Hydropower Development on the Social, Environmental, and Economic Conditions of the Lower Mekong River Basin (Unedited Version)

Total Page:16

File Type:pdf, Size:1020Kb

Hydropower Development on the Social, Environmental, and Economic Conditions of the Lower Mekong River Basin (Unedited Version) MEKONG RIVER COMMISSION THE COUNCIL STUDY The Study on the Sustainable Management and Development of the Mekong River Basin, including Impacts of Mainstream Hydropower Projects Thematic Report on the Positive and Negative Impacts of Hydropower Development on the Social, Environmental, and Economic Conditions of the Lower Mekong River Basin (Unedited Version) Prepared by: Hydropower Thematic Team and Multi-consult 29 December 2017 Disclaimer: These Council Study reports are considered final drafts prepared by the technical experts and specialists of the Mekong River Commission, through a process of consultation with representatives of member countries. The contents or findings of the reports are not necessarily the views of the MRC member countries but will serve as knowledge base and reference in the work of the MRC and its member countries in their ongoing technical and policy dialogues in ensuring the sustainable development of the Mekong river basin. The MRC is funded by contribution from its member countries and development partners of Australia, Belgium, European Union, Finland, France, Germany, Japan, Luxembourg, the Netherlands, Sweden, Switzerland, the United States and the World Bank Produced by MRC Council Study – Hydropower Thematic Team, Multiconsult Produced for MRC Member Countries Project Team David A. Wright, Hydropower and Water Resources Expert Jens Johan Laugen, Environmental and Social Specialist Leif B.Lillehammer, Water Resources Management Specialist Document History Document Date Authors Status Comment Final 29/12/2017 David A. Wright Final Report Submitted Jens Johan Laugen Leif B. Lillehammer Draft 22/11/2017 David A. Wright Final Report Submitted Jens Johan Laugen Leif B. Lillehammer Draft 08/11/2017 David A. Wright Draft Final Report Submitted Jens Johan Laugen Leif B. Lillehammer Draft 30/10/2017 David A. Wright Draft Final Report Submitted Jens Johan Laugen Leif B. Lillehammer Draft 15/06/2017 David A. Wright Draft Final Report Submitted Jens Johan Laugen Leif B. Lillehammer Draft 15/05/2017 Jens Johan Laugen Draft Final Report Submitted Leif B. Lillehammer David A. Wright Draft 30/03/2017 Jan Høiseth Draft Final Report Submitted Bjørn Stenseth Jens Johan Laugen Leif B. Lillehammer Piseth Chea Abbreviations and Acronyms ALU Agric/Landuse Change BDP Basin Development Plan CA Concession Agreement COD Commercial Operation Date CS Council Study DIW Domestic and Industrial Water Use DNF Data Not Found FPI Flood protection infrastructure FS Feasibility Study FSL Full Supply Level GWh one million kWh HPP Hydropower IQQM Model IRR Irrigation ISIS Model ISH Initiative for Sustainable Hydropower IWRM Integrated Water Resources Management kW kilowatt = one thousand Watt kWh kilowatt hour LMB Lower Mekong Basin m3/s cubic metres per second mamsl metres above mean sea level mcm million cubic metres MOL Minimum Operating Water Level MOU Memorandum of Understanding MS Mekong Main Stream MW megawatt = one thousand kW NAV Navigation. OWL Operating Water Level PDA Project Development Agreement PDG Preliminary Design Guidlines PFS Pre-Feasibility Study ROW Right Of Way UMB Upper Mekong Basin Thematic Report – Hydropower Devlopment Final Report i Contents 1 Summary ................................................................................................................................ 6 1.1 Introduction............................................................................................................................ 6 1.2 Main Results ........................................................................................................................... 6 1.3 Council Study Key Messages – Hydropower Thematic ......................................................... 11 2 Background and Scope of the Study ..................................................................................... 16 2.1 General ................................................................................................................................. 