CARNAP and LEWIS on the EXTERNAL WORLD Analytic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Logic in Action: Wittgenstein's Logical Pragmatism and the Impotence of Scepticism
This is the final, pre-publication draft. Please cite only from published paper in Philosophical Investigations 26:2 (April 2003), 125-48. LOGIC IN ACTION: WITTGENSTEIN'S LOGICAL PRAGMATISM AND THE IMPOTENCE OF SCEPTICISM DANIÈLE MOYAL-SHARROCK UNIVERSITY OF GENEVA 1. The Many Faces of Certainty: Wittgenstein's Logical Pragmatism So I am trying to say something that sounds like pragmatism. (OC 422) In his struggle to uncover the nature of our basic beliefs, Wittgenstein depicts them variously in On Certainty: he thinks of them in propositional terms, in pictorial terms and in terms of acting. As propositions, they would be of a peculiar sort – a hybrid between a logical and an empirical proposition (OC 136, 309). These are the so-called 'hinge propositions' of On Certainty (OC 341). Wittgenstein also thinks of these beliefs as forming a picture, a World-picture – or Weltbild (OC 167). This is a step in the right (nonpropositional) direction, but not the ultimate step. Wittgenstein's ultimate and crucial depiction of our basic beliefs is in terms of a know-how, an attitude, a way of acting (OC 204). Here, he treads on pragmatist ground. But can Wittgenstein be labelled a pragmatist, having himself rejected the affiliation because of its utility implication? But you aren't a pragmatist? No. For I am not saying that a proposition is true if it is useful. (RPP I, 266) Wittgenstein resists affiliation with pragmatism because he does not want his use of use to be confused with the utility use of use. For him, it is not that a proposition is true if it is useful, but that use gives the proposition its sense. -
Nominalism, Trivialism, Logicism
Nominalism, Trivialism, Logicism Agustín Rayo∗ May 1, 2014 This paper is an effort to extract some of the main theses in the philosophy of mathematics from my book, The Construction of Logical Space. I show that there are important limits to the availability of nominalistic paraphrase-functions for mathematical languages, and sug- gest a way around the problem by developing a method for specifying nominalistic contents without corresponding nominalistic paraphrases. Although much of the material in this paper is drawn from the book—and from an earlier paper (Rayo 2008)—I hope the present discussion will earn its keep by motivating the ideas in a new way, and by suggesting further applications. 1 Nominalism Mathematical Nominalism is the view that there are no mathematical objets. A standard problem for nominalists is that it is not obvious that they can explain what the point of a mathematical assertion would be. For it is natural to think that mathematical sentences like ‘the number of the dinosaurs is zero’ or ‘1 + 1 = 2’ can only be true if mathematical objects exist. But if this is right, the nominalist is committed to the view that such sentences are untrue. And if the sentences are untrue, it not immediately obvious why they would be worth asserting. ∗For their many helpful comments, I am indebted to Vann McGee, Kevin Richardson, Bernhard Salow and two anonymous referees for Philosophia Mathematica. I would also like to thank audiences at Smith College, the Università Vita-Salute San Raffaele, and MIT’s Logic, Langauge, Metaphysics and Mind Reading Group. Most of all, I would like to thank Steve Yablo. -
Biography Paper – Georg Cantor
Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies. -
Curriculum Vitae
BAS C. VAN FRAASSEN Curriculum Vitae Last updated 3/6/2019 I. Personal and Academic History .................................................................................................................... 1 List of Degrees Earned ........................................................................................................................................................ 1 Title of Ph.D. Thesis ........................................................................................................................................................... 1 Positions held ..................................................................................................................................................................... 1 Invited lectures and lecture series ........................................................................................................................................ 1 List of Honors, Prizes ......................................................................................................................................................... 4 Research Grants .................................................................................................................................................................. 4 Non-Academic Publications ................................................................................................................................................ 5 II. Professional Activities ................................................................................................................................. -
