Mekong Tipping Point
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tài Liệu Tổng Hợp TỪ MEKONG ĐẾN CỬU LONG
1 Tài liệu tổng hợp TỪ MEKONG ĐẾN CỬU LONG (Update March 1, 2016) Chúng tôi xin ghi lòng tạc dạ công ơn Tổ tiên đã khổ công gầy dựng giang sơn gấm vóc. Chúng tôi xin tri ân các Bậc Tiền Nhân đã lưu lại tài liệu, sách vở, hình ảnh cho con cháu đời sau hiểu biết về dòng sông Cửu Long đã từng nuôi sống bao thế hệ vùng Đồng bằng sông Cửu Long nói riêng và Việt Nam nói chung. Chúng tôi rất cám ơn các nhiếp ảnh gia, tác giả của những tấm hình mà chúng tôi xin được mạn phép dùng cho tập tài liệu tổng hợp này. Rất mong quý Anh Chị lượng thứ khi thấy chúng tôi sử dụng hình trên Internet cho tập sách nhỏ bé này. Những hình ảnh nếu đã có Copyright mà chúng tôi không được biết, chúng tôi sẵn lòng liên lạc với nhiếp ảnh gia đã chụp ảnh. Tập tài liệu này KHÔNG dành để bán mà chỉ là sự sưu tầm để học hỏi trong nhóm. Chúng tôi tha thiết mong đợi các bạn trẻ Việt Nam hãy đồng hành cùng chúng tôi cứu dòng sông Mekong-Cửu Long đang cạn kiệt nguồn nước. Trân trọng, - Nhóm sưu tập tài liệu LymHa - 2 MỤC LỤC CHƯƠNG 1: LỜI DẪN NHẬP CHƯƠNG 2: TÊN CỦA DÒNG SÔNG MEKONG CHƯƠNG 3: VỊ TRÍ ĐỊA LÝ DÒNG SÔNG MEKONG CHƯƠNG 4: NHỮNG NHÀ THÁM HIỂM DÒNG SÔNG MEKONG CHƯƠNG 5: SỰ HÌNH THÀNH DÒNG SÔNG MEKONG 1. Điểm phát xuất 2. -
Integrative Dam Assessment Model (Idam) Documentation a Users Guide to the Idam Methodology and a Case Study from Southwestern China
INTEGRATIVE DAM ASSESSMENT MODEL (IDAM) DOCUMENTATION A USERS GUIDE TO THE IDAM METHODOLOGY AND A CASE STUDY FROM SOUTHWESTERN CHINA citation: Kibler, K., D. Tullos, B. Tilt, A. Wolf, D. Magee, E. Foster-Moore, F. Gassert, 2012. Integrative Dam Assessment Model (IDAM) Documentation: Users Guide to the IDAM Methodology and a Case Study from Southwestern China. Oregon State University, Corvallis, Oregon TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................. 1 1.0 USERS GUIDE TO THE IDAM METHODOLOGY ..................................................................... 2 1.1 BACKGROUND: DAM BUILDING AND DECISION MAKING ................................................... 2 1.1.1 FINDINGS FROM THE WORLD COMMISSION ON DAMS ...................................................................... 2 1.1.2 INTERACTION OF SOCIOECONOMIC, GEOPOLITICAL, AND BIOPHYSICAL DAM EFFECTS ............................... 3 1.1.3 NEED FOR MORE COMPREHENSIVE DECISION‐MAKING MODELS ........................................................... 4 1.2 THE INTEGRATIVE DAM ASSESSMENT MODEL (IDAM) ................................................................... 5 1.2.1 CONCEPTUAL DESIGN OF IDAM ..................................................................................................... 5 1.2.2 IDAM IMPACTS AND INDICATORS .................................................................................................. 7 1.2.3 STAKEHOLDER PARTICIPATION .................................................................................................... -
Dams and Development in China
BRYAN TILT DAMS AND The Moral Economy DEVELOPMENT of Water and Power IN CHINA DAMS AND DEVELOPMENT CHINA IN CONTEMPORARY ASIA IN THE WORLD CONTEMPORARY ASIA IN THE WORLD DAVID C. KANG AND VICTOR D. CHA, EDITORS This series aims to address a gap in the public-policy and scholarly discussion of Asia. It seeks to promote books and studies that are on the cutting edge of their respective disciplines or in the promotion of multidisciplinary or interdisciplinary research but that are also accessible to a wider readership. The editors seek to showcase the best scholarly and public-policy arguments on Asia from any field, including politics, his- tory, economics, and cultural studies. Beyond the Final Score: The Politics of Sport in Asia, Victor D. Cha, 2008 The Power of the Internet in China: Citizen Activism Online, Guobin Yang, 2009 China and India: Prospects for Peace, Jonathan Holslag, 2010 India, Pakistan, and the Bomb: Debating Nuclear Stability in South Asia, Šumit Ganguly and S. Paul Kapur, 2010 Living with the Dragon: How the American Public Views the Rise of China, Benjamin I. Page and Tao Xie, 2010 East Asia Before the West: Five Centuries of Trade and Tribute, David C. Kang, 2010 Harmony and War: Confucian Culture and Chinese Power Politics, Yuan-Kang Wang, 2011 Strong Society, Smart State: The Rise of Public Opinion in China’s Japan Policy, James Reilly, 2012 Asia’s Space Race: National Motivations, Regional Rivalries, and International Risks, James Clay Moltz, 2012 Never Forget National Humiliation: Historical Memory in Chinese Politics and Foreign Relations, Zheng Wang, 2012 Green Innovation in China: China’s Wind Power Industry and the Global Transition to a Low-Carbon Economy, Joanna I. -
Letters from the MEKONG TIME for a NEW NARRATIVE on MEKONG HYDROPOWER
Time for a New Narrative on Mekong Hydropower Letters from the MEKONG TIME FOR A NEW NARRATIVE ON MEKONG HYDROPOWER by Richard Cronin and Courtney Weatherby OCTOBER 2015 1 © 2015 The Stimson Center All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written consent from the Stimson Center. Photo credits: Courtney Weatherby: front cover, page 17, 36, and back cover Rich Cronin: pages 12, 14, 15, 28, 31 Brian Eyler: pages 4, 20, 24, 26 International Rivers: page 22 NASA Observatory: page 34 STIMSON 1211 Connecticut Avenue NW, 8th Floor Washington, DC 20036 Tel: 202.223.5956 | Fax: 202.238.9604 www.stimson.org Time for a New Narrative on Mekong Hydropower CONTENTS Introduction 5 Background 7 Xayaburi and Don Sahong Dam Projects: Site Visits and Findings 13 Xayaburi Dam Site Visit 15 Don Sahong Site Visit 17 Emerging Need for a New Narrative 21 The China Factor 25 Recommendations 29 Conclusion 35 About and Acknowledgements 38 3 Letters from the Mekong THE CURRENT NARRATIVE IS OVERLY PESSIMISTIC… A NEW AND MORE NUANCED VIEW IS REQUIRED. Villages in the Siphandon region 4near the Don Sahong Dam site. CRONIN & WEATHERBY Time for a New Narrative on Mekong Hydropower INTRODUCTION This issue brief – the second in Stimson’s “Letters from the Mekong” series – examines the current status of mitigation efforts at Laos’ Xayaburi and Don Sahong dam projects and the relevance of the existing narrative surrounding hydropower development on the river’s mainstream. Based on extensive research on the status and expected impacts of these projects, the authors of this brief have concluded that the current narrative of inev- itability surrounding the future of the Mekong is increasingly at odds with what is in fact a very fluid situation. -
Khone Phapheng Aesthetics: Evaluating and Ameliorating the Hydraulic and Visual Impacts of the Don Sahong Hydroelectric Project (Lao PDR)
Khone Phapheng aesthetics: evaluating and ameliorating the hydraulic and visual impacts of the Don Sahong Hydroelectric Project (Lao PDR) The Don Sahong hydropower scheme, now under construction in the Siphandone (“four Don Sahong details Longqingxia ! Dams in the Mekong Basin thousand islands”) region of Khong District (of Champassak Province) in far southern Laos Za Qu Z i Q Commissioned, Under Construction and Planned Dams u has been extremely controversial since the Memorandum of Understanding (MoU) was first in May 2013 Map Description: The map shows every known commissioned, under construction, and planned Qamdo dam in the basin. ‘Unknown’ dams are mainly dams and reservoirs constructed for use in irrigation and/or water supply, the names of which are currently unknown. agreed between the Lao PDR government and MegaFirst Berhad: a Malaysian company with ! Cege ! Jinhe ! Yuelong Kagong ! Data Sources : Citations for the data sources contributing