16 2.2 Objectives of the Council Study ............................................................................................ 16 3 Hydropower Developments in the Mekong River Basin ....................................................... 17 3.1 Mainstream Hydropower Projects on the Upper Mekong ................................................... 17 3.2 Hydropower Projects on the Lower Mekong and Tributaries ............................................... 19 4. Hydropower Modelling ........................................................................................................ 27 4.1 Hydropower data in year 2007 for setting up IQQM Baseline model ................................... 27 4.2 Council Study Scenarios and Model Inputs and Gaps ........................................................... 28 4.3 Gap-filling for Hydropower Development Data and Scenario Modelling ............................. 34 4.4 Mitigation Options ............................................................................................................... 36 4.5 Model Results and Outputs .................................................................................................. 40 5 Assessment of General Impacts of Hydropower Development on Mekong ......................... 58 5.1 Impact Assessment - Upper Mekong Basin .......................................................................... 58 5.2 Impact Assessment - Lower Mekong Basin .......................................................................... 59 5.3 Predictions of change for impounded reaches under main development scenarios ............ 60 5.4 Effect of Hydropower Development on Hydrology and Peaking Flows ................................ 61 5.5 Effect of Hydropower Development on Erosion and the Availability of Habitats ................. 62 5.6 Effect of Hydropower Development on Riverine and Wetland Vegetation .......................... 62 5.7 Effect of Hydropower Development on Aquatic Macroinvertebrates .................................. 63 5.8 Effect of Hydropower Development on Fish and Fisheries ................................................... 63 5.9 Effect of Hydropower Development on Herpetofauna ........................................................ 64 5.10 Effect of Hydropower Development on Birds and Mammals ............................................... 64 5.11 Effect of Hydropower Development on Sediments and Water Quality ................................ 65 5.12 Effect of Climate Change ...................................................................................................... 66 6.0 Main Challenges and Recommendations ............................................................................. 67 6.1 Fish Migration....................................................................................................................... 67 6.2 Sediment .............................................................................................................................. 67 6.3 Some Potential Engineering Solutions from the ISH0306 Study ........................................... 68 Thematic Report – Hydropower Devlopment Final Report ii ANNEXES Annex 1: Hydropower projects in Lower Mekong Basin-Operation Data Annex 2: Hydropower projects in Lower Mekong Basin-Characteristic Data Annex 3: Further Information on Hydropower Projects on the Upper Mekong Mainstream Annex 4: Gap-filling for Hydropower Development Data and Scenario Modelling Annex 5: Model Outputs Thematic Report – Hydropower Devlopment Final Report iii List of Tables Table 3.1 Planned or constructed hydropower schemes on Lancang River, China and Tibet Autonomous Region. Table 3.2 Mainstream Hydropower Schemes. Table 3.3 Length of reservoirs and river reaches in the Lao Cascade. Table 3.4 Key numbers for the dams in the Lao Cascade. Table 3.5 Key numbers of the mainstream dams downstream of the Lao Cascade. Table 3.6 Commissioned Hydropower Projects in LMB by the End of 2015. Table 4.1: Existing and planned Hydropower dam projects in Lower Mekong Basin status year 2008 Table 4.2 Basin-wide development scenarios Table 4.3 Parameters for the main development scenarios Table 4.4 Sub-scenarios to test the effects of water resources development in the hydropower sector. Table 4.5 Hydropower Development Sub-Scenarios Table 4.6 Main characteristics for Mainstream Mekong Dams Table 4.7 The number of