Cretaceous System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New and Poorly Known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France)
Volumina Jurassica, 2014, Xii (1): 113–128 New and poorly known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France) Luc G. BULOT1, Camille FRAU2, William A.P. WIMBLEDON3 Key words: Ammonoidea, Ataxioceratidae, Himalayitidae, Neocomitidae, Upper Tithonian, Le Chouet, South-East France. Abstract. The aim of this paper is to document the ammonite fauna of the upper part of the Late Tithonian collected at the key section of Le Chouet (Drôme, SE France). Emphasis is laid on new and poorly known Ataxioceratidae, Himalayitidae and Neocomitidae from the upper part of the Tithonian. Among the Ataxioceratidae, a new account on the taxonomy and relationship between Paraulacosphinctes Schindewolf and Moravisphinctes Tavera is presented. Regarding the Himalayitidae, the range and content of Micracanthoceras Spath is discussed and two new genera are introduced: Ardesciella gen. nov., for a group of Mediterranean ammonites that is homoeomorphic with the Andean genus Corongoceras Spath, and Pratumidiscus gen. nov. for a specimen that shows morphological similarities with the Boreal genera Riasanites Spath and Riasanella Mitta. Finally, the occurrence of Neocomitidae in the uppermost Tithonian is documented by the presence of the reputedly Berriasian genera Busnardoiceras Tavera and Pseudargentiniceras Spath. INTRODUCTION known Perisphinctoidea from the Upper Tithonian of this reference section. Additional data on the Himalayitidae in- The unique character of the ammonite fauna of Le Chouet cluding the description and discussion of Boughdiriella (near Les Près, Drôme, France) (Fig. 1) has already been chouetensis gen. nov. sp. nov. are to be published elsewhere outlined by Le Hégarat (1973), but, so far, only a handful of (Frau et al., 2014). -
Non-Invasive Imaging Methods Applied to Neo- and Paleo-Ontological Cephalopod Research
Biogeosciences, 11, 2721–2739, 2014 www.biogeosciences.net/11/2721/2014/ doi:10.5194/bg-11-2721-2014 © Author(s) 2014. CC Attribution 3.0 License. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research R. Hoffmann1, J. A. Schultz2, R. Schellhorn2, E. Rybacki3, H. Keupp4, S. R. Gerden1, R. Lemanis1, and S. Zachow5 1Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany 2Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115 Bonn, Germany 3Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ Sektion 3.2, Geomechanik und Rheologie, Telegrafenberg, D 429, 14473 Potsdam, Germany 4Institut für Geologische Wissenschaften, Fachrichtung Paläontologie, Freie Universität Berlin, Malteserstrasse 74–100, 12249 Berlin, Germany 5Zuse Institut Berlin, Takustrasse 7, 14195 Berlin, Germany Correspondence to: R. Hoffmann ([email protected]) Received: 28 October 2013 – Published in Biogeosciences Discuss.: 29 November 2013 Revised: 14 March 2014 – Accepted: 29 March 2014 – Published: 22 May 2014 Abstract. Several non-invasive methods are common prac- tially preserved within the surrounding rocks, requires imag- tice in natural sciences today. Here we present how they ing methods that are primarily used in non-destructive test- can be applied and contribute to current topics in cephalo- ing. The conservation of the specimen is of main importance pod (paleo-) biology. Different methods will be compared in using these methods since former techniques used destruc- terms of time necessary to acquire the data, amount of data, tive methods leading to the loss of the specimen or parts accuracy/resolution, minimum/maximum size of objects that of the specimen. -
Wimbledon Et Al. 2020. the Pro
