UNIVERSITY of CALIFORNIA, SAN DIEGO Efficient Micromagnetics For

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO Efficient Micromagnetics For UNIVERSITY OF CALIFORNIA, SAN DIEGO Efficient micromagnetics for magnetic storage devices A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering (Nanoscale Devices and Systems) by Marco Antonio Escobar Acevedo Committee in charge: Professor Vitaliy Lomakin, Chair Professor Raymond A. de Callafon Professor Yeshaiahu Fainman Professor Eric E. Fullerton Professor Oleg Shpyrko 2016 Copyright Marco Antonio Escobar Acevedo, 2016 All rights reserved. The dissertation of Marco Antonio Escobar Acevedo is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION To my much beloved family. iv EPIGRAPH A method is more important than a discovery, since the right method will lead to new and even more important discoveries. — Lev Landau v TABLE OF CONTENTS Signature Page.................................. iii Dedication..................................... iv Epigraph.....................................v Table of Contents................................. vi List of Figures.................................. viii List of Tables...................................x Acknowledgements................................ xi Vita........................................ xiii Abstract of the Dissertation........................... xv 1 Introduction..................................1 2 Theoretical Framework............................5 2.1 Introduction...............................5 2.2 The micromagnetic model.......................5 2.3 Finite element formulation.......................9 2.3.1 External field.......................... 10 2.3.2 Anisotropy field......................... 10 2.3.3 Exchange field.......................... 10 2.3.4 Magnetostatic field....................... 11 2.4 Mathematical preliminaries...................... 11 2.4.1 Solution of non-linear equations................ 12 2.4.2 Solution of ordinary differential equations.......... 13 2.5 Computational details......................... 14 3 Magnetization Dynamics........................... 17 3.1 Numerical solution of the Landau-Lifshitz-Gilbert equation..... 17 3.2 Perpendicular magnetic recording................... 19 3.2.1 Discretization artifacts..................... 20 3.2.2 Effects caused by the shield.................. 24 3.2.3 Full scale model......................... 24 3.2.4 Dynamics on the data layer.................. 27 3.2.5 Degaussing........................... 28 3.3 Discussion................................ 40 vi 4 Energy Minimization............................. 42 4.1 Introduction............................... 42 4.2 State of the art............................. 43 4.3 Solution schemes............................ 44 4.3.1 Newton’s method........................ 44 4.3.2 Brown’s equation........................ 47 4.3.3 Minimization via an ODE................... 47 4.3.4 High damping LLG....................... 47 4.4 Performance comparison........................ 48 4.5 Permalloy................................ 51 4.6 Spin valve................................ 53 4.7 Discussion................................ 54 5 Nudged Elastic Band Method........................ 57 5.1 Introduction............................... 57 5.2 Thermal stability............................ 58 5.3 Generic nudged elastic band method................. 60 5.4 Modifications for micromagnetics................... 60 5.4.1 Magnetic nanowire....................... 65 5.4.2 Magnetic random access memory............... 67 5.4.3 MRAM array.......................... 68 5.5 Nanodots................................ 72 5.6 Nanorings................................ 75 5.7 Discussion................................ 76 6 Summary................................... 79 Bibliography................................... 81 vii LIST OF FIGURES Figure 3.1: To solve the LLG equation using FastMag, several factors that affect the speed and accuracy must be considered......... 19 Figure 3.2: Magnetic write head schematic. A magnetic write head is typi- cally comprised of a return pole, a yoke, a main pole, a writing pole tip, a WAS, a SUL and an helical coil............ 21 Figure 3.3: Time dependence of the z-component of the magnetostatic field 12 nm under the tip for different meshes.............. 