to the location of the dams in this map may be found Lhasa Banda great experience in engineering and land development, but which had never previously built ! at our website - http://mekong.waterandfood.org/archives/2648 Background relief data is courtesy of Natural Earth and SRTM data from the JPL of NASA Rumei River basin boundary and river vector data is courtesy of the IWMI ! CHINA All other administrative and physiographic data courtesy of NOAA's National Geophysical Data Guxue Center's Global Self-consistent, Hierarchical, High-resolution Geography Database any hydroelectric projects. The initial dust-up was over the Lao PDR’s argument that since ! Acknowledgements: Gushui ! CPWF-Mekong gratefully acknowledges the financial support of AusAID in the production of this map. -
Downstream Impacts of Lancang Dams in Hydrology, Fisheries And
Downstream Impacts of Lancang/ Upper Mekong Dams: An Overview Pianporn Deetes International Rivers August 2014 • In the wet season, the Lancang dams run at normal operation levels for power generation and release extra water if the water level exceeds normal water level. • In the dry season, Xiaowan and Nuozhadu will generally release the water to downstream dams so that to ensure other dams can run at full capacity. • The total storage of six complete dams is 41 km3. And the total regulation storage is 22 km3 Dam Name Installed Dam Height Total Regulation Regulation Status Capacity (m) Storage storage Type (MW) (km3) (km3) Gongguoqiao 900 130 0.32 0.05 Seasonal Completed (2012) Xiaowan 4200 292 15 10 Yearly Completed (2010) Manwan 1550 126 0.92 0.26 Seasonal Completed (phase 1 in1995 and phase 2 in 2007) Dachaoshan 1350 118 0.94 0.36 Seasonal Completed (2003) Nuozhadu 5850 261.5 22.7 11.3 Yearly Completed (2012) Jinghong 1750 118 1.14 0.23 Seasonal Completed (2009) Ganlanba 155 60.5 Run-of- Planned river Hydrology Flow Lancang dams has increased dry season flows and reduces wet season flows: • At China border, the flow can increase as much as 100% in March due to the operation of Manwan, Daochaoshan Jinghong and Xiaowan dams (Chen and He, 2000) • On average, the Lower Lancang cascade increased the December–May discharge by 34 to155 % and decreased the discharge from July to September by 29–36 % at Chiang Saen station (Rasanen, 2012) • After the Manwan Dam was built, the average minimum flow yearly decreased around 25% at Chiang Saen (Zhong, 2007) Rasanen (2012) Hydrology Water Level Monthly average water level data from Chiang Khong clearly showed the impacts of the first filling of Nuozhadu Dam. -
Environmental and Social Impacts of Lancang Dams
Xiaowan Dam Environmental and Social Impacts of Lancang Dams the water to downstream dams so as to ensure other dams can run at full capacity. Xiaowan and Nuozhadu are the two yearly regulated dams with big regulation storages, while all the others have very limited seasonal regulation capacity. A wide range of studies have confirmed that the wet season Summary flow will decrease, while the dry season flow will increase because of the operation of the Lancang dams. Because the This research brief focuses on the downstream impacts on Lancang river contributes 45% of water to the Mekong basin hydrology, fisheries and sedimentations caused by the Lower in the dry season, the flow change impacts on downstream Lancang cascade in China. Manwan and Dachaoshan were reaches will be more obvious increasing flows by over 100% the first two dams completed on the Lancang River (in 1995 at Chiang Saen. An increase in water levels in the dry sea- (first phase) and 2003 respectively) and many changes have son will reduce the exposed riverbank areas for river bank been observed. Many scientific studies have been done to gardens and other seasonal agriculture. Millions of villagers evaluate the impacts from Manwan and Dachaoshan dams who live along the Mekong River grow vegetables in river- by analyzing monitoring and survey data. With the two big- bank gardens and their livelihoods will be largely impacted gest dams of the cascade, Xiaowan and Nuozhadu, put into if losing the gardens. In the wet season, the decrease of operation in 2010 and 2012, bigger downstream impacts are flow at Chiang Saen caused by the Lancang dams holding expected to be observed. -