Metaphysics Today and Tomorrow*
1 Metaphysics Today and Tomorrow* Raphaël Millière École normale supérieure, Paris – October 2011 Translated by Mark Ohm with the assistance of Leah Orth, Jon Cogburn, and Emily Beck Cogburn “By metaphysics, I do not mean those abstract considerations of certain imaginary properties, the principal use of which is to furnish the wherewithal for endless dispute to those who want to dispute. By this science I mean the general truths which can serve as principles for the particular sciences.” Malebranche Dialogues on Metaphysics and Religion 1. The interminable agony of metaphysics Throughout the twentieth century, numerous philosophers sounded the death knell of metaphysics. Ludwig Wittgenstein, Rudolf Carnap, Martin Heidegger, Gilbert Ryle, J. L. Austin, Jacques Derrida, Jürgen Habermas, Richard Rorty, and, henceforth, Hilary Putnam: a great many tutelary figures have extolled the rejection, the exceeding, the elimination, or the deconstruction of first philosophy. All these necrological chronicles do not have the same radiance, the same seriousness, nor the same motivations, but they all agree to dismiss the discipline, which in the past was considered “the queen of the sciences”, with a violence at times comparable to the prestige it commanded at the time of its impunity. Even today, certain philosophers hastily spread the tragic news with contempt for philosophical inquiry, as if its grave solemnity bestowed upon it some obviousness. Thus, Franco Volpi writes: ‘Grand metaphysics is dead!’ is the slogan which applies to the majority of contemporary philosophers, whether continentals or of analytic profession. They all treat metaphysics as a dead dog.1 In this way, the “path of modern thought” would declare itself vociferously “anti- metaphysical and finally post-metaphysical”. -
Notes on Communication Research Epistemology and Methods Apontamentos Para Epistemologia E Métodos Na Pesquisa Em Comunicação No Brasil
Comunicação e sociedade 33 | 2018 Epistemologia e metodologias em comunicação Notes on Communication research epistemology and methods Apontamentos para epistemologia e métodos na pesquisa em Comunicação no Brasil Cicilia M. Krohling Peruzzo Translator: Denise Maria Moura da Silva Lopes Electronic version URL: http://journals.openedition.org/cs/297 ISSN: 2183-3575 Publisher Centro de estudos de comunicação e sociedade Printed version Date of publication: 29 June 2018 Number of pages: 41-56 ISSN: 1645-2089 Electronic reference Cicilia M. Krohling Peruzzo, « Notes on Communication research epistemology and methods », Comunicação e sociedade [Online], 33 | 2018, Online since 29 June 2018, connection on 01 October 2019. URL : http://journals.openedition.org/cs/297 Revista Comunicação e Sociedade by CECS is licensed under a Creative Commons Atribuição-Uso Não- Comercial 4.0 International. Comunicação e Sociedade, vol. 33, 2018, pp. 41 – 56 doi: 10.17231/comsoc.33(2018).2906 Notes on Communication research epistemology and methods Cicilia M. Krohling Peruzzo Abstract This text weaves some aspects of research in Communication starting from the philoso- phy of knowledge as a basis for understanding science. It aims to discuss the issue of scientific research in the epistemological perspective, to consider the importance of scientific methodol- ogy in its methodical and technical dimensions, as well as to reflect on aspects of the research carried out in Latin America and more specifically in Brazil. It is a theoretical approach based on a non-systematic and non-exhaustive literature review. The existence of thematic and methodo- logical diversity is examined, as well as the apparent tendency of the research to focus on the novelty, mainly in regards to elements related to technology, as object of study. -
Our Conceptual Understanding of a Phenomenon, While the Logic of Induction Adds Quantitative Details to the Conceptual Knowledge