23 Figure 3.4: Effects caused by the WAS..................... 25 Figure 3.5: Zoom-in on the tapered recording pole, the minimum distance between the main pole and the WAS is 50 nm........... 26 Figure 3.6: A switching rate of 1.6 Gbit/s with a rise time of 100 ps. The maximal current is 100 mA..................... 28 Figure 3.7: Surface plots of the z-component of the magnetostatic field (µ0Hz [T]) in the data layer for several consecutive time instances for the baseline signal when switching. The shield induces magnetostatic fields near the pole tip region, such fields can lead to WATER.. 29 Figure 3.8: Response to the baseline signal and a zero-current time interval. Averaged field (< µ0Hz >) in the observer box as described in the text............................... 31 Figure 3.9: Response of the PMR head to a single frecuency degaussing signal. 32 Figure 3.10: Response of the PMR head using the signals with increasing frequency and linear decay..................... 34 Figure 3.11: Response of the PMR head using the signals with increasing frequency and exponential decay.................. 35 Figure 3.12: Response of the PMR head using the signals with decreasing frequency and linear envelope decay................ 37 Figure 3.13: Response of the PMR head using the signals with decreasing frequency and exponential envelope decay............. 38 Figure 3.14: Remanent state of the full head, and the recording tip...... 39 Figure 4.1: Minimum energy state for a cubic particle............. 49 Figure 4.2: Hysteresis loop calculation..................... 52 Figure 4.3: Schematic representation of an AP-pinned spin valve, only the magnetic materials are presented. In aquamarina the FL, in pink the RL, in yellow the Pin, and in green the AF layer.... 54 Figure 4.4: Magnetoresistance (MR) for an AP-pinned spin valve as a func- tion of the external field....................... 55 Figure 5.1: The continuous evolution of the magnetization between an initial state and a final state defines an energy path........... 61 viii Figure 5.2: Minimum energy path and energy barrier calculations for a CoCr nanowire............................... 66 Figure 5.3: The energy barrier convergence for a nanowire with different tangent orders, suscripts 1 and 2, and different methods to compute the Jacobian-matrix vector products, either using DQ or analytical Jacobian-matrix (Jv) times vector.......... 67 Figure 5.4: Minimum energy path for an MRAM............... 69 Figure 5.5: The energy barrier convergence for an MRAM with different tangent orders, suscripts 1 and 2, and different methods to compute the Jacobian-matrix vector products, either using DQ or analytical Jacobian-matrix (Jv) times vector.......... 69 Figure 5.6: Image in the MEP of an MRAM.................. 69 Figure 5.7: Minimum energy path for an array of MRAMs.......... 70 Figure 5.8: The energy barrier convergence for an array of MRAMs with different tangent orders, suscripts 1 and 2, and different methods to compute the Jacobian-matrix vector products, either using DQ or analytical Jacobian-matrix (Jv) times vector....... 70 Figure 5.9: Image in the MEP of an array of MRAMs............. 71 Figure 5.10: Comparison of the exmperimental measurement, macrospin cal- culation and NEB calculation for a 35 nm nanodot with N layers. 74 Figure 5.11: Comparison of the macrospin and NEB thermal stability of varying diameters nanodots..................... 74 Figure 5.12: Nanoring with AFC across the interface (point A, in yellow). Only one DW can exist....................... 75 Figure 5.13: Energy landscapes for different MFNRs as a function of DW location for different AFCs, MS, anisotropy and a deffect.... 77 ix LIST OF TABLES Table 3.1: Mesh discretization, small PMR head model............ 21 Table 3.2: Material properties for the full scale PMR head.......... 27 Table 3.3: Mesh details for the full scale PMR head model.......... 27 Table 4.1: Static calculations: Newton’s method............... 50 Table 4.2: Static calculations: Alternative Methods............. 50 Table 4.3: Hysteresis loop calculation: Newton’s method.......... 52 Table 4.4: Hysteresis loop calculation: Alternative methods......... 53 Table 4.5: MR calculation: AP–pinned spin valve............... 55 Table 5.1: NEB method performance metrics: Nanowire........... 65 Table 5.2: NEB method performance metrics: MRAM............ 68 Table 5.3: NEB method performance metrics: Array............. 71 x ACKNOWLEDGEMENTS I would like to express my gratitude to my adviser Professor Vitaliy Lo- makin for the opportunity to work in his research group, and to learn the field of micromagnetics. I also would like to thank my committee members: Professor Yesha- iahu Fainman, Professor Eric E. Fullerton, Professor Oleg Shpyrko and Professor Raymond A. de Callafon for their involvement in my academic development. I would like to thank all my peers at the Computational Electromagnetics and Micromagnetics Laboratory who helped me understand many of the physical phenomena in magnetism and with whom I have collaborated closely, and with whom I had an enduring friendship over the last few years. I thank the ECE Department of the University of California San Diego for the departmental fellowship