The Don Sahong Dam: Potential Impacts on Regional Fish Migrations, Livelihoods and Human Health
The Don Sahong Dam: Potential Impacts on Regional Fish Migrations, Livelihoods and Human Health Ian G. Baird, PhD August, 2009 Author’s Contact Information: Ian G. Baird, PhD, Affiliate, POLIS Project on Ecological Governance, University of Victoria, P.O. Box 3060, University House 4, Victoria, B.C., Canada V8W 3R4 [email protected] www.polisproject.org Photo Credits: All photos were taken by Ian G. Baird 1 Table of Contents Acronyms 3 Executive Summary 4 1. Introduction 5 Figure 1. Proposed location of the Don Sahong Dam and study sites between Khone Falls and Vientiane Municipality 7 2. The Nature of the Mekong River Basin and Fish Migrations 8 3. The Khone Falls and the Hou Sahong Channel 9 Figure 2. Just below the Don Sahong Dam site 9 4. Fish Migrations in the Khone Falls Area 10 Table 1. Fish species that migrate up the Mekong River from the Tonle Sap River each dry season (adapted from Baird et al. 2003) 12 5. Methodology 13 6. Results 14 6.1 The Extent of Upstream Fish Migrations 14 Table 2. Fish species’ presence and absence along Mekong River between the Khone Falls and Vientiane Municipality 16 6.2 The Importance of Upstream Fish Migrations for Fisheries above Khone Falls 18 Figure 3. A fish trap on the Hou Xang Pheuak 19 6.3 Numbers of People Expected to be Impacted Upstream 19 6.4 The Importance of Upstream Fish Migrations for Fisheries below Khone Falls 20 6.5 The Impacts of the Don Sahong Dam to Downstream Fisheries 21 6.6 Numbers of People Expected to be Impacted Downstream 23 6.7 Gas Supersaturation below the Don Sahong Dam 24 6.8 Habitat Destruction below the Don Sahong Dam 24 6.9 Cumulative Impacts on Fish and Fisheries 24 7. -
Irrigation in Southern and Eastern Asia in Figures AQUASTAT Survey – 2011
37 Irrigation in Southern and Eastern Asia in figures AQUASTAT Survey – 2011 FAO WATER Irrigation in Southern REPORTS and Eastern Asia in figures AQUASTAT Survey – 2011 37 Edited by Karen FRENKEN FAO Land and Water Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2012 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-107282-0 All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. -
Dinamika Kerja Sama Subregional Di Asia Tenggara: GREATER MEKONG Subregion
Dinamika Kerja Sama Subregional di Asia Tenggara: GREATER MEKONG Subregion Editor: Awani Irewati Dilarang mereproduksi atau memperbanyak seluruh atau sebagian dari buku ini dalam bentuk atau cara apa pun tanpa izin tertulis dari penerbit. © Hak cipta dilindungi oleh Undang-Undang No. 28 Tahun 2014 All Rights Reserved Dinamika Kerja Sama Subregional di Asia Tenggara: GREATER MEKONG Subregion Editor: Awani Irewati LIPI Press © 2018 Lembaga Ilmu Pengetahuan Indonesia (LIPI) Pusat Penelitian Politik Katalog dalam Terbitan (KDT) Dinamika Kerja Sama Subregional di Asia Tenggara: Greater Mekong Subregion/Awani Irewati (ed.)–Jakarta: LIPI Press, 2018. xiii hlm. + 244 hlm.; 14,8 × 21 cm ISBN 978-979-799-992-6 (cetak) 978-979-799-993-3 (elektronik) 1. ASEAN 2. Regional 352.1159 Copy editor : Tantrina Dwi Aprianita Proofreader : Fadly Suhendra dan Martinus Helmiawan Penata isi : Astuti Krisnawati dan Dhevi E.I.R. Mahelingga Desainer sampul : Rusli Fazi Cetakan pertama : November 2018 Diterbitkan oleh: LIPI Press, anggota Ikapi Jln. R.P. Soeroso No. 39, Menteng, Jakarta 10350 Telp: (021) 314 0228, 314 6942. Faks.: (021) 314 4591 E-mail: [email protected] Website: lipipress.lipi.go.id LIPI Press @lipi_press DAFTAR ISI DAFTAR GAMBAR ................................................................................... vii PENGANTAR PENERBIT ........................................................................ ix PRAKATA ................................................................................................... xi BAB I Dinamika Kerja Sama -
