Extending a Networked Robot System to Include Humans, Tiny Devices, and Everyday Objects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Smart Dust: Communicating with a Cubic- Millimeter Computer
COVER FEATURE Smart Dust: Communicating with a Cubic- Millimeter Computer The Smart Dust project is probing microfabrication technology’s limitations to determine whether an autonomous sensing, computing, and communication system can be packed into a cubic-millimeter mote to form the basis of integrated, massively distributed sensor networks. Brett ecreasing computing device size, increased • monitoring environmental conditions that affect Warneke connectivity, and enhanced interaction with crops and livestock; the physical world have characterized com- • building virtual keyboards; Matt Last puting’s history. Recently, the popularity of • managing inventory control; Brian Dsmall computing devices, such as handheld • monitoring product quality; Liebowitz computers and cell phones, burgeoning Internet • constructing smart-office spaces; and growth, and the diminishing size and cost of sensors— • providing interfaces for the disabled. Kristofer S.J. especially transistors—have accelerated these trends. Pister The emergence of small computing elements, with SMART DUST REQUIREMENTS University of sporadic connectivity and increased interaction with Smart Dust requires both evolutionary and revolu- California, the environment, provides enriched opportunities to tionary advances in miniaturization, integration, and Berkeley reshape interactions between people and computers energy management. Designers can use microelectro- and spur ubiquitous computing research.1 mechanical systems (MEMS) to build small sensors, The Smart Dust project2 is exploring whether an optical communication components, and power sup- autonomous sensing, computing, and communication plies, whereas microelectronics provides increasing system can be packed into a cubic-millimeter mote (a functionality in smaller areas, with lower energy con- small particle or speck) to form the basis of integrated, sumption. Figure 1 shows the conceptual diagram of massively distributed sensor networks. -
Kent Academic Repository Full Text Document (Pdf)
Kent Academic Repository Full text document (pdf) Citation for published version Arief, Budi and Blythe, Phil and Fairchild, Richard and Selvarajah, Kirusnapillai and Tully, Alan (2008) Integrating Smartdust into Intelligent Transportation System. In: 10th International Conference on Application of Advanced Technologies in Transportation (AATT 2008), 27-31 May 2008, Athens, Greece. DOI Link to record in KAR https://kar.kent.ac.uk/58716/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html INTEGRATING SMARTDUST INTO INTELLIGENT TRANSPORTATION SYSTEMS Budi Arief1, Phil Blythe2, Richard Fairchild3, Kirusnapillai Selvarajah4, Alan Tully5 ABSTRACT. The last few years have seen the emergence of many new technologies that can potentially have major impacts on Intelligent Transportation Systems (ITS). One of these technologies is a micro-electromechanical device called smartdust. A smartdust device (or a mote) is typically composed of a processing unit, some memory, and a radio chip, which allows it to communicate wirelessly with other motes within range. -
Smart Dust Technology
250, Mini-Project Report Amy Haas Smart Dust Technology Smart dust is an emerging technology with a huge potential for becoming an internationally successful commercial venture. Now is the best time to invest in smart dust – right at the point at which the scientific community is close to perfecting the technology and its applications but its potential has not yet been realized by the capitalist market. Fundamental Concept Smart dust is a theoretical concept of a tiny wireless sensor network, made up of microelectromechanical sensors (called MEMS), robots, or devices, usually referred to as motes, that have self-contained sensing, computation, communication and power1. According to the smart dust project design created by a team of UC Berkeley researchers2, within each of these motes is an integrated package of “MEMS sensors, a semiconductor laser diode and MEMS beam-steering mirror for active optical transmission, a MEMS corner-cube retroreflector for passive optical transmission, an optical receiver, signalprocessing and control circuitry, and a power source based on thick-film batteries and solar cells.” The intent is that these motes will eventually become the size of a grain of sand or a dust particle, hence the name “smart dust”, but the technology still has a long way to go to achieve its target size. In current sensor technology, the sensors are about the size of a bottle cap or small coin. As with most electronic devices or technologies, the biggest challenges in achieving actual smart dust are the power consumption issues and making the batteries small enough. Although there is a lot of work being done on solar cells to keep the motes self-sustaining, the components are just not small enough yet to actually be considered smart dust. -
Jul 2 7 2000