The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 2 William Wimbledon, Daniela Rehakova, Andrea Svobodova, Tiiu Elbra, Petr Schnabl, Petr Pruner, Krýstina Šifnerová, Šimon Kdýr, Camille Frau, Johann Schnyder, et al. To cite this version: William Wimbledon, Daniela Rehakova, Andrea Svobodova, Tiiu Elbra, Petr Schnabl, et al.. The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 2. Volumina Jurassica, Polish Geological Institute, 2020, 18 (2), pp.119-158. hal-03149514 HAL Id: hal-03149514 https://hal.archives-ouvertes.fr/hal-03149514 Submitted on 4 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Volumina Jurassica, 2020, XVIII (2): 119–158 DOI: The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 2 William A.P. WIMBLEDON1, Daniela REHÁKOVÁ2, Andrea SVOBODOVÁ3, Tiiu ELBRA3, Petr SCHNABL3, Petr PRUNER3, Krýstina ŠIFNEROVÁ3, Šimon KDÝR3, Camille FRAU4, Johann SCHNYDER5, Bruno GALBRUN5, Lucie VAŇKOVÁ6, Oksana DZYUBA7, Philip COPESTAKE8, Christopher O. HUNT9, Alberto RICCARDI10, Terry P. POULTON11, Luc G. BULOT12, 13, Luis DE LENA14 Key words: Cretaceous, Berriasian Stage, GSSP, biostratigraphy, magnetostratigraphy, Vocontian Basin. Abstract. In part 1 of this work we discussed the possibilities for the selection of a GSSP for the Berriasian Stage of the Cretaceous Sys- tem, based on prevailing practical methods for correlation in that J/K interval, traditional usage and the consensus over the best boundary markers that had developed in the last forty years. -
Upper Jurassicelower Cretaceous Stratigraphy in South-Eastern Tibet: a Comparison with the Western Himalayas
Author's personal copy Cretaceous Research 29 (2008) 301e315 www.elsevier.com/locate/CretRes Upper JurassiceLower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas Xiumian Hu a,*, Luba Jansa b, Chengshan Wang c a State Key Laboratory of Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China b Department of Earth Sciences, Dalhousie University, Halifax B3H 3J5, Canada c Geological Centre for Tibetan Plateau, China University of Geosciences, Beijing 100083, P.R. China Received 24 January 2007; accepted in revised form 14 May 2007 Available online 28 November 2007 Abstract Lithostratigraphic studies of the Upper JurassiceLower Cretaceous sedimentary successions exposed in the TingrieGyangze area, south- eastern Tibet resulted in the establishment of a revised stratigraphic framework. A major crustal fault separates the southern Tibetan sedimentary successions into a Southern Zone and a Northern Zone. The Upper JurassiceLower Cretaceous strata of the Southern Zone are subdivided into the Menkadun Formation (Oxfordian, Kimmeridgian, up to lower Upper Tithonian), the Gucuo Formation (Upper Tithonian to Lower Albian) and the overlying Dongshan Formation (Upper Albian). The Gucuo Formation is further subdivided into a quartz arenite unit, which is overlain by a shale unit, in turn overlain by a volcaniclastic sandstone unit. The youngest cluster of detrital zircon absolute age data (127.7 Æ 1.8 Ma) from the lower part of the volcaniclastic unit of the Gucuo Formation place the volcanic event before the Late Barremian. In the Northern Zone, the Upper JurassiceLower Cretaceous strata have been subdivided into four formations: the Zhera Formation (Upper Jurassic), the Weimei Formation (Tithonian), the Rilang Formation (?Berriasian) and the Gyabula Formation (? post-Valanginian). -
Organic Carbon Isotope Chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada
University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences Finding the VOICE: organic carbon isotope chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada Galloway, JM http://hdl.handle.net/10026.1/15324 10.1017/s0016756819001316 Geological Magazine Cambridge University Press (CUP) All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Proof Delivery Form Geological Magazine Date of delivery: Journal and vol/article ref: geo 1900131 Number of pages (not including this page): 15 This proof is sent to you on behalf of Cambridge University Press. Please check the proofs carefully. Make any corrections necessary on a hardcopy and answer queries on each page of the proofs Please return the marked proof within 2 days of receipt to: [email protected] Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. This will be your ONLY chance to correct your proof. Once published, either online or in print, no further changes can be made. To avoid delay from overseas, please send the proof by airmail or courier. If you have no corrections to make, please email [email protected] to save having to return your paper proof. If corrections are light, you can also send them by email, quoting both page and line number. -
Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74, -
A Lower Cretaceous Mass Occurrence of Ammonoids – Implications on Taphonomy and Stratigraphy (Valanginian; Northern Calcareous Alps; Austria) A
Geophysical Research Abstracts, Vol. 7, 06317, 2005 SRef-ID: 1607-7962/gra/EGU05-A-06317 © European Geosciences Union 2005 A Lower Cretaceous mass occurrence of ammonoids – implications on taphonomy and stratigraphy (Valanginian; Northern Calcareous Alps; Austria) A. Lukeneder Natural History Museum, Department of Geology and Paleontology, Burgring 7, A-1014 Vienna, Austria ([email protected] / Fax: +43 (1) 52177-459 / Phone: +43 (1) 52177-583) Lower Cretaceous pelagic sediments are known to form a major element of the Staufen-Höllengebirgs Nappe. Valanginian to Hauterivian cephalopod-bearing de- posits are recorded in two different facies, the Schrambach and the Rossfeld forma- tions. Upper Valanginian sediments of the Rossfeld Formation are mainly composed of turbiditic sandstone intercalations, whereas the Rossfeld Formation comprises tur- biditic marls and sandstones (Immel 1987).The stratigraphy of the Lower Cretaceous sediments in the investigated area is based on ammonoids. The Upper Valanginian succession of southernmost part of Upper Austria was de- posited in an unstable shelf setting characterized by thick sandstone units that re- flect transgressive histories combined by tectonic events (see FAUPL 1979). The terrigenous, proximal, deep-water turbiditic Rossfeld Formation of the Staufen- Höllengebirgs Nappe represents a synorogenic development (see also VAŠÍCEKˇ and FAUPL 1998; LUKENEDER 2004). The locality is situated in the southernmost part of the Tirolic Unit which underlays and/or neighbours in this region a small ‘Hallstädter Scholle’. The Tirolic Unit is a part the ‘Traunalpen Scholle’ which at this region displays the westernmost part of the Staufen-Höllengebirgs Nappe. Lower Cretaceous sediments are represented at the area around the Kolowrat- shöhe section by two formations, the Rossfeld Formation (approx. -
Vol 10, Issue 4, December 2011
MMAAGGAAZZIINNEE OOFF TTHHEE GGEEOOLLOOGGIISSTTSS’’ AASSSSOOCCIIAATTIIOONN VVoolluummee 1100 NNoo.. 44 DDeecceemmbbeerr 22001111 The Association Future Lectures FESTIVAL OF GEOLOGY Nominations Required Field Trip to France part 2 October Lecture Weald Clay Field Trip Curry Fund Report Circular GA Two-Day Meeting Rockwatch News Rockwatch Young Writer Sher-rock Holmes Geology of NE Churches 1 Winners of Photographic Competition Magazine of the Geologists’ Association Volume 10 No. 4, 2011 CONTENTS Published by the Geologists’ Association. Four issues per year. ISSN 1476-7600 Production team: JOHN CROCKER, Paula Carey, John 3 The Association Cosgrove, Vanessa Harley, Jon Trevelyan, 4 Future Lectures Chris Woolston 5 FESTIVAL OF GEOLOGY Printed by City Print, Milton Keynes 6 Nominations Required 7 Field Trip to France part 2 The GEOLOGISTS’ ASSOCIATION does not accept any responsibility for views and opinions expressed by 11 October Lecture individual authors in this magazine. 12 Weald Clay Field Trip 13 Curry Fund Report The Geologists’ Association 14 Circular The Association, founded in 1858, exists to foster the progress and diffusion of the science of geology, and to encourage 20 GA Two-Day Meeting research and the development of new methods. It holds meetings 23 Rockwatch News for the reading of papers and the delivery of lectures, organises museum demonstrations, publishes Proceedings and Guides, and 25 Rockwatch Young Writer conducts field meetings. Annual Subscriptions for 2012 are £40.00, Associates £30.00, 27 Sher-rock Holmes Joint Members £58.00, Students £18.00. 28 Geology of NE Churches 1 For forms of Proposal for Membership and further information, apply to the Executive Secretary, The Geologists’ Association, 31 Kite Flying or Fossil Hunting? Burlington House, Piccadilly, London W1J 0DU. -