Recommended publications
  • Module 2C: Micromagnetics
    Module 2C: Micromagnetics Debanjan Bhowmik Department of Electrical Engineering Indian Institute of Technology Delhi Abstract In this part of the second module (2C) we will show how the Stoner Wolfarth/ single domain mode of ferromagnetism often fails to match with experimental data. We will introduce domain walls in that context and explain the basic framework of micromagnetics, which can be used to model domain walls. Then we will discuss how an anisotropic exchange interaction, known as Dzyaloshinskii Moriya interaction, can lead to chirality of the domain walls. Then we will introduce another non-uniform magnetic structure known as skyrmion and discuss its stability, based on topological arguments. 1 1 Brown's paradox in ferromagnetic thin films exhibiting perpendicular magnetic anisotropy We study ferromagnetic thin films exhibiting Perpendicular Magnetic Anisotropy (PMA) to demonstrate the failure of the previously discussed Stoner Wolfarth/ single domain model to explain experimentally observed magnetic switching curves. PMA is a heavily sought after property in magnetic materials for memory and logic applications (we will talk about that in details in the next module). This makes our analysis in this section even more relevant. The ferromagnetic layer in the Ta/CoFeB/MgO stack, grown by room temperature sput- tering, exhibits perpendicular magnetic anisotropy with an anisotropy field Hk of around 2kG needed to align the magnetic moment in-plane (Fig. 1a). Thus if the ferromagnetic layer is considered as a giant macro-spin in the Stoner Wolfarth model an energy barrier equivalent to ∼2kG exists between the up (+z) and down state (-z) (Fig. 1b). Yet mea- surement shows that the magnet can be switched by a field, called the coercive field, as small as ∼50 G, which is 2 orders of magnitude smaller than the anisotropy field Hk, as observed in the Vibrating Sample Magnetometry measurement on the stack (Fig.
    [Show full text]
  • Spin Wave Dispersion in a Magnonic Waveguide G
    1 Proposal for a standard micromagnetic problem: Spin wave dispersion in a magnonic waveguide G. Venkat, D. Kumar, M. Franchin, O. Dmytriiev, M. Mruczkiewicz, H. Fangohr, A. Barman, M. Krawczyk, and A. Prabhakar Abstract—We propose a standard micromagnetic problem, of Micromagnetic Framework (OOMMF) [12], LLG [13], Micro- a nanostripe of permalloy. We study the magnetization dynamics magus [14] and Nmag [15]. We rely on the finite difference and describe methods of extracting features from simulations. method (FDM) adopted by OOMMF and the finite element Spin wave dispersion curves, relating frequency and wave vector, are obtained for wave propagation in different directions relative method (FEM) used in Nmag. The latter is more suitable for to the axis of the waveguide and the external applied field. geometries with irregular edges [16]. However, the compu- Simulation results using both finite element (Nmag) and finite tation overhead and management of resources become major difference (OOMMF) methods are compared against analytic issues in FEM simulations. To compare different numerical results, for different ranges of the wave vector. solvers, the Micromagnetic Modeling Activity Group (µMag) Index Terms—Computational micromagnetics, spin wave dis- publishes standard problems for micromagnetism [17]–[19]. persion, exchange dominated spin waves A more recent addition included the effects of spin transfer torque [20]. However, there has thus far been no standard INTRODUCTION problem that includes the calculation of the spin wave dis- There have been steady improvements in computational persion of a magnonic waveguide. We believe that specifying micromagnetics in recent years, both in techniques as well as a standard problem will promote the use of micromagnetic in the use of graphical processing units (GPUs) [1]–[4].