THE SNAP! TOOLKIT FOR DEVELOPING SENSOR NETWORKS AND APPLICATION TO XC SKIING BY MATTHEW B. DEBSKI Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degrees of Bachelor of Science in Electrical Engineering and Computer Science and Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2000 2 20C: MASSACHUSETTS INSTITUTE © Massachusetts Institute of Technology 2000. All rights reserved. OF TECHNOLOGY JUL 2 7 2000 LIBRARIES Author Department of Electrical Engineering and Computer Science May 18, 2000 Certified by MichaelJ. Hawley Assistant Prolssor of Media Arts and Sciences Alex Dreyfoos Jr. (1954) Career Development Professor of Media Arts and Sciences Thesis Supervisor Accepted by Arthur C. Smith Chairman, Department Committee on Graduate Theses ' pT THE SNAP! TOOLKIT FOR DEVELOPING SENSOR NETWORKS AND APPLICATION TO XC SKIING BY MATTHEW B. DEBSKI Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degrees of Bachelor of Science in Electrical Engineering and Computer Science and Master of Engineering in Electrical Engineering and Computer Science May 18, 2000 ABSTRACT Athletes, health professionals, animal specialists, meteorologists, and other investigators increasingly employ small, human-scale sensor networks in their disciplines. The sensor networks used by each field and study have unique requirements. Regardless, these networks all collect and store data, and often display or transmit them. The Snap! toolkit takes advantage of the similarities among sensor networks to make prototyping them fast and easy. Simultaneously, it acknowledges their inherent differences, remaining flexible in order to accommodate the needs of different systems. -
An Ethical Framework for Smart Robots Mika Westerlund
An Ethical Framework for Smart Robots Mika Westerlund Never underestimate a droid. Leia Organa Star Wars: The Rise of Skywalker This article focuses on “roboethics” in the age of growing adoption of smart robots, which can now be seen as a new robotic “species”. As autonomous AI systems, they can collaborate with humans and are capable of learning from their operating environment, experiences, and human behaviour feedback in human-machine interaction. This enables smart robots to improve their performance and capabilities. This conceptual article reviews key perspectives to roboethics, as well as establishes a framework to illustrate its main ideas and features. Building on previous literature, roboethics has four major types of implications for smart robots: 1) smart robots as amoral and passive tools, 2) smart robots as recipients of ethical behaviour in society, 3) smart robots as moral and active agents, and 4) smart robots as ethical impact-makers in society. The study contributes to current literature by suggesting that there are two underlying ethical and moral dimensions behind these perspectives, namely the “ethical agency of smart robots” and “object of moral judgment”, as well as what this could look like as smart robots become more widespread in society. The article concludes by suggesting how scientists and smart robot designers can benefit from a framework, discussing the limitations of the present study, and proposing avenues for future research. Introduction capabilities (Lichocki et al., 2011; Petersen, 2007). Hence, Lin et al. (2011) define a “robot” as an Robots are becoming increasingly prevalent in our engineered machine that senses, thinks, and acts, thus daily, social, and professional lives, performing various being able to process information from sensors and work and household tasks, as well as operating other sources, such as an internal set of rules, either driverless vehicles and public transportation systems programmed or learned, that enables the machine to (Leenes et al., 2017). -
Solving Human Centric Challenges in Ambient Intelligence Environments to Meet Societal Needs
Solving Human Centric Challenges in Ambient Intelligence Environments to Meet Societal Needs A Dissertation Presented to the Faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements for the Degree Doctor of Philosophy (Computer Science) by Erin Griffiths December 2019 © 2019 Erin Griffiths Approval Sheet This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science) Erin Griffiths This dissertation has been read and approved by the Examining Committee: Kamin Whitehouse, Adviser Jack Stankovic, Committee Chair Mary Lou Soffa A.J. Brush John Lach Accepted for the School of Engineering and Applied Science: Dean, School of Engineering and Applied Science December 2019 i To everyone who has helped me along the way. ii Abstract In the world today there exists a large number of problems that are of great societal concern, but suffer from a problem called the tragedy of the commons where there isn`t enough individual incentive for people to change their behavior to benefit the whole. One of the biggest examples of this is in energy consumption where research has shown that we can reduce 20-50% of the energy used in buildings if people would consistently modify their behavior. However, consistent behavior modification to meet societal goals that are often low priority on a personal level is often prohibitively difficult in the long term. Even systems design to assist in meeting these needs may be unused or disabled if they require too much effort, infringe on privacy, or are frustratingly inaccurate. -
