). CSHL the 1976 Cold Spring Harbor Symposium on François Mitterrand, the President of France. also provided an endless source of new infor- chromatin. This meeting would profoundly Hal was the most imaginative and creative mation and interesting people and science influence the future directions of my science biologist I have known. through its meetings program. It was in this and lead to life-long friendships. During the Upon returning to Harvard from the UK, atmosphere that we succeeded in generating annual lobster bake on the Cold Spring Harbor I met Argiris (Arg) Efstratiadis, who was a and thoroughly characterizing the first full- Laboratory (CSHL) beach, I met Richard Axel graduate student (and MD) in Fotis Kafatos’s length cDNA clones of b-globin mRNA1,2. and Hal Weintraub (Fig. 1a). I felt an imme- lab at Harvard (Fig. 1b). Arg and I connected This required the purification of a number diate intellectual and personal connection immediately, and I came to enjoy his humor, of enzymes that were not commercially avail- with them, and we remained close scientific intellectual intensity and madness. An initial able, the observation that reverse transcrip- colleagues and friends until Hal’s untimely brief conversation led to a highly productive tase leaves a short hairpin DNA at the 3ʹ end death at the age of 50 in 1995. We spoke collaboration with Arg and Fotis, the ultimate of the transcript and the establishment of every week on the phone, often late at night goal of which was to clone full-length comple- conditions for cleaving the hairpin by the discussing the latest data, paper or idea. We mentary DNAs (cDNAs). At that time, Herb single-strand–specific S1 nuclease. (Fig. 2). often attended meetings together, including Boyer and Stanley Cohen had shown that a The production and faithful propagation of some in fancy locales overseas. Hal was always eukaryotic ribosomal gene provided by Don full double-stranded DNA clones provided dressed in jeans, t-shirt and high-top basket- Brown could be joined to a plasmid and prop- powerful tools for isolating genes from xxx VOLUME 18 | NUMBER 10 | OCTOBER 2012 NATURE MEDICINE ESSAY genomic DNA and for the production of transient transfection method in collabora- DNA technology to a generation of emerging mammalian proteins (see ref. 1 for a more tion with Yasha Gluzman at the CSHL6 and molecular biologists.
Recommended publications
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • American Researchers Richard Axel and Linda B. Buck Were the Winners
    NOSSA CAPA OUR MAGAZINE J Bras Patol Med Lab • Volume 40 • Número 6 • Dezembro 2004 ISSN 1676-2444 • Volume 40 • NúmeroISSN 1 • Março 1676-2444 2004 COVER Richard Axel e Linda B. Buck, ganhadores do Prêmio Nobel de Medicina de 2004 importantes do olfato, um campo em que as pesquisas em todo o mundo estavam atrasadas em relação aos estudos dos demais sentidos. A descoberta dos cientistas reafirma a importância do Press sistema olfativo na qualidade de vida do homem e no sen- Folha Folha tido do paladar. O porta-voz do Instituto Karolinska disse oto: oto: F que “um bom vinho ou um morango maduro nos ajuda a detectar as qualidades que consideramos positivas. Um odor singular pode despertar velhas recordações”. Os princípios desvendados por Axel e Buck para o sistema olfativo também podem ser aplicados a outros sentidos. Os norte-americanos Richard Axel e Linda B. Buck foram os Afinal, os feromônios, cujo papel é importante no com- ganhadores do Prêmio Nobel de Medicina de 2004 pelos portamento social e sexual dos animais, são moléculas seus estudos sobre os receptores olfativos e a organização também detectadas por receptores igualmente localiza- do sistema olfativo nos seres humanos. dos no epitélio nasal. Os dois pesquisadores foram premiados porque, em seus Os dois pesquisadores americanos publicaram conjunta- centros de estudos nos Estados Unidos, descobriram mente suas descobertas em 1991 e posteriormente uma grande família genética constituída por cerca de mil continuaram com as pesquisas em seus centros de genes diferentes – 3% do nosso padrão genético – que pesquisa. estão na origem de um número equivalente de tipos de Linda Buck tem 57 anos e é pesquisadora do Fred Hutch- receptores olfativos.
