Numerical Micromagnetics : Finite Difference Methods J. Miltat1 and M. Donahue2 1 Laboratoire de Physique des Solides, Universit´eParis XI Orsay & CNRS, 91405 Orsay, France
[email protected] 2 Mathematical & Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg MD 20899-8910, USA
[email protected] Key words: micromagnetics, finite differences, boundary conditions, Landau- Lifshitz-Gilbert, magnetization dynamics, approximation order Summary. Micromagnetics is based on the one hand on a continuum approxima- tion of exchange interactions, including boundary conditions, on the other hand on Maxwell equations in the non-propagative (static) limit for the evaluation of the demagnetizing field. The micromagnetic energy is most often restricted to the sum of the exchange, demagnetizing or (self-)magnetostatic, Zeeman and anisotropy en- ergies. When supplemented with a time evolution equation, including field induced magnetization precession, damping and possibly additional torque sources, micro- magnetics allows for a precise description of magnetization distributions within finite bodies both in space and time. Analytical solutions are, however, rarely available. Numerical micromagnetics enables the exploration of complexity in small size mag- netic bodies. Finite difference methods are here applied to numerical micromag- netics in two variants for the description of both exchange interactions/boundary conditions and demagnetizing field evaluation. Accuracy in the time domain is also discussed and a simple tool provided in order to monitor time integration accuracy. A specific example involving large angle precession, domain wall motion as well as vortex/antivortex creation and annihilation allows for a fine comparison between two discretization schemes with as a net result, the necessity for mesh sizes well below the exchange length in order to reach adequate convergence.