    [Show full text]
  • Advanced Micromagnetics and Atomistic Simulations of Magnets
    Advanced micromagnetics and atomistic simulations of magnets Richard F L Evans ESM 2018 Overview • Micromagnetics • Formulation and approximations • Energetic terms and magnetostatics • Magnetisation dynamics • Atomistic spin models • Foundations and approximations • Monte Carlo methods • Spin Dynamics • Landau-Lifshitz-Bloch micromagnetics (tomorrow) Micromagnetics source: mumax Why do we need magnetic simulations? Demagnetization factors for different shapes N = 0 N = 1/3 N = 1/2 N = 1 Infinite thin film Infinitely long Sphere cylinder Infinitely long cylinder Short cylinder Why do we need magnetic simulations? Jay Shah et al, Nature Communications 9 1173 (2018) Why do we need magnetic simulations? • Most magnetic problems are not solvable analytically • Complex shapes (cube or finite geometric shapes) • Complex structures (polygranular materials, multilayers, devices) • Magnetization dynamics • Thermal effects • Metastable phases (Skyrmions) Analytical micromagnetics • An analytical branch of micromagnetics, treating magnetism on a small (micrometre) length scale • Mathematically messy but elegant • When we talk about micromagnetics, we usually mean numerical micromagnetics Numerical micromagnetics • Treat magnetisation as a continuum approximation <M> • Average over the local atomic moments to give an average moment density (magnetization) that is assumed to be continuous • Then consider a small volume of space (1 nm)3 - (10 nm)3 where the magnetization (and all atomic moments) are assumed to point along the same direction The micromagnetic
    [Show full text]
  • Modeling Shape Effects in Nano Magnetic Materials with Web Based Micromagnetics
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-21-2005 Modeling Shape Effects in Nano Magnetic Materials With Web Based Micromagnetics Zhidong Zhao University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Zhao, Zhidong, "Modeling Shape Effects in Nano Magnetic Materials With Web Based Micromagnetics" (2005). University of New Orleans Theses and Dissertations. 157. https://scholarworks.uno.edu/td/157 This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. MODELING SHAPE EFFECTS IN NANO MAGNETIC MATERIALS WITH WEB BASED MICROMAGNETICS A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry by Zhidong Zhao B.S., Huazhong University of Science and Technology, 1989 M.S., Beijing Normal University, 1992 May 2004 Acknowledgement I would like to express my sincere thanks to my supervisor, Professor Scott L.
    [Show full text]
  • Chapter 1 Standard Problems in Micromagnetics
    May 31, 2018 18:6 ws-rv961x669 Book Title porter page 1 Chapter 1 Standard Problems in Micromagnetics Donald Porter and Michael Donahue National Institute of Standards and Technology, 100 Bureau Drive, Stop 8910, Gaithersburg, MD 20899-8910, USA [email protected] Micromagnetics is a continuum model of magnetization processes at the nanome- ter scale. It is largely a computational science, and as such it faces the same issues of clarity, confidence and reproducibility as any computational effort. A curated collection of well-defined reference problems, accepted by and solved by the associated research community, can address these issues by aiding commu- nication and identifying model shortcomings and computational obstacles. This chapter reports on one such collection, called the µMAG Standard Problems, used by the micromagnetic research community. The collection examines hysteresis, scaling across length scales, detailed computation of magnetic energies, magneto- dynamic trajectories, and spin momentum transfer. Each reference problem has proven useful in improving the micromagnetics state of the art. Recommendations distilled from this experience are presented. 1. Introduction The design and function of many modern devices rely on an understanding of pat- terns of magnetization in magnetic materials at the scale of nanometers. Examples include recording heads, field sensors, spin torque oscillators, and nonvolatile mag- netic memory (MRAM). To study such systems researchers employ micromagnetic models, which are continuum models of magnetic materials and magnetization pro- cesses at this scale. These models are encoded in software, and simulations compute predictions of magnetic behavior used both to design devices and to interpret mea- surements at the nanoscale.