    [Show full text]
  • Front Matter (PDF)
    IMMUNOLOGYwww.jimmunol.org Volume 176 / No. 6 / March 15, 2006 OF OURNAL J THE IMMUNOLOGYProgram Issue2006 Co-sponsored by Sir Philip Cohen and Professor Dario Alessi of the MRC Protein Phosphorylation Unit, and Professor Doreen Cantrell, University of Dundee Symposium Location: Apex City Quay Hotel & Spa, Dundee, UK tel +44 (0) 1382 561600 AN INITIATIVE TO RECOGNISE & REWARD OUTSTANDING RESEARCH WITHIN THE CELL SIGNALLING AREA Submission Deadline: 31st March, 2006 The successful young scientist will receive reagents and support funding of £10,000/$17,000/€14,000 donated to their laboratory, a personal cash prize of £5,000/$8,500/€7,000, plus a trophy. IMMUNOLOGY 2006 Annual Meeting of The American Association of Immunologists May 12–16, 2006 Hynes Convention Center • Boston, MA ImportantImportant DeadlinesDeadlines EARLY REGISTRATION HOTEL RESERVATIONS VISA INFORMATION March 6, 2006 April 13, 2006 www.aai.org/Imm2006/TransVisas.htm For complete meeting information visit www.aai.org/Imm2006/default.htm AAI Program PRESIDENT’S PROGRAM President’s Symposium DISTINGUISHED LECTURES T Cell Recognition and Development President’s Address Supported through an unrestricted educa- Defining Yourself: Tolerance Development Monday, May 15, 2:30 PM tional grant from Genentech, Inc. Hynes Convention Center, Ballroom A/B in the Immune System Ronald N. Germain, NIAID, NIH Chair: Paul M. Allen, Washington Univ. Saturday, May 13, 5:00 PM Friday, May 12, 5:00 PM School of Medicine, AAI President Hynes Convention Center, Ballroom A/B Hynes Convention Center, Ballroom A/B Speakers Introduction: Emil R. Unanue A reconstructionist's view Philippa Marrack, HHMI, Washington Univ. School of Medicine of antigen-specific T cell National Jewish Med.
    [Show full text]
  • Moore Noller
    2002 Ada Doisy Lectures Ada Doisy Lecturers 2003 in BIOCHEMISTRY Sponsored by the Department of Biochemistry • University of Illinois at Urbana-Champaign Dr. Peter B. 1970-71 Charles Huggins* and Elwood V. Jensen A76 1972-73 Paul Berg* and Walter Gilbert* Moore 1973-74 Saul Roseman and Bruce Ames Department of Molecular carbonyl Biophysics & Biochemistry Phe 1974-75 Arthur Kornberg* and Osamu Hayaishi Yale University C75 1976-77 Luis F. Leloir* New Haven, Connecticutt 1977-78 Albert L. Lehninger and Efraim Racker 2' OH attacking 1978-79 Donald D. Brown and Herbert Boyer amino N3 Tyr 1979-80 Charles Yanofsky A76 4:00 p.m. A2486 1980-81 Leroy E. Hood Thursday, May 1, 2003 (2491) 1983-84 Joseph L. Goldstein* and Michael S. Brown* Medical Sciences Auditorium 1984-85 Joan Steitz and Phillip Sharp* Structure and Function in 1985-86 Stephen J. Benkovic and Jeremy R. Knowles the Large Ribosomal Subunit 1986-87 Tom Maniatis and Mark Ptashne 1988-89 J. Michael Bishop* and Harold E. Varmus* 1989-90 Kurt Wüthrich Dr. Harry F. 1990-91 Edmond H. Fischer* and Edwin G. Krebs* 1993-94 Bert W. O’Malley Noller 1994-95 Earl W. Davie and John W. Suttie Director, Center for Molecular Biology of RNA 1995-96 Richard J. Roberts* University of California, Santa Cruz 1996-97 Ronald M. Evans Santa Cruz, California 1998-99 Elizabeth H. Blackburn 1999-2000 Carl R. Woese and Norman R. Pace 2000-01 Willem P. C. Stemmer and Ronald W. Davis 2001-02 Janos K. Lanyi and Sir John E. Walker* 12:00 noon 2002-03 Peter B.