tributary HPPs included in 2007 Baseline, Scenarios 2020 and 2040 Table 4.8 Mainstream HPPs included in each main development scenario Table 4.9 Mitigation measures imposed on mainstream dams (in the H3 sub-scenario). Table 4.10 Summary of sediment mitigation options and strategy for the mainstream dams. Table 4.11 Relative changes in the value (US$) of M1, M2, M3 and M3CC corridor fish production Table 4-12 Relative changes in the value (US$) of M1, M2, M3 and M3CC corridor rice production Figure 4.8 Sector incomes by zone across the M3 and the H1a, H1b and H3 hydropower sub scenarios (year 24) Table 4-13 Impacts on Net Present Value (NPV) of the hydropower sector for the three main scenarios Table 4-14 Cross-sector comparison for Net Present Value (NPV) of hydropower, fisheries, agriculture, and Table 4-14 Net present value of the hydropower sector in billion US$ for sub-scenarios H1a and H1b Table 4-14 Economic benefit of fisheries sector under the 13 sub-scenarios as NPV for the 24-year period in B$ Table 4-15 Economic benefit changes in % of fisheries sector income compared to M3CC Table 4-17 GDP range projections
Recommended publications
  • The Multiplication of Dams Reduces the Mekong's Flow
    Sentinel Vision EVT-767 The multiplication of dams reduces the Mekong's flow 19 November 2020 Sentinel-1 CSAR IW acquired on 06 October 2014 from 22:45:02 to 22:45:31 UTC ... Se ntinel-1 CSAR IW acquired on 29 August 2020 from 11:21:38 to 11:24:33 UTC Sentinel-1 CSAR IW acquired on 04 October 2020 from 22:44:48 to 22:45:13 UTC Author(s): Sentinel Vision team, VisioTerra, France - [email protected] 3D Layerstack Keyword(s): River, hydrology, dam, biodiversity, hydropower, green energies, sediments, fishing, agriculture, salinity, China, Laos, Cambodia, Thailand, Vietnam Fig. 1 - S1 (29.08.2020 - 03.09.2020) - Chinese dams built on the Mekong river. 2D view Fig. 2 - S1 (20.08.2015) - Before the construction of Dahuaqiao dam in the Yunnan province of China. 3D view / The Mekong River Commission For Sustainable Development describes the Mekong river as "one of the world’s great rivers. Covering a distance of nearly 5,000 km from its source on the Tibetan Plateau in China to the Mekong Delta, the river flows through six countries: China, Myanmar, Thailand, Laos, Cambodia and Vietnam." Fig. 3 - S1 (29.08.2020) - Five years later, view after the building of Dahuaqiao dam. 3D view "The basin is home to one of the richest areas of biodiversity in the world, with more than 20,000 plant species and 850 fish species discovered to date. An estimated 80% of the nearly 65 million people living in the Lower Mekong River Basin depend on the river and its rich natural resources for their livelihoods, making sustainable development crucial for the environment and communities living in the basin." Fig.
    [Show full text]
  • Mekong Tipping Point
    Mekong Tipping Point Richard Cronin Timothy Hamlin MEKONG TIPPING POINT: HYDROPOWER DAMS, HUMAN SECURITY AND REGIONAL STABILITY RICHARD P. CRONIN TIMOTHY HAMLIN AUTHORS ii │ Copyright©2010 The Henry L. Stimson Center Cover design by Shawn Woodley All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written consent from The Henry L. Stimson Center. The Henry L. Stimson Center 1111 19th Street, NW 12th Floor Washington, DC 20036 Phone: 202.223.5956 fax: 202.238.9604 www.stimson.org | iii CONTENTS Preface............................................................................................................... iv Acknowledgements ............................................................................................ v Hydropower Proposals in the Lower Mekong Basin.......................................viii Introduction ........................................................................................................ 1 The Political Economy of Hydropower.............................................................. 5 Man Versus Nature in the Mekong Basin: A Recurring Story..................... 5 D rivers of Hydropower Development................................................................ 8 Dams and Civil Society in Thailand.......................................................... 10 From Migratory to Reservoir Fisheries .................................................... 13 Elusive Support for Cooperative Water Management.....................................