The Valanginian to Aptian Stages - Current Definitions and Outstanding Problems
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 4‘>3 Zitteliana 10 493-500 München, I. Juli 1983 ISSN 0373 9627 The Valanginian to Aptian stages - current definitions and outstanding problems Compiled by PETER FRANKLIN RAWSON») Willi 3 tables ABSTRACT Current definitions of the Valanginian to Aptian Stages are tion potential. The I’re-Albian Stages Working Croup is in reviewed and some of the outstanding problems outlined. Fi stigating study of selected sections in various parts of the nal recommendations on stage boundaries can be made only world to provide an integrated framework ol biostraligraphy after much more strat¡(graphical work has been completed, as and event stratigraphy. the eventual boundaries must have good international correla KURZFASSUNG Lin Überblick über die gängigen Definitionen der Stufen barsein. Die Prc-Albian Stagcs Working Group regt an, ms vom Valangin bis zum Apt wird gegeben und einige wichtige gewählte Profile in verschiedenen Peilen der Welt zu unterst! Probleme hervorgehoben. Lndgülligc Empfehlungen zu Stu ehen, um so den allgemeinen Rahmen liii eine Ncudelinition fengrenzen sind z. Zt. noch nicht möglich. Dazu sind noch der Stufen auf der Grundlage der Biostraligraphie und der weitere stratigraphische Untersuchungen erforderlich, denn Lvenl-Straiigraphic zu schaffen. die fcstzulcgendcn Grenzen müssen international korrelier I. INTRODUCTION This review has been compiled on behalf of the Prc-Albian boundaries and to improve the usage of stage names in re Stages Working Group of the Subcommission on Cretaceous gions away from stratotype sections." Stratigraphy. The primary role of the working group is to cla Thus our fundamental philosophy is first to make objective rify, and to improve where necessary, the definition and correlations between regions and only then to redefine stages boundaries of the Valanginian to Aptian Stages. -
Palaeoecology and Palaeoenvironments of the Middle Jurassic to Lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard
NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-02 Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard Maayke J. Koevoets1, Øyvind Hammer1 & Crispin T.S. Little2 1Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway. 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail corresponding author (Maayke J. Koevoets): [email protected] We describe the invertebrate assemblages in the Middle Jurassic to lowermost Cretaceous of the Agardhfjellet Formation present in the DH2 rock-core material of Central Spitsbergen (Svalbard). Previous studies of the Agardhfjellet Formation do not accurately reflect the distribution of invertebrates throughout the unit as they were limited to sampling discontinuous intervals at outcrop. The rock-core material shows the benthic bivalve fauna to reflect dysoxic, but not anoxic environments for the Oxfordian–Lower Kimmeridgian interval with sporadic monospecific assemblages of epifaunal bivalves, and more favourable conditions in the Volgian, with major increases in abundance and diversity of Hartwellia sp. assemblages. Overall, the new information from cores shows that abundance, diversity and stratigraphic continuity of the fossil record in the Upper Jurassic of Spitsbergen are considerably higher than indicated in outcrop studies. The inferred life positions and feeding habits of the benthic fauna refine our understanding of the depositional environments of the Agardhfjellet Formation. The pattern of occurrence of the bivalve genera is correlated with published studies of Arctic localities in East Greenland and northern Siberia and shows similarities in palaeoecology with the former but not the latter. -