    [Show full text]
  • Download Ps Nobel Prizes for Site BEE 11.18.16 Revised 11.30.17.Pdf
    Nobel Laureates at the College of Physicians and Surgeons For years, College of Physicians and Surgeons alumni, faculty, and researchers have led groundbreaking clinical and basic scientific studies that have transformed our understanding of human biology and advanced the practice of medicine. On many occasions, this work has been honored with the Nobel Prize. The scope of research led by P&S Nobel laureates is tremendous. Although most of our prizewinners were honored for work in physiology or medicine, a few also received the prize for chemistry. Their research has fundamentally shaped the course of numerous fields, including cardiology, neuroscience, genetics, pharmaceutical development, and more. Our Nobel laureates include: André Cournand and Dickinson Richards (P&S’23), whose work at P&S on cardiac catheterization—a method of inserting a tiny tube into the heart—provided the basis for open-heart surgery and interventional cardiology Baruch Blumberg (P&S’51), who discovered the hepatitis B virus and helped develop a test and a vaccine for the virus Joshua Lederberg, a Columbia College and P&S graduate student who showed that bacteria can exchange genes when they reproduce, creating a way to model and study genetics in higher organisms Harold Varmus (P&S’66), who demonstrated how genes in normal human and animal cells can mutate to cause cancer, leading to a new generation of research on the genetic origins of cancer Eric Kandel, current University Professor, who showed how memories are stored in nerve cells, greatly enhancing
    [Show full text]
  • Issue 84 of the Genetics Society Newsletter
    JANUARY 2021 | ISSUE 84 GENETICS SOCIETY NEWS In this issue The Genetics Society News is edited by • Non-canonical Careers: Thinking Outside the Box of Academia and Industry Margherita Colucci and items for future • Celebrating the 35th anniversary of DNA fingerprinting issues can be sent to the editor by email • Genetics Society Summer Studentship Workshop 2020 to [email protected]. • 2020 Heredity best student-led paper prize winners The Newsletter is published twice a year, • Industrious Science: interview with Dr Paul Lavin with copy dates of July and January. Celebrating students’ achievements: 2020 Genetics Society Summer Studentship Workshop, 2020 Heredity best student-led paper prize. Page 30 A WORD FROM THE EDITOR A word from the editor Welcome to Issue 84 elcome to the latest issue of the Thinking Outside the Box of WGenetics Society Newsletter! Academia and Industry”. This little This issue is packed with great news vade mecum for careers in genetics of achievements and good science. The collects inspiring interviews led first Genetics Society virtual workshop by our very own Postgraduate for the 2020 Summer studentship saw Representative, Emily Baker. In exceptional contributions from the Emily’s words, these experiences attending students. You can read more “demonstrate how a PhD in genetics about participants’ experiences in the can be a platform for a career in just interviews with the talk’s winners in about anything. Pursuing a career the Feature section. in academia, industry, publishing or science communication could be for Many more prizes were awarded: you, but so could many others. Why Heredity journal announced the not take a career path less travelled 2020 Heredity best student-led paper by, it might make all the difference?” winners, and James Burgon’s Heredity podcast dedicated an episode to the Enjoy! first prize winner, with insights from Best wishes, Heredity Editor-in-Chief, Barbara Margherita Colucci Mable.
    [Show full text]
  • ILAE Historical Wall02.Indd 10 6/12/09 12:04:44 PM
    2000–2009 2001 2002 2003 2005 2006 2007 2008 Tim Hunt Robert Horvitz Sir Peter Mansfi eld Barry Marshall Craig Mello Oliver Smithies Luc Montagnier 2000 2000 2001 2002 2004 2005 2007 2008 Arvid Carlsson Eric Kandel Sir Paul Nurse John Sulston Richard Axel Robin Warren Mario Capecchi Harald zur Hauser Nobel Prizes 2000000 2001001 2002002 2003003 200404 2006006 2007007 2008008 Paul Greengard Leland Hartwell Sydney Brenner Paul Lauterbur Linda Buck Andrew Fire Sir Martin Evans Françoise Barré-Sinoussi in Medicine and Physiology 2000 1st Congress of the Latin American Region – in Santiago 2005 ILAE archives moved to Zurich to become publicly available 2000 Zonismide licensed for epilepsy in the US and indexed 2001 Epilepsia changes publishers – to Blackwell 2005 26th International Epilepsy Congress – 2001 Epilepsia introduces on–line submission and reviewing in Paris with 5060 delegates 2001 24th International Epilepsy Congress – in Buenos Aires 2005 Bangladesh, China, Costa Rica, Cyprus, Kazakhstan, Nicaragua, Pakistan, 2001 Launch of phase 2 of the Global Campaign Against Epilepsy Singapore and the United Arab Emirates join the ILAE in Geneva 2005 Epilepsy Atlas published under the auspices of the Global 2001 Albania, Armenia, Arzerbaijan, Estonia, Honduras, Jamaica, Campaign Against Epilepsy Kyrgyzstan, Iraq, Lebanon, Malta, Malaysia, Nepal , Paraguay, Philippines, Qatar, Senegal, Syria, South Korea and Zimbabwe 2006 1st regional vice–president is elected – from the Asian and join the ILAE, making a total of 81 chapters Oceanian Region
    [Show full text]
  • 1993 Human Genome Program Report
    Please address queries on this publication to: Human Genome Program U.S. Department of Energy Office of Health and Environmental Research ER-72 GTN Washington, DC 20585 301/903-6488, Fax: 301/903-8521 Internet: [email protected] Human Genome Management Information System Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6050 615/576-6669, Fax: 615/574-9888 BITNET: bkq@ornlstc Internet: [email protected] This report has been reproduced directly frorn the best obtainable copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information; P.O. Box 62; Oak Ridge, TN 37831. Price information: 615/576-8401 . Available to the public from the National Technical Information Service; U.S. Department of Commerce; 5285 Port Royal Road; Springfield, VA 22161. DOE/ER-0611 P uman nome 1993 Program Report Date Published: March 1994 U.S. Department of Energy Office of Energy Research Office of Health and Environmental Research Washington, D.C. 20585 Preface he purpose of this report is to update the Human Genome 1991-92 Program Report T (DOE/ER-0544P, published June 1992) and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward the 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.