DOCUMENT RESUME ED 376 173 TM 021 982 AUTHOR Ho, Yu Chong TITLE Abduction? Deduction? Induction? Is There a Logic of Exploratory Data Analysis? PUB DATE Apr 94 NOTE 28p.; Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 4-8, 1994). PUB TYPE Reports Descriptive (141) Speeches/Conference Papers (150) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Comprehension; *Deduction; Hypothesis Testing; *Induction; *Logic IDENTIFIERS *Abductive Reasoning; *Exploratory Data Analysis; Peirce (Charles S) ABSTRACT The philosophical notions introduced by Charles Sanders Peirce (1839-1914) are helpfu: for researchers in understanding the nature of knowledge and reality. In the Peircean logical system, the logic of abduction and deduction contribute to our conceptual understanding of a phenomenon, while the logic of induction adds quantitative details to the conceptual knowledge. Although Peirce justified the validity of induction as a self-corrective process, he asserted that neither induction nor deduction can help us to unveil the internal structure of meaning. As exploratory data analysis performs the function of a model builder for confirmatory data analysis, abduction plays the role of explorer of viable paths to further inquiry. Thus, the logic of abduction fits well into exploratory data analysis. At the stage of abduction, the goal is to explore the data, find out a pattern, and suggest a plausible hypothesis; deduction is to refine the hypothesis based upon other plausible premises; and induction is the empirical substantiation. (Contains 55 references.) (Author) *********************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. is *********************************************************************** Abduction? Deduction? Induction? Is there a Logic of Exploratory Data Analysis? Yu Chong Ho University of Oklahoma Internet: [email protected] April 4, 1994 U S. -
Rudolf Carnap Papers, 1920-1968
http://oac.cdlib.org/findaid/ark:/13030/tf7q2nb520 No online items Finding Aid for the Rudolf Carnap papers, 1920-1968 Processed by UCLA Library Special Collections staff; machine-readable finding aid created by Caroline Cubé UCLA Library Special Collections UCLA Library Special Collections staff Room A1713, Charles E. Young Research Library Box 951575 Los Angeles, CA 90095-1575 Email: [email protected] URL: http://www.library.ucla.edu/libraries/special/scweb/ © 1998 The Regents of the University of California. All rights reserved. Note Arts and Humanities --PhilosophyHistory --History, University of California --History, UC Los AngelesGeographical (By Place) --University of California --University of California Los Angeles Finding Aid for the Rudolf Carnap 1029 1 papers, 1920-1968 Finding Aid for the Rudolf Carnap papers, 1920-1968 Collection number: 1029 UCLA Library Special Collections UCLA Library Special Collections staff Los Angeles, CA Contact Information UCLA Library Special Collections staff UCLA Library Special Collections Room A1713, Charles E. Young Research Library Box 951575 Los Angeles, CA 90095-1575 Telephone: 310/825-4988 (10:00 a.m. - 4:45 p.m., Pacific Time) Email: [email protected] URL: http://www.library.ucla.edu/libraries/special/scweb/ Processed by: UCLA Library Special Collections staff, 1998 Encoded by: Caroline Cubé Online finding aid edited by: Josh Fiala, June 2002 © 1998 The Regents of the University of California. All rights reserved. Descriptive Summary Title: Rudolf Carnap papers, Date (inclusive): 1920-1968 Collection number: 1029 Creator: Carnap, Rudolf, 1891-1970 Extent: 56 boxes (28 linear ft.) Repository: University of California, Los Angeles. Library Special Collections. -
Explanations
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. CHAPTER 1 Explanations 1.1 SALLIES Language is an instrument of Logic, but not an indispensable instrument. Boole 1847a, 118 We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of exact science are mathematics and logic; the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two. De Morgan 1868a,71 That which is provable, ought not to be believed in science without proof. Dedekind 1888a, preface If I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems whilst the root drives into the depthswx . Frege 1893a, xiii Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians. Russell 1903a, 451 1.2 SCOPE AND LIMITS OF THE BOOK 1.2.1 An outline history. The story told here from §3 onwards is re- garded as well known. It begins with the emergence of set theory in the 1870s under the inspiration of Georg Cantor, and the contemporary development of mathematical logic by Gottlob Frege andŽ. especially Giuseppe Peano. A cumulation of these and some related movements was achieved in the 1900s with the philosophy of mathematics proposed by Alfred North Whitehead and Bertrand Russell. -
Generalized Molecular Formulas in Logical Atomism