    [Show full text]
  • Demagnetizing Fields and Magnetization Reversal in Permanent Magnets
    https://doi.org/10.1016/j.scriptamat.2017.11.020 Searching the weakest link: Demagnetizing fields and magnetization reversal in permanent magnets J. Fischbacher1, A. Kovacs1, L. Exl2,3, J. Kühnel4, E. Mehofer4, H. Sepehri-Amin5, T. Ohkubo5, K. Hono5, T. Schrefl1 1 Center for Integrated Sensor Systems, Danube University Krems, 2700 Wiener Neustadt, Austria 2 Faculty of Physics, University of Vienna, 1090 Vienna, Austria 3 Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria 4 Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria 5 Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan Abstract Magnetization reversal in permanent magnets occurs by the nucleation and expansion of reversed domains. Micromagnetic theory offers the possibility to localize the spots within the complex structure of the magnet where magnetization reversal starts. We compute maps of the local nucleation field in a Nd2Fe14B permanent magnet using a model order reduction approach. Considering thermal fluctuations in numerical micromagnetics we can also quantify the reduction of the coercive field due to thermal activation. However, the major reduction of the coercive field is caused by the soft magnetic grain boundary phases and misorientation if there is no surface damage. 1. Introduction With the rise of sustainable energy production and eco-friendly transport there is an increasing demand for permanent magnets. The generator of a direct drive wind mill requires high performance magnets of 400 kg/MW power; and on average a hybrid and electric vehicle needs 1.25 kg of high end permanent magnets [1]. Modern high-performance magnets are based on Nd2Fe14B.
    [Show full text]
  • Magnetostatics and the Micromagnetics of Iron Whiskers
    MAGNETOSTATICS AND THE MICROMAGNETICS OF IRON WHISKERS Dan S. Bloomberg B.A., University of California, Berkeley, 1967 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY , in the Department of Physics DAN S. BLOOMBERG 1973 SIMON FRASER UNIVERSITY March 1973 All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Dan S. Bloomberg Degree: Doctor of Philosophy Title of Thesis: Magnetostatics and the Micromagnetics of Iron Whiskers Examining Committee: Chairman: K.E. Rieckhoff -/ ~A.S.Arrott Senior Supervisor ' B.L. ones I J.C. Irwin W.F. Brown, Jr. External Examiner Professor of Electrical Engineering University of Minnesota Minneapolis, Minnesota Date Approved: March 22, 1973 PARTIAL COPYRIGHT LICENSE I hereby grant to Simon Fraser University the right to lend my thesis or dissertation (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this thesis for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Title of ~hesis/~issertation: "Magnetostatics and the micromagnetic theory of iron whiskers" Author : (signature) Dan S .