    [Show full text]
  • Tài Liệu Tổng Hợp TỪ MEKONG ĐẾN CỬU LONG
    1 Tài liệu tổng hợp TỪ MEKONG ĐẾN CỬU LONG (Update March 1, 2016) Chúng tôi xin ghi lòng tạc dạ công ơn Tổ tiên đã khổ công gầy dựng giang sơn gấm vóc. Chúng tôi xin tri ân các Bậc Tiền Nhân đã lưu lại tài liệu, sách vở, hình ảnh cho con cháu đời sau hiểu biết về dòng sông Cửu Long đã từng nuôi sống bao thế hệ vùng Đồng bằng sông Cửu Long nói riêng và Việt Nam nói chung. Chúng tôi rất cám ơn các nhiếp ảnh gia, tác giả của những tấm hình mà chúng tôi xin được mạn phép dùng cho tập tài liệu tổng hợp này. Rất mong quý Anh Chị lượng thứ khi thấy chúng tôi sử dụng hình trên Internet cho tập sách nhỏ bé này. Những hình ảnh nếu đã có Copyright mà chúng tôi không được biết, chúng tôi sẵn lòng liên lạc với nhiếp ảnh gia đã chụp ảnh. Tập tài liệu này KHÔNG dành để bán mà chỉ là sự sưu tầm để học hỏi trong nhóm. Chúng tôi tha thiết mong đợi các bạn trẻ Việt Nam hãy đồng hành cùng chúng tôi cứu dòng sông Mekong-Cửu Long đang cạn kiệt nguồn nước. Trân trọng, - Nhóm sưu tập tài liệu LymHa - 2 MỤC LỤC CHƯƠNG 1: LỜI DẪN NHẬP CHƯƠNG 2: TÊN CỦA DÒNG SÔNG MEKONG CHƯƠNG 3: VỊ TRÍ ĐỊA LÝ DÒNG SÔNG MEKONG CHƯƠNG 4: NHỮNG NHÀ THÁM HIỂM DÒNG SÔNG MEKONG CHƯƠNG 5: SỰ HÌNH THÀNH DÒNG SÔNG MEKONG 1. Điểm phát xuất 2.
    [Show full text]
  • Dams and Development in China
    BRYAN TILT DAMS AND The Moral Economy DEVELOPMENT of Water and Power IN CHINA DAMS AND DEVELOPMENT CHINA IN CONTEMPORARY ASIA IN THE WORLD CONTEMPORARY ASIA IN THE WORLD DAVID C. KANG AND VICTOR D. CHA, EDITORS This series aims to address a gap in the public-policy and scholarly discussion of Asia. It seeks to promote books and studies that are on the cutting edge of their respective disciplines or in the promotion of multidisciplinary or interdisciplinary research but that are also accessible to a wider readership. The editors seek to showcase the best scholarly and public-policy arguments on Asia from any field, including politics, his- tory, economics, and cultural studies. Beyond the Final Score: The Politics of Sport in Asia, Victor D. Cha, 2008 The Power of the Internet in China: Citizen Activism Online, Guobin Yang, 2009 China and India: Prospects for Peace, Jonathan Holslag, 2010 India, Pakistan, and the Bomb: Debating Nuclear Stability in South Asia, Šumit Ganguly and S. Paul Kapur, 2010 Living with the Dragon: How the American Public Views the Rise of China, Benjamin I. Page and Tao Xie, 2010 East Asia Before the West: Five Centuries of Trade and Tribute, David C. Kang, 2010 Harmony and War: Confucian Culture and Chinese Power Politics, Yuan-Kang Wang, 2011 Strong Society, Smart State: The Rise of Public Opinion in China’s Japan Policy, James Reilly, 2012 Asia’s Space Race: National Motivations, Regional Rivalries, and International Risks, James Clay Moltz, 2012 Never Forget National Humiliation: Historical Memory in Chinese Politics and Foreign Relations, Zheng Wang, 2012 Green Innovation in China: China’s Wind Power Industry and the Global Transition to a Low-Carbon Economy, Joanna I.