Journal for the History of Analytical Philosophy An Argument for Completely General Facts: Volume 9, Number 7 Generalized Molecular Formulas in Logical Editor in Chief Atomism Audrey Yap, University of Victoria Landon D. C. Elkind Editorial Board Annalisa Coliva, UC Irvine In his 1918 logical atomism lectures, Russell argued that there are Vera Flocke, Indiana University, Bloomington no molecular facts. But he posed a problem for anyone wanting Henry Jackman, York University to avoid molecular facts: we need truth-makers for generaliza- Frederique Janssen-Lauret, University of Manchester tions of molecular formulas, but such truth-makers seem to be Kevin C. Klement, University of Massachusetts both unavoidable and to have an abominably molecular charac- Consuelo Preti, The College of New Jersey ter. Call this the problem of generalized molecular formulas. I clarify Marcus Rossberg, University of Connecticut the problem here by distinguishing two kinds of generalized Anthony Skelton, Western University molecular formula: incompletely generalized molecular formulas Mark Textor, King’s College London and completely generalized molecular formulas. I next argue that, if empty worlds are logically possible, then the model-theoretic Editors for Special Issues and truth-functional considerations that are usually given ad- Sandra Lapointe, McMaster University dress the problem posed by the first kind of formula, but not the Alexander Klein, McMaster University problem posed by the second kind. I then show that Russell’s Review Editors commitments in 1918 provide an answer to the problem of com- Sean Morris, Metropolitan State University of Denver pletely generalized molecular formulas: some truth-makers will Sanford Shieh, Wesleyan University be non-atomic facts that have no constituents. -
Carnap on Empirical Significance
Carnap on Empirical Significance Sebastian Lutz∗ Preprint: 2014–04–30 Abstract Carnap’s search for a criterion of empirical significance is usually con- sidered a failure. I argue that the results from two out of his three different approaches are at the very least problematic, but that one approach led to success. Carnap’s criterion of translatability into logical syntax is too vague to allow definite results. His criteria for terms—introducibility by reduction sentences and his criterion from “The Methodological Character of Theoretical Concepts”—are almost trivial and have no clear relation to the empirical significance of sentences. However, his criteria for sentences— translatability, verifiability, falsifiability, confirmability—are usable, and under assumption of the Carnap sentence, verifiability, falsifiability, and translatability become equivalent. The price for the Carnap sentence approach is that metaphysics cannot always be shown to be non-significant. Keywords: empirical significance; cognitive significance; meaningfulness; Carnap; logical empiricism; Ramsey sentence; Carnap sentence; verifiabil- ity; falsifiability; testability; translatability Contents 1 Introduction 2 2 Informal Translatability 3 3 Europe 6 3.1 Criteria for Sentences............................. 6 3.2 Criteria for Terms............................... 15 ∗Munich Center for Mathematical Philosophy, Ludwig-Maximilians-Universität München. se- [email protected]. A previous version was presented in 2013 at the workshop Carnap on Logic at the Ludwig-Maximilians-Universität München, some aspects were presented in 2013 at the work- shop Formal Epistemology and the Legacy of Logical Empiricism at the University of Texas at Austin and in 2012 at the Groningen/Munich Summer School Formal Methods in Philosophy. I thank the audiences for helpful comments and discussions. -
Redalyc.Logical Consequence for Nominalists
THEORIA. Revista de Teoría, Historia y Fundamentos de la Ciencia ISSN: 0495-4548 [email protected] Universidad del País Vasco/Euskal Herriko Unibertsitatea España ROSSBERG, Marcus; COHNITZ, Daniel Logical Consequence for Nominalists THEORIA. Revista de Teoría, Historia y Fundamentos de la Ciencia, vol. 24, núm. 2, 2009, pp. 147- 168 Universidad del País Vasco/Euskal Herriko Unibertsitatea Donostia-San Sebastián, España Available in: http://www.redalyc.org/articulo.oa?id=339730809003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Logical Consequence for Nominalists Marcus ROSSBERG and Daniel COHNITZ BIBLID [0495-4548 (2009) 24: 65; pp. 147-168] ABSTRACT: It has repeatedly been argued that nominalistic programmes in the philosophy of mathematics fail, since they will at some point or other involve the notion of logical consequence which is unavailable to the nominalist. In this paper we will argue that this is not the case. Using an idea of Nelson Goodman and W.V.Quine's which they developed in Goodman and Quine (1947) and supplementing it with means that should be nominalistically acceptable, we present a way to explicate logical consequence in a nominalistically acceptable way. Keywords: Philosophy of mathematics, nominalism, logical consequence, inferentialism, Nelson Goodman, W.V. Quine. 1. The Argument from Logical Consequence We do not have any strong convictions concerning the question of the existence or non- existence of abstract objects. We do, however, believe that ontological fastidiousness is prima facie a good attitude to adopt.