    [Show full text]
  • Close to the Edge: Co-Authorship Proximity of Nobel Laureates in Physiology Or Medicine, 1991 - 2010, to Cross-Disciplinary Brokers
    Close to the edge: Co-authorship proximity of Nobel laureates in Physiology or Medicine, 1991 - 2010, to cross-disciplinary brokers Chris Fields 528 Zinnia Court Sonoma, CA 95476 USA fi[email protected] January 2, 2015 Abstract Between 1991 and 2010, 45 scientists were honored with Nobel prizes in Physiology or Medicine. It is shown that these 45 Nobel laureates are separated, on average, by at most 2.8 co-authorship steps from at least one cross-disciplinary broker, defined as a researcher who has published co-authored papers both in some biomedical discipline and in some non-biomedical discipline. If Nobel laureates in Physiology or Medicine and their immediate collaborators can be regarded as forming the intuitive “center” of the biomedical sciences, then at least for this 20-year sample of Nobel laureates, the center of the biomedical sciences within the co-authorship graph of all of the sciences is closer to the edges of multiple non-biomedical disciplines than typical biomedical researchers are to each other. Keywords: Biomedicine; Co-authorship graphs; Cross-disciplinary brokerage; Graph cen- trality; Preferential attachment Running head: Proximity of Nobel laureates to cross-disciplinary brokers 1 1 Introduction It is intuitively tempting to visualize scientific disciplines as spheres, with highly produc- tive, well-funded intellectual and political leaders such as Nobel laureates occupying their centers and less productive, less well-funded researchers being increasingly peripheral. As preferential attachment mechanisms as well as the economics of employment tend to give the well-known and well-funded more collaborators than the less well-known and less well- funded (e.g.
    [Show full text]
  • Allis Kornberg
    Ada Doisy Lecturers 2006 Ada Doisy Lectures 1970-71 Charles Huggins* and Elwood V. Jensen 2007 in BIOCHEMISTRY 1972-73 Paul Berg* and Walter Gilbert* Sponsored by the Department of Biochemistry • University of Illinois at Urbana-Champaign 1973-74 Saul Roseman and Bruce Ames 1974-75 Arthur Kornberg* and Osamu Hayaishi Dr. Roger 1976-77 Luis F. Leloir* 1977-78 Albert L. Lehninger and Efraim Racker Kornberg Department of Biochemistry 1978-79 Donald D. Brown and Herbert Boyer Stanford School of Medicine 1979-80 Charles Yanofsky Stanford, California 1980-81 Leroy E. Hood 1983-84 Joseph L. Goldstein* and Michael S. Brown* 1984-85 Joan Steitz and Phillip Sharp* The Molecular Basis of 1985-86 Stephen J. Benkovic and Jeremy R. Knowles Eukaryotic Transcription 1986-87 Tom Maniatis and Mark Ptashne 1988-89 J. Michael Bishop* and Harold E. Varmus* 1989-90 Kurt Wüthrich* 4:00 p.m. Thursday, April 5, 2007 1990-91 Edmond H. Fischer* and Edwin G. Krebs* Medical Sciences Auditorium 1993-94 Bert W. O’Malley 1994-95 Earl W. Davie and John W. Suttie 1995-96 Richard J. Roberts* Dr. C. David 1996-97 Ronald M. Evans 1998-99 Elizabeth H. Blackburn Allis 1999-2000 Carl R. Woese† and Norman R. Pace Department of Molecular and Cellular Physiology The Rockefeller University 2000-01 Willem P. C. Stemmer and Ronald W. Davis New York, New York 2001-02 Janos K. Lanyi and Sir John E. Walker* 2002-03 Peter B. Moore and Harry F. Noller 2003-04 Elizabeth A. Craig and Susan L. Lindquist Beyond the Double Helix: 2004-05 Peter C.