    [Show full text]
  • Yasuda Phd 2014
    University of Dundee DOCTOR OF PHILOSOPHY Going with the flow or swimming against the current? The influence of rules and norms on advocacy strategies of NGO coalitions along the Mekong River Yasuda, Yumiko Award date: 2014 Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 DOCTOR OF PHILOSOPHY Going with the flow or swimming against the current? The influence of rules and norms on advocacy strategies of NGO coalitions along the Mekong River Yumiko Yasuda 2014 University of Dundee Conditions for Use and Duplication Copyright of this work belongs to the author unless otherwise identified in the body of the thesis. It is permitted to use and duplicate this work only for personal and non-commercial research, study or criticism/review. You must obtain prior written consent from the author for any other use.
    [Show full text]
  • Downstream Impacts of Lancang Dams in Hydrology, Fisheries And
    Downstream Impacts of Lancang/ Upper Mekong Dams: An Overview Pianporn Deetes International Rivers August 2014 • In the wet season, the Lancang dams run at normal operation levels for power generation and release extra water if the water level exceeds normal water level. • In the dry season, Xiaowan and Nuozhadu will generally release the water to downstream dams so that to ensure other dams can run at full capacity. • The total storage of six complete dams is 41 km3. And the total regulation storage is 22 km3 Dam Name Installed Dam Height Total Regulation Regulation Status Capacity (m) Storage storage Type (MW) (km3) (km3) Gongguoqiao 900 130 0.32 0.05 Seasonal Completed (2012) Xiaowan 4200 292 15 10 Yearly Completed (2010) Manwan 1550 126 0.92 0.26 Seasonal Completed (phase 1 in1995 and phase 2 in 2007) Dachaoshan 1350 118 0.94 0.36 Seasonal Completed (2003) Nuozhadu 5850 261.5 22.7 11.3 Yearly Completed (2012) Jinghong 1750 118 1.14 0.23 Seasonal Completed (2009) Ganlanba 155 60.5 Run-of- Planned river Hydrology Flow Lancang dams has increased dry season flows and reduces wet season flows: • At China border, the flow can increase as much as 100% in March due to the operation of Manwan, Daochaoshan Jinghong and Xiaowan dams (Chen and He, 2000) • On average, the Lower Lancang cascade increased the December–May discharge by 34 to155 % and decreased the discharge from July to September by 29–36 % at Chiang Saen station (Rasanen, 2012) • After the Manwan Dam was built, the average minimum flow yearly decreased around 25% at Chiang Saen (Zhong, 2007) Rasanen (2012) Hydrology Water Level Monthly average water level data from Chiang Khong clearly showed the impacts of the first filling of Nuozhadu Dam.
    [Show full text]
  • Volume 1, 1St Interim Report
    Mekong River Commission Office of the Secretariat in Vientiane Office of the Secretariat in Phnom Penh 184 Fa Ngoum Road, Ban Sithane Neua, 576 National Road, no. 2, Chok Angre Krom, P.O. Box 6101, Vientiane, Lao PDR P.O. Box 623, Phnom Penh, Cambodia Tel: (856-21) 263 263 Fax: (856-21) 263 264 Tel: (855-23) 425 353 Fax: (855-23)425 363 [email protected] www.mrcmekong.org The ISH 0306 Study Development of Guidelines for Hydropower Environmental Impact Mitigation and Risk Management in the Lower Mekong Mainstream and Tributaries 1st Interim Report - Final December 2015 Volume 1 – Hydropower Risks and Impact Mitigation Guidelines and Recommendations – Version 1.0 DOCUMENT HISTORY Version Revision Description Issue date Issued by 1 0 First Draft 9 October 2015 Leif Lillehammer 2 1.0 Second Draft (based on Regional 1 Dec. 2015 Leif Lillehammer Workshop Consultations) 3 1.1 Final 11 Dec. 2015 Leif Lillehammer The Final 1st Interim Report constitutes 3 volumes: Volume 1: Version 1.0 – Hydropower Risks and Impact Mitigation Guidelines and Recommendations Volume 2: Version 1.0 – Hydropower Risks and Impact Mitigation MANUAL - Key Hydropower Risks, Impacts and Vulnerabilities and General Mitigation Options for Lower Mekong Volume 3: Case Study – Objectives, Scope and Methodology 2 TABLE OF CONTENT Introduction .................................................................................................................................. 7 1.2.1 Overall Basin Development Context ..........................................................................