Stratigraphy of Deep-Water Cretaceous Deposits in Gyangze, Southern Tibet, China ) Xianghui Lia, , Chengshan Wangb, Xiumian Huc
Cretaceous Research 26 (2005) 33–41 www.elsevier.com/locate/CretRes Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China ) Xianghui Lia, , Chengshan Wangb, Xiumian Huc aState Key Laboratory of Oil-Gas Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, PR China bChina University of Geosciences, 29 Xueyuan Lu, Beijing 100083, PR China cDepartment of Earth Sciences, Nanjing University, Nanjing 210093, PR China Accepted in revised form 15 November 2004 Available online 12 January 2005 Abstract Extensive tectonic activity in southern Tibet (Tibetan Tethys Himalayas) resulted in overthrusting and tectonic deformation of Cretaceous strata, which in the study area was not recognized by earlier researchers. Field studies of three typical cross-sections in southern Tibet has led to the revision of previous stratigraphy. The thickness of the Cretaceous in Gyangze varies between 300 and 700 m, but is not over 2000 m as previously estimated at Gyabure and Weimei, where the strata are overturned and repeated owing to previously unrecognized thrusts. In upward stratigraphic order four lithological markers were used in the field study: belemnite and black marker, lenticular limestone and white marker, red marker, and olistolith marker. The first two of these are associated with the fine-grained clastic shelf sequence of the Gyabula Formation, which is of Berriasian–early Santonian age. The third is the deep-sea red-beds marker of the Chuangde Formation, dated as middle Santonian–early Campanian. The fourth depicts the slump facies and olistolith of the middle Campanian–Paleocene Zongzhuo Formation. The revised Cretaceous stratigraphy provides a framework for studies of the pelagic red beds of the Chuangde Formation, which is intermittently exposed in southern Tibet. -
Berriasian Planktonic Foraminifera and Calcareous Nannofossils from Crimea Mountains, with Reference to Microfossil Evolution
Swiss Journal of Palaeontology (2019) 138:213–236 https://doi.org/10.1007/s13358-018-0175-8 (0123456789().,-volV)(0123456789().,-volV) REGULAR RESEARCH ARTICLE Berriasian planktonic foraminifera and calcareous nannofossils from Crimea Mountains, with reference to microfossil evolution 1 2 3 4 1 5 F. M. Gradstein • A. Waskowska • L. Kopaevich • D. K. Watkins • H. Friis • J. Pe´rez Panera Received: 26 July 2018 / Accepted: 22 October 2018 / Published online: 7 November 2018 Ó The Author(s) 2018 Abstract A Berriasian age planktonic foraminifera assemblage from a section near the village of Krasnoselivka in the Tonas River Basin, Crimea contains Favusella hoterivica (Subbotina), ?Favusella sp., Conoglobigerina gulekhensis (Gorbachik and Poroshina), Lilliputinella eocretacea (Neagu), Lilliputinella aff. similis (Longoria), Hedbergella aff. handousi Salaj and ? Globuligerina sp. Specimens are poorly preserved, but test morphology, aperture and key wall texture features are recognizable. Age assignment is based on a diverse and well-preserved calcareous nannofossils assemblage of upper zone CC2 and ammonites (Jacobi Zone). The nannfossils indicate an open marine environment of Tethyan affinity. Several of the planktonic foraminiferal taxa were not previously described from pre-Valanginian or Hauterivian strata. XRD analysis of the tests of benthic and planktonic foraminifera and micro-gastropods shows these to be calcitic in composition, also of those benthic and planktonic foraminifera that were deemed to be originally aragonitic in composition, indicating dia- genetic changes in carbonate fractions. From detailed comparison to Jurassic planktonic foraminifera, two lineages are proposed from Late Jurassic into earliest Cretaceous: Globuligerina oxfordiana (Grigelis) to Favusella hoterivica (Sub- botina) and Globuligerina balakhmatovae (Morozova) to Lilliputinella eocretacea (Neagu).