    [Show full text]
  • Celebrating 40 Years of Rita Allen Foundation Scholars 1 PEOPLE Rita Allen Foundation Scholars: 1976–2016
    TABLE OF CONTENTS ORIGINS From the President . 4 Exploration and Discovery: 40 Years of the Rita Allen Foundation Scholars Program . .5 Unexpected Connections: A Conversation with Arnold Levine . .6 SCIENTIFIC ADVISORY COMMITTEE Pioneering Pain Researcher Invests in Next Generation of Scholars: A Conversation with Kathleen Foley (1978) . .10 Douglas Fearon: Attacking Disease with Insights . .12 Jeffrey Macklis (1991): Making and Mending the Brain’s Machinery . .15 Gregory Hannon (2000): Tools for Tough Questions . .18 Joan Steitz, Carl Nathan (1984) and Charles Gilbert (1986) . 21 KEYNOTE SPEAKERS Robert Weinberg (1976): The Genesis of Cancer Genetics . .26 Thomas Jessell (1984): Linking Molecules to Perception and Motion . 29 Titia de Lange (1995): The Complex Puzzle of Chromosome Ends . .32 Andrew Fire (1989): The Resonance of Gene Silencing . 35 Yigong Shi (1999): Illuminating the Cell’s Critical Systems . .37 SCHOLAR PROFILES Tom Maniatis (1978): Mastering Methods and Exploring Molecular Mechanisms . 40 Bruce Stillman (1983): The Foundations of DNA Replication . .43 Luis Villarreal (1983): A Life in Viruses . .46 Gilbert Chu (1988): DNA Dreamer . .49 Jon Levine (1988): A Passion for Deciphering Pain . 52 Susan Dymecki (1999): Serotonin Circuit Master . 55 Hao Wu (2002): The Cellular Dimensions of Immunity . .58 Ajay Chawla (2003): Beyond Immunity . 61 Christopher Lima (2003): Structure Meets Function . 64 Laura Johnston (2004): How Life Shapes Up . .67 Senthil Muthuswamy (2004): Tackling Cancer in Three Dimensions . .70 David Sabatini (2004): Fueling Cell Growth . .73 David Tuveson (2004): Decoding a Cryptic Cancer . 76 Hilary Coller (2005): When Cells Sleep . .79 Diana Bautista (2010): An Itch for Knowledge . .82 David Prober (2010): Sleeping Like the Fishes .
    [Show full text]
  • A Guide to the Archival Collection of the Robert Cook-Deegan Human
    Bioethics Research Library The Joseph and Rose Kennedy Institute of Ethics bioethics.georgetown.edu A Guide to the Archival Collection of The Robert Cook-Deegan Human Genome Archive Set 2 April, 2013 Bioethics Research Library Joseph and Rose Kennedy Institute of Ethics Georgetown University Washington, D.C. Overview The Robert Cook-Deegan Human Genome Archive is founded on the bibliography of The Gene Wars: Science, Politics, and the Human Genome. The archive encompasses both physical and digital materials related to The Human Genome Project (HGP) and includes correspondence, government reports, background information, and oral histories from prominent participants in the project. Hosted by the Bioethics Research Library at Georgetown University the archive is comprised of 20.85 linear feet of materials currently and is expected to grow as new materials are processed and added to the collection. Most of the materials comprising the archive were obtained between the years 1986 and 1994. However, several of the documents are dated earlier. Introduction This box listing was created in order to assist the Bioethics Research Library in its digitization effort for the archive and is being shared as a resource to our patrons to assist in their use of the collection. The archive consists of 44 separate archive boxes broken down into three separate sets. Set one is comprised of nine boxes, set two is comprised of seven boxes, and set three is comprised of 28 boxes. Each set corresponds to a distinct addition to the collection in the order in which they were given to the library. No value should be placed on the importance of any given set, or the order the boxes are in, as each was accessed, processed, and kept in the order in which they were received.
    [Show full text]