    [Show full text]
  • New Adaptation Strategies to Support a Sustainable Watershed Management in Asia
    New Adaptation Strategies of Mekong River Watershed to Environmental Change 4th NIES International Forum (Hanoi, Vietnam) 2019/Feb./23-24 New Adaptation Strategies to Support a Sustainable Watershed Management in Asia Three topics in Mekong River watershed Adaptation measure to environmental change Center for Environmental Biology and Ecosystem Kyoto University, C-PIER National Institute for Environmental Studies (Specially-Appointed professor) (Senior Researcher) Satoshi KAMEYAMA Self introduction Satoshi Kameyama (亀 山 哲) 2008/11/16 Chiang Sean Ecosystem Function Assessment Section Center for Environmental Biology and Ecosystem (Senior Researcher) Kyoto University Center for the Promotion of Interdisciplinary Education and Research (Specially-Appointed Professor) Vietnam-Japan University, Vietnam National University, Hanoi (JICA Expert) 2012/09/18 Dong Rui, Climate Change and Development Quang Ninh, Vietnam Economic and population growth in Mekong River watershed Industrial development and use of natural resources Traditional life style Mekong River and human society. China (picture in local museum in Thailand ) Man wan dam Myanmar Laos Ubonrat dam “Ho Chi Minh City” Creative Commons images Thailand Cambodia Vietnam Mekong Delta mangrove Basin population; Over 73 million people Size;795,000 km2 . Length;4,800 km The endless TRILEMMA in watershed management Nature conservation / restoration Disaster prevention / Water resources & reduction nearly Energy What should we do for their All their policy are “ correct” harmonization Common background = East Asian MONSOON→Rainy season つゆ 梅雨 Mùa mưa How seasonal changes in ecosystem greatly increase the diversity of habitats available for aquatic animals and plants over the flood- cycle. Sited from ;“Biodiversity and Fisheries in the Mekong River Basin, Mekong Development Series No.2 June 2003” Contents Impact of watershed development 1.
    [Show full text]
  • Environmental and Social Impacts of Lancang Dams
    Xiaowan Dam Environmental and Social Impacts of Lancang Dams the water to downstream dams so as to ensure other dams can run at full capacity. Xiaowan and Nuozhadu are the two yearly regulated dams with big regulation storages, while all the others have very limited seasonal regulation capacity. A wide range of studies have confirmed that the wet season Summary flow will decrease, while the dry season flow will increase because of the operation of the Lancang dams. Because the This research brief focuses on the downstream impacts on Lancang river contributes 45% of water to the Mekong basin hydrology, fisheries and sedimentations caused by the Lower in the dry season, the flow change impacts on downstream Lancang cascade in China. Manwan and Dachaoshan were reaches will be more obvious increasing flows by over 100% the first two dams completed on the Lancang River (in 1995 at Chiang Saen. An increase in water levels in the dry sea- (first phase) and 2003 respectively) and many changes have son will reduce the exposed riverbank areas for river bank been observed. Many scientific studies have been done to gardens and other seasonal agriculture. Millions of villagers evaluate the impacts from Manwan and Dachaoshan dams who live along the Mekong River grow vegetables in river- by analyzing monitoring and survey data. With the two big- bank gardens and their livelihoods will be largely impacted gest dams of the cascade, Xiaowan and Nuozhadu, put into if losing the gardens. In the wet season, the decrease of operation in 2010 and 2012, bigger downstream impacts are flow at Chiang Saen caused by the Lancang dams holding expected to be observed.