Understanding Expressions of Internet of Things
Understanding Expressions of Internet of Things Kuo Chun, Tseng*, Rung Huei, Liang ** * Department of Industrial and Commercial Design, National Taiwan University of Science and Technology, Taipei, Taiwan, [email protected] ** Department of Industrial and Commercial Design, National Taiwan University of Science and Technology, Taipei, Taiwan, [email protected] Abstract: A recent surge of research on Internet of Things (IoT) has given people new opportunities and challenges. Unfortunately, little research has been done on conceptual framework, which is a crucial aspect to envision IoT design. We found that designers usually felt helpless when designing smart objects in contrast to traditional ones and needed more resources for potential expressions of interactive embodiment with this new technology. Moreover, it appears to be unrealistic to expect the designer to follow the programming thinking and theory of MEMS (Micro Electro Mechanical Systems) field. Therefore, instead of focusing on exploring the technology, this paper proposes an analytical framing and investigates interactive expressions of embodiment on smart objects that help designers understand and handle the technology as design material to design smart objects during the coming era of IoT. To achieve this goal, first we conceptualize an IoT artifact as an object that has four capabilities and provide a clear framework for understanding a thing and multiple things over time and space in ecology of IoT things powered by a cloud-based mechanism. Second, we show the analytical results of three categories: smart things and design agenda over cloud in respect of time and space. Third, drawing on the taxonomy of embodiment in tangible interfaces by Fishkin K. -
Case /.'06-285F
NATIONAL SCIENCE FOUNDATION 4201 WILSON BOULEVARD ARLINGTON, VIRGINIA 22230 nsf OFFICE OF THE GENERALCOUNSEL Case /.'06-285F October 17.2006 Ms. M'dwh Mofmaiiii Staff Attorney Fleclronie Frontiei Foundation 1875 Coonecticul Avenue, WW, Suite 850 Wasmn#on, DC 7.0009 Dear Ms. rloimann: ibis is in response to sour Scpien<ber 26. 2006 emailed Freedom of In formation. Act (FOIA> request .for eoui.es of the NSF fiu-ded grants r-umbered 042.3.386, 0209190 and 0512976. Records responsive io your request are enclosed. Personal information (individual salaries, bios, pending aiid non-Federal grams) has been withheld wherever it appears uncer the; pviv.-ey protests''.-n of Exemption 6 of the FOiA. Reviewer identifying in forma!ion in ihe proposal jacket is withheld under exemptions 5 and;6 of the Freedom of lp-ormali'ori Ac! {.- '.J.S.C. :": 52(b)) that protect from disclosure the prcdeeisional, ueJiberaWe process and. personal information and exemption (k)(5) of the Privacy Act (5 IJ.S.C !o?a). Father, reviewer's coiniininis/rankings are exempt from disclosure under the provisions oM.-.xanption (b)(3) of the FOiA. Your right of administrative appeal is set ftVlh in See'riot; 612.9 of dsc NSF FOIA regulation (copy enclosed). There is ao fee (or FCTA services in this instance in accordance with 5 U.S.C. 552 uOC^XAX'i) yt seq. Sincerely, Leslie A Jensen FOIA/Privacy Act Ofiker Hnciosure:-; Telephone (703) 292-8060 FAX (703) 292-9041 §612.9 Appeals. .F^omof.nfonna,ionAc.ApI«a.,Yo«rappea11enerInus,iIlduae.c0pyofyo»r wrinenreques,a„a,heae„ia1,oEe*erwi*anyWri«enargume«youWishK,subml«. -
Using Radio Frequency Identification and Virtual Reality to Map and Track Assets
Using Radio Frequency Identification and Virtual Reality to Map and Track Assets by Christopher S. Moon Advisor: Dr. David Fredrick Honors Assistant to the Advisor: Keenan Cole Thesis in partial fulfillment of the requirements for the degree Bachelor of Science in Business Administration in Information Systems Sam M. Walton College of Business University of Arkansas Fayetteville, Arkansas May 8th, 2011 1 Contents An Introduction to Technologies Used ........................................................................................... 3 What is Radio Frequency Identification? .................................................................................... 3 Table 1 ‐ Example of Typical RFID Data................................................................................... 5 What is Virtual Reality Technology? ........................................................................................... 6 What is Unity? ............................................................................................................................. 8 Objective ......................................................................................................................................... 8 Current Visualization Standards ..................................................................................................... 9 Figure 1 ‐ Current 3D Representation of RFID Positional Data at the University of Arkansas RFID Lab ................................................................................................................................. -