Don Sahong Brief
DON SAHONG DAM BRIEF VERY HIGH RISK FOR CAMBODIA January 2014 Key Messages: - The Don Sahong Dam would block the only channel suitable for year-round fish migration between Cambodia, Lao People’s Democratic Republic (PDR) and Thailand. - Would cause a very high risk for national and local fisheries with impacts likely to be experienced throughout the Lower Mekong Basin and repercussions for food security and nutrition for at least 75% of Cambodia’s population, and the nation’s economy. - There currently exist no proven methods to mitigate the dam’s impact on Mekong fisheries. - The EIA and supporting documents submitted by Mega First incorporates inappropriate methodologies with recommendations not supported by scientific evidence. - Financial returns of the US$300 million dam are limited and disproportionate with the expected high risks. - Construction and operation of the dam would likely hasten the extinction of the remaining 85 Critically Endangered Mekong River population Irrawaddy dolphins. - The Don Sahong Dam The proposed 260 MW Don Sahong Dam is one of twelve hydropower projects currently being studied and proposed for construction on the lower stretches of the Mekong River. Located 1.5 kilometres from the Lao-Cambodian border in Champasak Province, Lao PDR, the dam will block the Hou Sahong channel, one of the main dry season channels that comprise the Khone Falls section of the Mekong. The Don Sahong would be the second dam, after Xayaburi, which is also located in Lao PDR, to be approved for construction on the mainstream of the Lower Mekong River. Lao PDR has prioritized hydropower development with the electricity generated from the Don Sahong and Xayaburi Dams being planned for export to Thailand. -
For Don Sahong Hydropower Project
Mekong River Commission Office of the Secretariat in Phnom Penh (OSP) Office of the Secretariat in Vientiane (OSV), 576 National Road, #2, Chak Angre Krom, Office of the Chief Executive Officer P.O. Box 623, Phnom Penh, Cambodia 184 Fa Ngoum Road, Tel. (855‐23) 425 353. Fax (855‐23) 425 363 P.O. Box 6101, Vientiane, Lao PDR Tel: (856‐21) 263 263. Fax: (856‐21) 263 264 REPORT OF REGIONAL PUBLIC CONSULTATION ON THE DON SAHONG HYDROPOWER PROJECT Grand Champasak Hotel Pakse, Lao PDR 12 December, 2014 Contents Table of Abbreviations ............................................................................................................................. iii List of Figures ........................................................................................................................................... iv Part 1: Introduction ....................................................................................................................................... 1 Rationale ................................................................................................................................................... 1 Objectives of the consultation .................................................................................................................. 1 Pre‐consultation activities ........................................................................................................................ 2 Methodology ............................................................................................................................................