    [Show full text]
  • Magnetism and Interactions Within the Single Domain Limit
    Magnetism and interactions within the single domain limit: reversal, logic and information storage Zheng Li A dissertation Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Dr. Kannan M. Krishnan, Chair Dr. Karl F. Bohringer Dr. Marjorie Olmstead Program Authorized to Offer Degree: Materials Science & Engineering © Copyright 2015 Zheng Li ABSTRACT Magnetism and interactions within the single domain limit: reversal, logic and information storage Zheng Li Chair of the Supervisory Committee: Dr. Kannan M. Krishnan Materials Science & Engineering Magnetism and magnetic material research on mesoscopic length scale, especially on the size-dependent scaling laws have drawn much attention. From a scientific point of view, magnetic phenomena would vary dramatically as a function of length, corresponding to the multi-single magnetic domain transition. From an industrial point of view, the application of magnetic interaction within the single domain limit has been proposed and studied in the context of magnetic recording and information processing. In this thesis, we discuss the characteristic lengths in a magnetic system resulting from the competition between different energy terms. Further, we studied the two basic interactions within the single domain limit: dipole interaction and exchange interaction using two examples with practical applications: magnetic quantum-dot cellular automata (MQCA) logic and bit patterned media (BPM) magnetic recording. Dipole interactions within the single domain limit for shape-tuned nanomagnet array was studied in this thesis. We proposed a 45° clocking mechanism which would intrinsically eliminate clocking misalignments. This clocking field was demonstrated in both nanomagnet arrays for signal propagation and majority gates for logic operation.
    [Show full text]
  • Accelerate Micromagnetic Simulations with GPU Programming in MATLAB
    Accelerate micromagnetic simulations with GPU programming in MATLAB Ru Zhu1 Graceland University, Lamoni, Iowa 50140 USA Abstract A finite-difference Micromagnetic simulation code in MATLAB is presented with Graphics Processing Unit (GPU) acceleration. The high performance of Graphics Processing Unit (GPU) is demonstrated compared to a typical Central Processing Unit (CPU) based code. The speed-up of GPU to CPU is shown to be greater than 30 for problems with larger sizes on a mid-end GPU in single precision. The code is less than 200 lines and suitable for new algorithm developing. Keywords: Micromagnetics; MATLAB; GPU 1. Introduction Micromagnetic simulations are indispensable tools to study magnetic dynamics and develop novel magnetic devices. Micromagnetic codes running on Central Processing Unit (CPU) such as OOMMF [1] and magpar [2] have been widely adopted in research of magnetism. Micromagnetic simulations of complex magnetic structures require fine geometrical discretization, and are time consuming. To accelerate the simulation, several research groups have been working on applying general purpose Graphics Processing Units (GPU) programming in the fields of Micromagnetics [3–9]. Thanks to the high computing performance of GPU, great speed-up has been reported in these implementations. However, most of these implementations are in-house codes and their source codes are not publicly available. The objective of this work is to implement a simple but complete micromagnetic code in MATLAB accelerated by GPU programming. In this paper, section 2 lists the formulation of micromagnetics and discusses the implementation of MATLAB code, including the calculation of demagnetization field, exchange field and anisotropy field. Section 3 validates the simulation result with a micromagnetic standard problem and evaluates the speedup of this micromagnetic code at various problem sizes as compared with a popular CPU-based micromagnetic code.
    [Show full text]
  • Micromagnetic Modelling of Magnetic Domain Walls and Domains in Cylindrical Nanowires
    Micromagnetic modelling of magnetic domain walls and domains in cylindrical nanowires J.A. Fernandez-Roldan1, Yu.P. Ivanov2 and O. Chubykalo-Fesenko1 1Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC. 28049 Madrid. Spain 2Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom Abstract Magnetic cylindrical nanowires are very fascinating objects where the curved geometry allows many novel magnetic effects and a variety of non-trivial magnetic structures. Micromagnetic modelling plays an important role in revealing the magnetization distribution in magnetic nanowires, often not accessible by imaging methods with sufficient details. Here we review the magnetic properties of the shape anisotropy-dominated nanowires and the nanowires with competing shape and magnetocrystalline anisotropies, as revealed by micromagnetic modelling. We discuss the variety of magnetic walls and magnetic domains reported by micromagnetic simulations in cylindrical nanowires. The most known domain walls types are the transverse and vortex (Bloch point) domain walls and the transition between them is materials and nanowire diameter dependent. Importantly, the field or current-driven domain walls in cylindrical nanowires can achieve very high velocities. In recent simulations of nanowires with larger diameter the skyrmion tubes are also reported. In nanowires with large saturation magnetization the core of these tubes may form a helicoidal (“corkscrew”) structure. The topology of the skyrmion tubes play an important role in the pinning mechanism, discussed here on the example of FeCo modulated nanowires. Other discussed examples include the influence of antinotches (“bamboo” nanowires) on the remanent magnetization configurations for hcp Co and FeCo nanowires and Co/Ni multisegmented nanowires.