ASHS Is Inviting/Encouraging Poster Presenters to Up- Posters: Load a PDF of Their Poster
vt- •• ��t E�. Gallo Winery � BalL American Funding Generations of Floral Progress Through Research Image Analysis for Plant Science Endowment and Scholarships 1 of 262 General Information Conference Facilities: Speaker Ready Room: All Conference activities will take place at the Tropicana Oral, Workshop, Special Sessions, and Keynote speakers Las Vegas. are requested to check in at the Speaker Ready Room located in Churchill. Please note, even if you have Registration hours: uploaded in advance, you are still asked to check in at the Speaker Ready room at least 24 hours in advance of Sunday, July 21. .3:00 PM – 6:00 PM your presentation to confirm that your media and Pow- erPoint presentations were successfully uploaded and Monday, July 22 .............7:30 AM – 6:00 PM running properly. Updates and modifications can only Tuesday, July 23. 7:30 AM – 6:00 PM be made up to 24 hours in advance of your presentation. Wednesday, July 24. .7:30 AM – 5:00 PM Thursday, July 25 ............7:30 AM – 2:00 PM Poster Presenters and E-Posters: ASHS is inviting/encouraging poster presenters to up- Posters: load a PDF of their poster. You may also upload mp4 video or audio files to go along with the poster. Posters are located in Cohiba 5-12. As part of enhancing the ASHS online conference proceedings, you have the option to make your poster Poster Set Up: into an interactive electronic version (E-Poster). If you would like to explore this option, a link will appear once Monday, July 22 .............2:00 PM – 5:00 PM you have uploaded your PDF file with instructions on how to create your E-Poster. -
Social Robotics Agenda.Pdf
Thank you! The following agenda for social robotics was developed in a project led by KTH and funded by Vinnova. It is a result of cooperation between the following 35 partners: Industry: ABB, Artificial Solutions, Ericsson, Furhat robotics, Intelligent Machines, Liquid Media, TeliaSonera Academia: Göteborgs universitet, Högskolan i Skövde, Karolinska Institutet, KTH, Linköpings universitet, Lunds tekniska högskola, Lunds Universitet, Röda korsets högskola, Stockholms Universtitet, Uppsala Universitet, Örebro universitet Public sector: Institutet för Framtidsstudier, Myndigheten för Delaktighet, Myndigheten för Tillgängliga Medier, Statens medicinsk- etiska råd, Robotdalen, SLL Innovation, Språkrådet End-user organistions: Brostaden, Epicenter, EF Education First, Fryshuset Gymnasium, Hamnskolan, Investor, Kunskapsskolan, Silver Life, Svenskt demenscentrum, Tekniska Museet We would like to thank all partners for their great commitment at the workshops where they shared good ideas and insightful experiences, as well as valuable and important observations of what the future might hold. Agenda key persons: Joakim Gustafson (KTH), Peje Emilsson (Silver Life), Jan Gulliksen (KTH), Mikael Hedelind (ABB), Danica Kragic (KTH), Per Ljunggren (Intelligent Machines), Amy Loutfi (Örebro university), Erik Lundqvist (Robotdalen), Stefan Stern (Investor), Karl-Erik Westman (Myndigheten för Delaktighet), Britt Östlund (KTH) Writing group: editor Joakim Gustafson, co-editor Jens Edlund, Jonas Beskow, Mikael Hedelind, Danica Kragic, Per Ljunggren, Amy -
Automation, Bots and Algorithms in Newsmaking. Impact and Quality of Artificial Journalism”
RLCS, Revista Latina de Comunicación Social, 74 – Pages 1411 to 1433 [Funded Research] | DOI: 10.4185/RLCS-2019-1391en |ISSN 1138-5820 | Year 2019 How to cite this article in bibliographies / References M Túñez-Lopez, C Toural-Bran, C Valdiviezo-Abad (2019): “Automation, bots and algorithms in newsmaking. Impact and quality of artificial journalism”. Revista Latina de Comunicación Social, 74, pp. 1411 to 1433 http://www.revistalatinacs.org/074paper/1391/74en.html DOI: 10.4185/RLCS-2019-1391en Automation, bots and algorithms in newsmaking. Impact and quality of artificial journalism Miguel Túñez-López [CV] [ ORCID] [ GS] Professor at the Department of Communication Science from the University of Santiago de Compostela (USC), Spain [email protected] (Corresponding author) Carlos Toural-Bran [CV] [ ORCID] [ GS] Professor at the Department of Communication Science from the University of Santiago de Compostela (USC), Spain [email protected] Cesibel Valdiviezo Abad [CV] [ ORCID] [ GS] PhD candidate at the USC and Professor at the Communication Department of the UTPL, Spain [email protected] Abstracts [ES] Introducción: Las transformaciones en el periodismo se han considerado una modernización del proceso de producción informativa y una actualización del proceso para incorporar los avances en tecnología. El cambio en las últimas cuatro décadas ha derivado de un periódico hecho manualmente en maquetación y composición tipográfica a un relato informativo online con textos noticiosos creados por máquinas preparadas para imitar mediante algoritmos el modo de estructurar y escribir las noticias y sustituir al periodista. El periodismo artificial está cada vez más presente en los medios, lo que comienza a abrir debates deontológicos, laborales y sociales.