    [Show full text]
  • Environmental Justice in Transboundary Water Management
    AN ABSTRACT OF THE DISSERTATION OF Julie Elkins Watson for the degree of Doctor of Philosophy in Geography presented on July 15, 2015 Title: Beyond Cooperation: Environmental Justice in Transboundary Water Management Abstract approved: Aaron T. Wolf Since the Wolf, Yoffe, and Giordano 2003 Basins at Risk study, examining human interactions with transboundary water resources through a lens of conflict and cooperation has been a dominant paradigm. The Basins at Risk (BAR) method involves categorizing events on a scale from most conflictive (e.g. war or extensive casualties) to most cooperative (voluntary unification into one political unit). While this research provides significant insight into the nature of cooperation and conflict over water, it frames the discussion about water politics in terms of diplomatic, economic, and military hostility. However, a basin can exhibit an impressive level of cooperation, yet beneath the surface display tremendous environmental injustice to basin countries and basin sub-populations (e.g. indigenous groups, women). Recognizing that cooperation could mask various forms of conflict and looking at the nexus of water conflict and cooperation in terms of interactions rather than events, Mirumachi introduced the Transboundary Waters Interaction Nexus (TWINS) tool (Zeitoun & Mirumachi, 2008). Yet, this nexus also defines water conflict using high politics and militarized conceptualizations. Thus, I argue that the conflict-cooperation paradigm alone is insufficient for understanding the range of impacts from human interactions with transboundary water. Particularly, these scales do not sufficiently capture decisions and policies that have inequitable distributions of environmental costs and benefits. In other words, they do not capture the environmental justice (also referred to as structural violence) implications of water decisions, whether cooperative or conflictive.
    [Show full text]
  • Irrigation in Southern and Eastern Asia in Figures AQUASTAT Survey – 2011
    37 Irrigation in Southern and Eastern Asia in figures AQUASTAT Survey – 2011 FAO WATER Irrigation in Southern REPORTS and Eastern Asia in figures AQUASTAT Survey – 2011 37 Edited by Karen FRENKEN FAO Land and Water Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2012 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-107282-0 All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.
    [Show full text]
  • Basin-Wide Strategy for Sustainable Hydropower Development
    2017/18 Knowledge Sharing Program with the Mekong River Commission: Basin-wide Strategy for Sustainable Hydropower Development 2017/18 Knowledge Sharing Program with the Mekong River Commission 2017/18 Knowledge Sharing Program with the Mekong River Commission Project Title Basin-wide Strategy for Sustainable Hydropower Development Prepared by Korea Development Institute (KDI) Supported by Ministry of Economy and Finance (MOEF), Republic of Korea Prepared for Mekong River Commission (MRC) In Cooperation with Mekong River Commission (MRC) Mekong River Commission Secretariat (MRCS) Thailand National Mekong Committee (TNMC) Lao National Mekong Committee (LNMC) Cambodia National Mekong Committee (CNMC) Vietnam National Mekong Committee (VNMC) Program Directors Youngsun Koh, Executive Director, Center for International Development (CID), KDI Kwangeon Sul, Visiting Professor, KDI School of Public Policy and Management, Former Executive Director, CID, KDI Project Manager Kyoung Doug Kwon, Director, Division of Policy Consultation, CID, KDI 3URMHFW2I¿FHUV Yerim Kim, Senior Research Associate, Division of Policy Consultation, CID, KDI Seungju Lee, Research Associate, Division of Policy Consultation, CID, KDI Senior Advisor Kyungsik Kim, Former Vice Minister for Ministry of Land, Infrastructure and Transport, Republic of Korea Principal Investigator Seungho Lee, Professor, Korea University Authors Chapter 1. Seungho Lee, Professor, Korea University Chapter 2. Ilpyo Hong, Senior Fellow, Korea Institute of Civil Engineering and Building Technology
    [Show full text]