    [Show full text]
  • Numerical Micromagnetics : Finite Difference Methods
    Numerical Micromagnetics : Finite Difference Methods J. Miltat1 and M. Donahue2 1 Laboratoire de Physique des Solides, Universit´eParis XI Orsay & CNRS, 91405 Orsay, France [email protected] 2 Mathematical & Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg MD 20899-8910, USA [email protected] Key words: micromagnetics, finite differences, boundary conditions, Landau- Lifshitz-Gilbert, magnetization dynamics, approximation order Summary. Micromagnetics is based on the one hand on a continuum approxima- tion of exchange interactions, including boundary conditions, on the other hand on Maxwell equations in the non-propagative (static) limit for the evaluation of the demagnetizing field. The micromagnetic energy is most often restricted to the sum of the exchange, demagnetizing or (self-)magnetostatic, Zeeman and anisotropy en- ergies. When supplemented with a time evolution equation, including field induced magnetization precession, damping and possibly additional torque sources, micro- magnetics allows for a precise description of magnetization distributions within finite bodies both in space and time. Analytical solutions are, however, rarely available. Numerical micromagnetics enables the exploration of complexity in small size mag- netic bodies. Finite difference methods are here applied to numerical micromag- netics in two variants for the description of both exchange interactions/boundary conditions and demagnetizing field evaluation. Accuracy in the time domain is also discussed and a simple tool provided in order to monitor time integration accuracy. A specific example involving large angle precession, domain wall motion as well as vortex/antivortex creation and annihilation allows for a fine comparison between two discretization schemes with as a net result, the necessity for mesh sizes well below the exchange length in order to reach adequate convergence.
    [Show full text]
  • Micromagnetics and Spintronics: Models and Numerical Methods
    Micromagnetics and spintronics: Models and numerical methods Claas Abert1 1Christian Doppler Laboratory for Advanced Magnetic Sensing and Materials, Faculty of Physics, University of Vienna, 1090 Vienna, Austria May 29, 2019 Abstract Computational micromagnetics has become an indispensable tool for the theoretical in- vestigation of magnetic structures. Classical micromagnetics has been successfully applied to a wide range of applications including magnetic storage media, magnetic sensors, per- manent magnets and more. The recent advent of spintronics devices has lead to various extensions to the micromagnetic model in order to account for spin-transport effects. This article aims to give an overview over the analytical micromagnetic model as well as its nu- merical implementation. The main focus is put on the integration of spin-transport effects with classical micromagnetics. arXiv:1810.12365v2 [physics.comp-ph] 28 May 2019 1 Contents 1 Introduction 4 2 Energetics of a ferromagnet 5 2.1 Zeeman energy . .5 2.2 Exchange energy . .5 2.3 Demagnetization energy . .6 2.4 Crystalline anisotropy energy . .9 2.5 Antisymmetric exchange energy . 10 2.6 Interlayer-exchange energy . 11 2.7 Other energy contributions and effects . 12 3 Static micromagnetics 12 3.1 Zeeman energy . 14 3.2 Exchange energy . 14 3.3 Demagnetization energy . 14 3.4 Anisotropy energy . 15 3.5 Antisymmetric exchange energy . 15 3.6 Energy minimization with multiple contributions . 16 4 Dynamic micromagnetics 16 4.1 Properties of the Landau-Lifshitz-Gilbert Equation . 21 5 Spintronics in micromagnetics 22 5.1 Spin-transfer torque in multilayers . 22 5.2 Spin-transfer torque in continuous media .
    [Show full text]